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Abstract: Modern smart agriculture utilizes Unmanned Arial Vehicles (UAVs) with hyperspectral cameras to enhance
crop production to address the food security challenges. These cameras provide detailed crop information for
type identification, disease detection, and nutrient assessment. However, processing Hyper Spectral Image
(HSI) is complex due to challenges such as high inter-class similarity, intra-class variability, and overlapping
spectral profiles. Thus, we introduce the Agrinet model, a convolutional neural network architecture, to han-
dle complex hyperspectral image processing. Our novelty lies in the image pre-processing step of selecting
suitable bands for better classification. In tests, Agrinet achieved an impressive accuracy of 99.93% on the
LongKou crop dataset, outperforming the existing methods in classification.

1 INTRODUCTION

According to the Food and Agricultural Organization
of the United Nations (FAO), agriculture is vital in
sustaining over 60% of the global population, utiliz-
ing approximately 12% of the world’s land for farm-
ing activities (Bender, 2020). Thus, to feed such a big
population, many advances are made in the agricul-
tural sector by developed and developing countries.
But despite significant progress in the field, chal-
lenges to food security persist (Rosegrant and Cline,
2003; Mc Carthy et al., 2018). These challenges in-
clude escalating demand for food, the strain on avail-
able land resources, the impact of climate change,
diminishing pollination, outbreaks of plant diseases,
water scarcity, inadequate food distribution systems
(Calicioglu et al., 2019; Pereira, 2017).

Addressing these challenges requires immediate
and proactive measures.

One notable technological advancement in this di-
rection is the widespread use of drones (Veroustraete,
2015). With spectral cameras, drones can capture HSI
that provides valuable insights into crops (Harakan-
nanavar et al., 2022; Mohanty and Salathé, 2016;
Ahmed and Reddy, 2021). These HSI offer a range of
applications, including crop type classification, early
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disease detection, assessment of soil mineral and nu-
trient levels, identification of water stress in leaves,
analysis of crop phenology, moisture content evalua-
tion, and more (Khan et al., 2018; Ravikanth et al.,
2017). Some models and pre-processing pipelines
have been suggested in the literature to examine the
HSI (Zhong et al., 2020a; Ramirez et al., 2020; Heble
et al., 2018; Mogili and Deepak, 2018; Yamamoto
et al., 2017; Guo et al., 2005; Xu et al., 2020), but
compared to their performance, our model is bet-
ter at selecting more meaningful spectral-spacial fea-
tures. When classified, HSI presents challenges due
to high inter-class similarity, spectral region overlap,
and high intra-class variability.

As stated above, the classification of HSI presents
three critical challenges that need to be addressed:

• High Inter-Class Similarity. Objects within an
image often exhibit similar spectral reflectance
properties, leading to overlapping spectral signa-
tures. This similarity makes it challenging to dis-
tinguish between different crops or objects solely
based on spectral profiles.

• Overlapping Regions. HSI suffers from the chal-
lenge of overlapping spectral signatures from dif-
ferent classes within the feature space. This over-
lap arises due to the limited number of spectral
bands available.

• High Intra-Class Variability. The concept of
high intra-class variability points to the phe-
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nomenon where various regions or sub-regions
within a singular class exhibit dissimilar spectral
signatures.

To address these challenges, we introduce the
Agrinet model, a convolutional neural network with
active band selection according to Normalized differ-
ence vegetation index (NDVI), for crop classification
using UAV hyperspectral data. To facilitate incre-
mental learning and prevent catastrophic forgetting,
we decompose the multiclass classifier into a binary
classifier (Singh et al., 2020) called binary Agrinet.

Normalized Difference Vegetation Index (NDVI):
is a vegetation index that assesses vegetation by
quantifying the disparity between near-infrared light,
which vegetation reflects strongly, and red light,
which vegetation absorbs. NDVI values consistently
range from -1 to +1. Negative values typically indi-
cate the presence of water, while values close to +1
suggest the presence of dense green foliage. Con-
versely, when NDVI is near zero, it indicates the ab-
sence of green leaves, potentially indicating an urban-
ized area. Thus, bands indicating vegetation are only
chosen at the pre-processing step for the model to ex-
tract better spatial-spectral features.

Another aspect of the Agrinet model is that it
doesn’t adhere to an end-to-end convolutional archi-
tecture. The reason to refrain from using end-to-
end convolutional models stems from a desire to pre-
vent unwarranted model bulk. Implementing a sep-
arate pre-processing pipeline proves advantageous in
crafting streamlined models, leading to a reduction in
computational demands.

2 DATASET DESCRIPTION

HSI classification models often rely on low-resolution
satellite datasets with limited labeled pixels. To over-
come this, we used the WHU-Hi dataset (Luo et al.,
2018), which consists of high-resolution UAV-borne
HSI. This dataset comprises WHU-Hi-LongKou,
WHU-Hi-HanChuan, and WHU-Hi-HongHu (Zhong
et al., 2020b), offering improved spatial resolution.
UAV datasets are better suited for crop classification,
disease detection, and crop phenology profiling than
satellite images.

3 AGRINET PIPELINE

Let us consider that we have HSI data of height(H) ×
width(W) × bands(B) along with the ground truth of

Table 1: Layer-based summary of Agrinet architecture.

Layer Output Shape No. of Parameters
Input Layer (11,11,20,1) 0
Conv3D 1 (9,9,18,8) 224
Conv3D 2 (7,7,16,16) 3472
Conv3D 3 (5,5,14,32) 13856

Flatten (11200) 0
Dense 1 (128) 1433728

Dropout 1 (128) 0
Dense 2 (64) 8256

Dropout 2 (64) 0
Output Layer (No. of class) 1430

height(H) × width(W). The dataset can be expressed
as X = [x1,x2,x3 . . .xB]

T ∈ HSI(H×W×B). Thus, it has
H ×W samples associated with L class label per band
based on the ground truth with collectively B bands
(Ahmad et al., 2022). Each sample can be denoted
as (xi,y j) where y j is the label of sample xi. Thus ith

sample belongs to jth class.
The raw HSI data is preprocessed and band selec-

tion is applied based on the spectral profile by measur-
ing the NDVI of the bands. Thus, no useful bands are
clipped from the data. Feature extraction is done by
incremental PCA, reducing the dataset’s spectral di-
mensions. The HSI is divided into small 3D patches.
These are divided into train-test sets to feed to the
model to train the model and generate the classifica-
tion map. Incremental principal component analysis
is applied after band selection. The most significant N
bands are chosen from B bands where N << B while
maintaining the spatial dimensions. For the HSI data
cube to process with the Agrinet model (Figure1), the
data cube has to be divided into small 3D overlapping
spatial patches of a certain window size of S. Based
on the 3D patches, ground labels are formed consider-
ing the central pixel. This creates the small K 3D HSI
patches where K ∈ HSI(S×S×N) centered at location
(m,n) covering (S×S) spatial window.

The input 3D HSI patches are convolved with a
3D kernel of the Agrinet model, thus calculating the
dot product between the patches and kernel. The ex-
tracted features are subsequently subjected to the relu
activation function, which introduces non-linearity to
the learned representations. The activation value at
position (a,b,c) in the ith layer and jth feature map is
given by ua,b,c

i, j .

φ(
fi−1

∑
δ=1

α

∑
r=−α

β

∑
s=−β

λ

∑
t=−λ

vr,s,t
i, j,δ∗u(a+r),(b+s),(c+t)

(i−1),δ +bi, j)

φ represents the activation function. fi−1 be the num-
ber of 3D feature map at (i−1)th layer. The depth of
the kernel is represented by vi, j and bi, j corresponds
to the bias term. To extract the spectral and spatial
features, three convolutional 3D layers are deployed
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Figure 1: Proposed method Overview: The Agrinet model.

Figure 2: Binary Agrinet overview.

as shown in Figure1 so that the model can differ-
entiate between the spectral band and spatial infor-
mation without losing information. The weights are
randomly initialized, and the Adam optimizer is used
with the softmax function. The layer-based network
summary is shown in Table 1.

4 BINARY AGRINET

By decomposing the multi-class crop classification
into a binary classifier (Figure 2) for each crop and
leveraging the one-versus-all strategy, the complexity
and computational requirements are reduced, making
it feasible to handle large-scale multi-class classifica-
tion tasks effectively(Lorena et al., 2008).

The Agrinet binary model 2 has a sigmoid at the
output layer, and a binary cross-entropy loss function
is used. The individual classifier is optimized with an
SGD optimizer. For binary Agrinet (Figure 2) only
the training dataset is modified as per individual label
classifier. On the training set, an individual binary
classifier is built for each class label. Considering
the interest class as the target class or positive class
and other classes as the outlier class or negative class.
This individual binary Agrinet model is trained and
ensembled. The test set data is passed to ensembles
of the binary Agrinet model, the probability score is
calculated, and the maximum of them gives the final
predicted class label.

Let n be the number of distinct classes in the

dataset D. let Di and Mi be the dataset and binary
classifier corresponding to label i ∈ {1 . . .n} s.t. Now
∀i ∈ 1 . . .n ∃ a binary data set Bi corresponding to
each Di s.t

Bi = Bi,p ∪Bi,n (1)

Bi,p = {(x j, I[y = i]) | x j ∈ D∧ I[y = i] = 1} (2)

Bi,n = {(x j, I[y = i]) | x j ∈ D∧ I[y = i] = 0} (3)

Let the training dataset for the ith client be D̃i where

D̃i = Bi,p ∪Bi,n (4)

Mi = train(D̃i) (5)

x ∈ Dtest ⊆ D and let ρ be the probability confidence
function. Then, the predicted class for x is given by

ŷ = arg max
i∈{1...n}

ρ(Mi) (6)

The sample is assigned to the class having the highest
probability score.

5 EVALUATION ANALYSIS

To extract patches in the HSI cube, a window size of
15×15 is used. Meanwhile, the learning rate is fixed
at 0.001 throughout the experiments. A total of 30 of
the most significant bands are used after the band se-
lection based on agricultural indices like the normal-
ized difference vegetation index (NDVI) and moisture
index using incremental principal component analy-
sis. The size of the training set is 60%, the test data
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Table 2: Performnace of Agrinet on comparison to benchmark models.

Dataset Metric SVM FNEA-OO SVRFMC SSAN SSRN pResNet CNNCRF SSFCN FPGA CNN Agrinet
LongKou OA(%) 94.96 98.59 98.37 94.44 99.02 98.70 98.91 94.60 99.17 97.30 99.93

AA(%) 95.18 97.48 97.41 95.38 99.39 98.88 98.21 95.27 99.30 97.40 99.76
(κ) 0.9345 0.9815 0.9786 0.9279 0.9871 0.9830 0.9857 0.9300 0.9912 0.9647 0.9995

HanChan OA(%) 73.55 88.83 89.86 87.34 91.29 95.32 93.74 94.26 97.45 93.74 99.75
AA(%) 73.46 83.21 84.37 88.25 90.09 92.91 92.69 86.42 97.88 84.93 99.50
(κ) 0.7414 0.8330 0.8435 0.8673 0.8815 0.9212 0.9290 0.8742 0.9747 0.8497 0.9969

HongHu OA(%) 77.61 85.63 86.53 88.63 89.82 93.32 93.95 89.75 97.83 93.95 99.73
AA(%) 71.23 83.13 87.16 84.93 91.68 95.83 94.78 92.03 97.79 86.16 99.31
(κ) 0.6805 0.8590 0.8728 0.8415 0.8910 0.9412 0.9217 0.9219 0.9678 0.8210 0.9969

is 40%, and the validation is 30% of the training data
(Ahmad et al., 2022).

For binary, an Agrinet window size of 11 × 11
is used to extract patches in the hyperspectral image
cube. A total of 20 most significant bands are used
after the band selection based on agricultural indices
like NDVI and moisture index using incremental prin-
cipal component analysis.

5.0.1 Analysis on WHU-Hi- LongKou Dataset

For evaluation purposes, we calculate overall accu-
racy (OA), kappa (κ) coefficient, and average accu-
racy (AA) using the confusion matrix obtained from
the assessment. The metric of average accuracy (AA)
provides insight into the classification performance
per class. κ coefficient, on the other hand, serves as a
statistical measure that gauges the level of agreement
between the classification map and the ground truth
map, relying on mutual information. The accuracy
of Agrinet is compared with outcomes obtained from
models in (Zhong et al., 2020b) , providing a com-
prehensive benchmark against existing techniques as
shown in Table 2. Agrinet’s performance demon-
strates a marginal percentage advantage over the cur-
rent state-of-the-art model across OA, AA, and κ on
the WHU-Hi-LongKou dataset.

We evaluate our binary Agrinet model on
the WHU-Hi-LongKou dataset.The overall accuracy
from our binary Agrinet model is 87.6% , and the
average accuracy is 97.53%. While the model might
exhibit lower performance in direct comparison to the
multiclass classifier. In future we wish to show it’s
advantage over multiclass model when a new class is
added.

5.0.2 Analysis on WHU-Hi-HanChuan Dataset

The performance comparison of our Agrinet model
on the HanChan is shown in Table 2. OA and AA
of Agrinet exhibit an approximate 2% to 3% increase
compared to FPGA, which stands out as the supe-
rior model among the comparative approaches. The
Agrinet model performs well in this data, which is

in a more complex urban-rural setting. The disparity
becomes more pronounced in the case of the kappa
value, with Agrinet showcasing an approximately 2%
higher value.

5.0.3 Analysis on WHU-Hi-HongHu Dataset

As illustrated in Table 2, our model surpasses the
performance of other models by a substantial mar-
gin on this dataset, which presents complexity due
to its diverse crop labels within a single region and
many class labels. In particular, Agrinet’s OA and
AA scores are approximately 4% to 5% higher than
most of the models, which stands as the leading com-
parative model. The most pronounced distinction is
observed in the κ value, with Agrinet exhibiting an
approximate 3% increase.

5.1 Conclusion and Future Work

Agrinet performs at a level on par with the state-
of-the-art models and excels in all benchmark cate-
gories, including AA, OA, and κ. These results high-
light Agrinet’s effectiveness, especially with complex
datasets. However, it’s essential to acknowledge that
our model’s high accuracy results from fully labeled,
high-resolution training data, which may not reflect
real-world conditions with incomplete labeling and
lower spatial resolution. For future research, we plan
to conduct in-depth ablation studies on the various hy-
perparameters of the models to gain a better under-
standing of their impact on model performance.
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