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Abstract: In Cyber-Physical Energy Systems (CPES), multi-agent systems are expected to perform a variety of tasks.
The increase in digital interconnections and distributed structures in CPES leads to more cyber access points,
which increases the risk of cyber attacks. The effect of a manipulated or corrupted agent, as caused by cyber
attacks, on the communication of an agent system is investigated in this paper. Anomaly detection is an
important prerequisite to identify and mitigate malicious behavior and thus protect the critical infrastructure
of CPES. Since in distributed systems, some information is only available in a distributed way, this paper
introduces a centralized and a distributed architecture for anomaly detection. For this, a dataset is presented
from an agent-based energy system control use case, including anomalies in agent behavior.

1 INTRODUCTION

The number of digitalized control systems contin-
ues to rise in current power systems (Chen et al.,
2012). Due to the increasing importance of intel-
ligent automation and the accompanying growth of
communication technologies, more interconnections
exist between physical and cyber components, result-
ing in Cyber-Physical Energy Systems (CPES). Con-
sequently, risks increasingly originate from the cy-
berspace part of the CPES. Therefore, the strong in-
terconnections in CPES lead to new challenges for
the communication needs (Chen et al., 2012). These
challenges also refer to agent-based control systems,
which may enable self-organization or even self-
healing properties of the system, especially in safety-
critical applications (Nieße and Tröschel, 2016; Veith
et al., 2014). In these systems, attacks or cyber in-
truders significantly impact the overall system’s per-
formance. This paper examines the effect of a single
agent with manipulated behavior on the overall sys-
tem. The agent negotiates with others and is corrupted
in its behavior as if an attacker would have taken over.
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Controlled self-organization furthermore allows the
monitoring of the self-organizing system to detect de-
viations from normal behavior or errors (Nieße and
Tröschel, 2016). The overall concept stems from the
field of Organic Computing (Schmeck et al., 2010).
It is essential to detect deviations from normal opera-
tions to react to them. Therefore, anomaly detection
is a very important prerequisite for protecting the crit-
ical infrastructure against the aforementioned threats.

However, detecting anomalies in power systems
is a challenge due to the complexity of power sys-
tem monitoring and control systems and the inher-
ently diffuse data of CPES measurements (Ferragut
et al., 2013). Nevertheless, system monitoring is es-
sential to detect anomalies. For this reason, it is nec-
essary to analyze CPES states at multiple scales to en-
sure consideration of individual components as well
as network-level dynamics (Ferragut et al., 2013).

In order to address these challenges, this pa-
per analyzes different anomaly detection approaches.
Therefore, a centralized and a distributed architecture
are implemented, considering an agent-based applica-
tion within a CPES. Certain information may not be
shared in distributed systems for e.g. privacy reasons,
which may limit the information for the anomaly de-
tection. For this reason, the effect of information
availability on the performance of anomaly detection
is additionally analyzed.
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Within this context, the contribution of this work
is as follows:
1. A dataset is presented from an agent-based energy

system control use case, including anomalies in
agent behavior. The dataset reflects the behavior
of communicating agents for a real-world use case
and can be used to learn this.

2. The impact of a corrupted agent’s behavior on the
overall system is analyzed.

3. Two architectures – centralized and distributed –
for detecting anomalies in Multi-Agent System
(MAS) communication are compared and evalu-
ated in a simulative study.

4. The impact of use-case specific information avail-
ability on detecting anomalies is also considered.
The rest of this paper is structured as follows: In

section 2, an overview of approaches considering the
impact of anomalies and different anomaly detection
approaches is given. Next, section 3 outlines the con-
sideration of anomalies. In section 4, the anomaly
detection concept is discussed. An evaluation of the
anomaly detection is given in section 5, followed by a
conclusion including an outlook in section 6.

2 RELATED WORK

This section provides an overview of related work in-
vestigating the impact of anomalies on existing sys-
tems and centralized and distributed anomaly detec-
tion architectures.

2.1 Analyzing the Impact of Anomalies

Regarding CPES, few approaches consider the impact
of attacks on the system (Afrin and Ardakanian, 2023;
Zografopoulos et al., 2023). However, none of the ap-
proaches focuses on investigating the actual effect of
a manipulated agent on the overall system. The inves-
tigation of a distributed and centralized architecture
for detecting these anomalies is also not considered
in the papers mentioned above.

2.2 Comparing Centralized and
Distributed Architectures for
Anomaly Detection

There are only a few approaches that examine differ-
ent architectures and none that concurrently investi-
gate the aspect of information availability. Haehner
et al. (2013) discuss different architectural con-
cepts for anomaly detection in CPES using Organic

Computing and differentiate local and cooperative
anomaly detection. Erhan et al. (2021) give an
overview of anomaly detection in sensor systems
while also discussing different architectures, such
as anomaly detection in the cloud (centralized), in
the fog, where information is processed intermedi-
ately (between fully decentralized and fully central-
ized anomaly detection) and anomaly detection at the
edge, where the option for a distributed or a collabora-
tive, decentralized computation exists. Furthermore,
hybrid anomaly detection models exist, where differ-
ent architecture models are used in combination (Er-
han et al., 2021). However, the authors do not imple-
ment anomaly detection, nor do they compare central-
ized and distributed architectures under consideration
of the availability of information.

Centralized Anomaly Detection. Centrally lo-
cated anomaly detection approaches consider data of
the entire system under observation. For this, vari-
ous approaches have been presented. Turowski et al.
(2022) consider electrical loads. Others consider
datasets from smart meter data, as Fu et al. (2022),
and Farzad and Gulliver (2020) detect anomalies in
log messages.

However, none of the approaches considers the
comparison of the centralized architecture with oth-
ers. The aspect of information availability, another
contribution of the work at hand, is not discussed.
Furthermore, in the approaches that consider infor-
mation from distributed instances, as electrical loads
from different customers by Turowski et al. (2022) or
meter data from multiple buildings by Fu et al. (2022),
full access to all data is assumed. This might not be
possible for all data in CPES, e.g., due to privacy is-
sues. For this reason, information availability is in-
vestigated in this paper.

Distributed Anomaly Detection Other approaches
to detect anomalies in CPES are implemented in a
distributed way: Albarakati et al. (2022) consider a
MAS for fault location and cyber attack detection in
smart grid applications. Gupta et al. (2022) imple-
ment distributed anomaly identification in microgrids
and Jithish et al. (2023) consider distributed anomaly
detection in smart grids.

Regarding network data, various approaches for
distributed anomaly detection exist, as presented by
Pei et al. (2022) and Protogerou et al. (2021).

Again, in terms of distributed anomaly detection,
none of the approaches carry out a comparison to a
centralized architecture while considering the impact
of information availability.
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Therefore, to the best of our knowledge, none of
the existing approaches compares a centralized and
distributed architecture for anomaly detection consid-
ering information availability. This paper contributes
by performing these analyses, considering a MAS for
controlling Distributed Energy Resources (DER) in a
CPES. The anomalies are caused by manipulating the
agents’ behavior, which also accounts for the impact
of these anomalies on the overall system.

3 COMMUNICATION
ANOMALIES IN AGENT-BASED
SYSTEMS

This section presents the examined agent system and
the induced anomalies. To consider the impact of
anomalies on the overall system, the manipulation of
agent(s) is necessary to cause anomalies. Effects on
the behavior of other agents can only be analyzed if
individual agents are manipulated in a simulative en-
vironment. This way, the consequences of anoma-
lies on the complete system can be considered. Any
consequences can arise long after the actual manip-
ulation, e.g., as reactions to previous anomalies. In
this way, the manipulations significantly impact the
system as a whole. In this work, an exemplary bat-
tery management application is chosen to investigate
the effect of manipulated agents in such a system.
In this application, individual Battery Energy Storage
Systems (BESS) are controlled by a MAS to enable
multi-purpose use of these. The agents perform the
task of scheduling these devices. The multi-purpose
use and the flexibility calculation of the storage sys-
tems have been implemented following Tiemann et al.
(2022). Our implementation of the BESS manage-
ment control system has been deployed to the field in
an industry project. As a preliminary step before de-
ployment, a hybrid laboratory setup, including simu-
lation and field appliances (industrial Raspberry Pis
/ Revolution Pis), is used in this work to induce and
analyze anomalies in the system. Thus, the simula-
tion scenario comprises the full field setup, including
the BESS as found in the field. We focus on the com-
munication between the agents. Considering existing
commitments and load forecasts, agents can detect
possible scheduling problems. In order to compen-
sate for these problems, the agents can communicate
with each other. For this case, the Lightweight Power
Exchange Protocol is used, based on the approach of
Veith et al. (2014), in which the agents follow a Four-
Way Handshake. Each agent contains a local power
balance solver to solve power imbalances. The im-

plementation of the solver is based on Veith and Stein-
bach (2017), including the adaptions from Frost et al.
(2020). With these extensions, after a given time, the
agent determines the possible amount of power at the
given time as a solution. The source code is made
publicly available 1.

Whenever an agent detects a scheduling problem,
it sends a Notification to its neighbors.The neighbor-
ing agents check whether they can solve the problem
by providing power, considering their local load fore-
casts. If it is not completely possible to solve the
problem, the missing part of the request is forwarded
to the agents’ neighbors. This way, the message is for-
warded through the complete network of agents. The
agents furthermore respond. Little by little, the agent
receives offers from the others and tries to solve the
problem. The agent has then determined a solution
at some point. Subsequently, it informs all agents that
are part of the solution. The respective agents check if
they can still fulfill the previously offered power (us-
ing their local forecasts and commitments). If that is
possible, they respond to the requesting agent, which
completes the process.

3.1 Consideration of Anomalies

In the following, the consideration of anomalies in an
agent-based system in CPES is described. In the set-
ting mentioned above, different agents were manip-
ulated in different ways to induce different types of
anomalies: anomalies in the values in the exchanged
messages, anomalies in the communication topology,
and anomalies in the agents’ behavior. In the follow-
ing, we focus on anomalies in communication behav-
ior to mimic attacks, such as Denial-of-Service at-
tacks. All datasets have been published for further
studies and traceability 2.

Anomalies in agent behavior affect the system as
other agents react to those. To generate anomalies
in the agent’s behavior, an agent is manipulated to
change the behavior of how messages are sent. Since
a message starting a negotiation implies many other
messages, this message type is chosen. The corre-
sponding agent is manipulated to regularly initiate
negotiations in addition to those initiated due to the
agents’ calculations. Thus, these are started even
though no planning problem exists. The agent asks
other agents to give or take power, even though there
is no reason to do so. As the other agents respond
and provide flexibility, this impacts the overall sys-
tem. The committed power will also be considered in

1https://github.com/OFFIS-DAI/mango-library/tree/
Integration of the LPEP

2https://zenodo.org/records/7934270
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future calculations and can thus lead to further imbal-
ances. The anomalous negotiation requests are always
sent with 50% of the maximum value of the maximum
available flexibility. The time interval for which nego-
tiations are started (specified in seconds in the future)
and the frequency of negotiation starts are varied. Re-
garding the anomalies in the behavior, two exemplary
datasets are chosen to be discussed. Frequencies for
the anomalous negotiation starts every 1 and 15 min-
utes, 2012 and 8996 seconds in the future, are con-
sidered. Since the anomalies affect the system’s be-
havior (other agents forward manipulated messages,
etc.), there is a different amount of anomalies in the
resulting datasets.

The periods considered cover an average of 18
days. In total, three datasets are considered in this
paper: the dataset without anomalies, a dataset con-
taining minutely occurring anomalous negotiation re-
quests, and a dataset containing anomalous negotia-
tion requests sent every 15 minutes. An overview of
the three datasets is displayed in the following.

• 0: Data without anomalies

• 1: Anomalous negotiation requests every minute

• 2: Anomalous negotiation requests every 15 min-
utes

The anomaly-free dataset contains 1.211.851 ex-
changed messages and 92.143 negotiation starts. The
datasets containing the anomalies are discussed in
subsection 3.2.

3.2 Impact of Compromised Agents on
Communication Behavior

The datasets with the anomalies are discussed in de-
tail to analyze the impact of a corrupted agent on com-
munication behavior in negotiations. When an agent
receives and forwards an anomalous negotiation re-
quest, this message is also labeled as an anomaly in
the dataset. The manipulated agent also sends the
anomalous negotiation request to all its neighbors, so
more than one anomalous message is already com-
ing from one anomalous negotiation start. Further-
more, when an agent starts an anomalous negotiation
request, other agents respond to this. These messages
are not labeled as anomalies, as replying to negotia-
tion requests is the correct behavior of other agents.
These messages would not have been sent in the ab-
sence of the anomalous negotiation requests. There-
fore, they can be considered to analyze the impact
of the manipulated agent on the system. Messages
caused by the negotiation request are responses to
the negotiation request, acceptances by the requesting
agent, acknowledgments of these acceptances, and

any forwarded messages. The additional messages
occurring, as a result, are shown per data record in
Table 1. The total number gives the total number of
messages caused by the anomalies. The percentage
is calculated considering the messages which are not
caused by anomalies. For the anomalous negotiation
requests every minute, the number of messages dou-
bled (increased to 205,5%), for anomalies occurring
every 15 minutes, the number increased to 127,5%.

Table 1: Additional Messages Caused by Anomalous Ne-
gotiation Requests.

Dataset Additional Total Number

1 minute 41.721 82.604 (205.5%)
15 minutes 8.075 22.918 (123.7%)

For the dataset with anomalies every minute, over
50% of the messages and 19% for 15-minute anoma-
lies would not have been exchanged. These differ-
ences can be explained by the frequency of anomalous
negotiation starts: the more frequently anomalous ne-
gotiation requests are sent, the more responses exist.

The large impact of a manipulated agent on the
communication of the overall system can be seen
from the number of additional messages.

Another consequence of an anomalous negotia-
tion request is that if the negotiation is successful,
other agents will reserve power that is not really
needed. This can lead to problems according to the
use case. Furthermore, it can occur that agents can
no longer meet their obligations due to the (unneces-
sary) committed and reserved power. Therefore, other
agents would start negotiations themselves. This in
turn leads to a further increase in communication,
which would not exist without the anomalous start of
negotiations. These cases were also found sporadi-
cally in the datasets.

In summary, agents significantly impact the over-
all system’s communication behavior if they are cor-
rupted in their negotiation behavior. A significant ef-
fect on the behavior of the other agents and the com-
munication in the system can be seen.

4 DETECTING ANOMALIES IN
AGENT-BASED SYSTEMS

In the following, we discuss a concept to detect the
previously described anomalies in such a distributed
system. Two architectures for anomaly detection are
compared: centralized and distributed. These archi-
tectures are displayed in Figure 1. In centralized
anomaly detection, shown in 1a, the entire system
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(a) Centralized anomaly detection

(b) Distributed anomaly detection

Figure 1: A centralized and a distributed architecture for
anomaly detection in agent systems.

is examined at once, and thus, the exchanged mes-
sages and information of all agents are considered.
In the distributed approach, the anomaly detection
model would be implemented for each agent individ-
ually, depicted in 1b. This way, only the information
regarding the respective agent is considered. In this
work, only for the manipulated agent.

The assumption is made that different nodes have
access to different information, depending on the use
case. It is assumed that in some cases, information
regarding other agents or DER is only available lo-
cally. Due to reasons such as privacy, data protec-
tion, data exchange minimization, or regulatory re-
strictions, this information may not be exchanged.
Therefore, in some cases, distributed anomaly detec-
tion may be required since each agent has individual
information that is not shared with a centrally observ-
ing anomaly detection system. Centralized anomaly
detection could be installed if information about the
complete system and the messages exchanged are
available, as well as information about each agent in
detail. For the considered use case of distributed con-
trol of DER, the information is either distributed at
each agent or available at a central location. There-
fore, no hybrid architecture is investigated.

The impact of information availability on anomaly
detection performance is additionally investigated. It
is assumed that different levels are to be examined,
having different information available. It is assumed

here that, in summary, two levels of information
availability regarding the exchanged messages can be
identified.

1. Sending agent and timestamp

2. Message content

On the first level, no insight into the message is
given. These could be, e.g., encrypted and thus not
accessible. This level only considers the agent which
sends the message and the timestamp of each mes-
sage. The second level considers the content of the
messages, as exchanged information. Therefore, on
this layer, insight into the messages is given.

The two layers are thus divided into specific (lim-
ited) metadata about the messages (when each mes-
sage was sent and by which instance) and the concrete
message content. This shows analogies to anomaly
detection in IP networks. There, either only the
header can be inspected (e.g. if the content of the mes-
sage is encrypted) or the content of the packets can be
inspected (in Deep Packet Inspection). The impact of
information availability on the anomaly detection per-
formance is investigated in this paper, considering the
two different layers.

The following information is provided per level
when applied to the present setting using the power
exchange protocol.

• 1. Sending agent and timestamp: Only the infor-
mation about which agent sends which message at
which time is given.

• 2. Message content: Insight into the exchanged
negotiation messages is given. The message con-
tent contains, for example, the message type (e.g.,
Demand Notification) and the power value.

The data for anomaly detection consists of the
agents’ exchanged messages. The results are based on
the same datasets in order to establish comparability.
For the distributed anomaly detection architecture, the
datasets are adjusted to consider only the messages
sent by one agent: the manipulated one. The result
is a reduction in the size of the datasets and an in-
crease in the percentage of anomalies. Since anoma-
lies are outliers, the proportion of anomalies should
not be too large to not preclude comparability with
other anomaly detection methods and data. For this
reason, the datasets for distributed anomaly detection
are adjusted and filled every second. Thus, it is mim-
icked that the data is stored regularly as time-series-
based data. This furthermore allows comparison with
other time-based models and datasets.
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5 EVALUATION

This section describes the results of the anomaly de-
tection, considering the different approaches: Iso-
lation Forest (IF), Support Vector Machine (SVM),
autoencoder (AE), and Graph-Deviation Network
(GDN). The selected approaches for anomaly detec-
tion are chosen based on their high performances in
several applications. Isolation Forests perform well in
detecting anomalies in log messages (Farzad and Gul-
liver, 2020). SVMs are used due to their performance
in detecting attacks in smart grids, as in Niu et al.
(2019). Autoencoders detect anomalies well in crit-
ical infrastructures, as listed by Mavikumbure et al.
(2022). Furthermore, a graph-based approach is im-
plemented, in which the system under consideration
is interpreted as a graph, which applies accordingly
to the communication topology of the agents. The
GDN from Deng and Hooi (2021) is used, which de-
tects anomalies well in several use cases (Chen et al.,
2021). The implemented models can be found in Git-
Lab, including selected parameters 3.

Results show that the specificity was always sim-
ilar (0.98-1.0), which means that the models predict
the negative instances very well. For this reason, the
metrics referring to anomalous entries are considered
for the discussion: recall (ability to find actual anoma-
lous entries), precision (correctly predicted positive
entries) and the F1 score (combination of the metrics).

5.1 Centralized Anomaly Detection

In the following, the results of the centralized
anomaly detection are discussed. All centralized ap-
proaches achieve the best results considering agent
and timestamp. Accordingly, insight into the mes-
sages does not lead to improvements. For the dataset
with anomalous negotiation requests every minute,
the results are overall very poor, with recall not over
0.55 for all approaches, as shown in Table 2. The
results are better overall for the anomalous negotia-
tion requests every 15 minutes. For the Isolation For-
est, the results are still not very good: a precision of
0.23. The SVM achieves similar, slightly better re-
sults and the autoencoder achieves even better results.
However, the autoencoder only achieves a recall from
0.55. The GDN detects the anomalies the best, with
all metrics above 0.89.

In summary, the 15-minute anomalies are better
recognizable by the centralized anomaly detection,
while the 1-minute anomalies are not recognizable.
The GDN performs best.

3https://gitlab.com/digitalized-energy-
systems/models/anomaly-detection-in-cpes

Table 2: Communication anomalies: Centralized anomaly
detection.

Frequency Model Precision Recall F1

1 Minute IF 0.3 0.55 0.37
SVM 1.0 0.08 0.04
AE 1.0 0.02 0.04

GDN 0.5 0.5 0.5

15 Minutes IF 0.23 0.89 0.40
SVM 0.71 0.57 0.63
AE 1.0 0.55 0.71

GDN 0.89 0.97 0.93

Table 3: Communication anomalies: Distributed anomaly
detection.

Frequency Model Precision Recall F1

1 Minute IF 0.79 1.0 0.86
SVM 0.82 0.78 0.80
AE 0.79 1.0 0.89

GDN 0.92 0.53 0.67

15 Minute IF 0.18 1.0 0.31
SVM 0.46 1.0 0.6
AE 0.29 1.0 0.44

GDN 0.92 0.21 0.34

5.2 Distributed Anomaly Detection

The results of the distributed anomaly detection ap-
proaches are presented in the following, as shown in
Table 3. Regarding the dataset with anomalous ne-
gotiation starts every minute, the approaches achieve
different performances, with precision values of 0.76
- 0.92, recall of 0.53 - 1.0, F1 scores of 0.67 and 0.89.
For the anomalous negotiation requests occurring ev-
ery 15 minutes, the SVM performs best, but the per-
formance is insufficient overall (precision below 0.5).

Regarding the information used, the Isolation For-
est and autoencoder achieve the best results consid-
ering timestamp, message type, sender, neighbor and
receiver. The GDN achieves the best results consid-
ering the timestamp, message type, sender and neigh-
bor. The SVM achieves similar results without con-
sidering the message content; therefore, considering
the timestamp and the agent is sufficient.

In the distributed anomaly detection, anomalies in
15-minute intervals are barely discernible, whereas 1-
minute intervals are better recognizable. The autoen-
coder performs best for the 1-minute intervals.

5.3 Discussion

The centralized approaches are better at detecting
anomalous negotiation requests started with a fre-
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quency of 15 minutes than those started every minute.
The GDN achieves the best results in the centralized
approach, but only good results for the anomalous ne-
gotiation requests occurring every 15 minutes. The
reverse is valid for the distributed anomaly detection:
anomalous 1-minute intervals can be detected bet-
ter than 15-minute intervals. The only approach that
performs well in detecting the anomalies for the dis-
tributed architecture is the autoencoder, but only re-
garding anomalous negotiation starts occurring every
minute. Therefore, none of the architectures under
consideration are superior to the other ones at identi-
fying communication anomalies.

The fact that different frequencies of anomalous
negotiation requests can be detected better or worse
by different architectures can be explained by the ir-
regular occurrence of negotiations in the normal set-
ting. The centralized anomaly detection recognizes
patterns in the entire system better as the data is avail-
able for all agents, and thus, information about the
irregular starting negotiations is learned. This way,
negotiations starting anomalously every 15 minutes
can be recognized better. Distributed anomaly de-
tection has only data for one agent available, making
drawing conclusions about the entire system’s behav-
ior challenging. In normal behavior, without manip-
ulated agents, negotiations are not triggered regularly
but whenever a scheduling problem is detected. Thus,
it also appears in the normal data that no negotiation
is triggered for a long time. Therefore, it cannot sat-
isfactorily detect anomalies occurring every 15 min-
utes. On the other hand, the anomalous negotiation re-
quests every minute are easier to detect. An agent that
does not often begin negotiations in the normal data
was chosen. Since the distributed anomaly detection
focuses on this agent, this is better detectable. The
centralized anomaly detection is not able to detect
the minute-by-minute anomalous negotiation requests
because, in the overall system, it occurs more often
that negotiations take place very frequently since all
agents start negotiations.

6 CONCLUSION

To investigate the effect of manipulated agents on
MAS in CPES, we presented a dataset in which an
agent was manipulated to send anomalous messages
to others. The significant impact of this agent on the
communication of the MAS was shown. Furthermore,
we implemented anomaly detection approaches to de-
tect these anomalous messages. For this purpose, two
architectures have been applied: centralized and dis-
tributed. Different models were implemented: Iso-

lation Forest, SVM, autoencoder, GDN. The results
show that the chosen architecture significantly im-
pacts the performance. No architecture performs best
for all anomalies. The autoencoder and GDN predom-
inantly achieve the best results, followed by the SVM.

To discuss the results based on the information
given, different levels of information availability are
considered.

1. Agent and Timestamp of the Message. At this
level, no insight into the messages is given, only agent
and timestamp are considered. For the centralized
anomaly detection, adding the content of the mes-
sage did not improve the results. For the distributed
anomaly detection, the performance of the SVM did
not improve when adding the message content.

2. Content of the Message. More insight is given
if the content of the messages is accessible. The
autoencoder and GDN of the distributed architecture
achieved slightly better, the Isolation Forest much
better results when considering the content of the
messages. For the centralized anomaly detection, in-
sight into the messages did not lead to improvements.

It is not possible to make a clear statement regard-
ing the architecture to select, since different results
exist for the anomalies in the communication behav-
ior depending on the frequency. Since the architec-
ture has a significant impact on the performance of the
anomaly detection though, this information should be
considered when designing an observer for anomaly
detection in agent systems.

For the centralized architecture, the insight into
the messages does not change the performance. This
is an advantage since the insight is not always given in
reality, which should be taken into account to reflect
privacy concerns. The results show that implementing
an anomaly detection observer in distributed systems
is a significant challenge.

Current and future work include the following top-
ics: The potential change in the anomaly detection
approaches with additional types of anomalies, for
example, anomalies in the communication topology
of agents. Furthermore, to improve the performance,
a combined detection, e.g., using ensemble learning,
could be analyzed. Additionally, the presented ap-
proaches can be extended by integrating concepts of
trust from Organic Computing into the existing agent
system. To improve the robustness of a given system,
interactions can be limited to trustworthy agents (Kle-
jnowski et al., 2010).
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