
Performance Evaluation of Polynomial Commitments for Erasure Code
Based Information Dispersal

Antoine Stevan1 a, Thomas Lavaur1,2 b, Jérôme Lacan1 c, Jonathan Detchart1 d and
Tanguy Pérennou1 e

1ISAE-SUPAERO, Toulouse, France
2University Toulouse III Paul Sabatier, Toulouse, France

{firstname.lastname}@isae-supaero.fr

Keywords: Erasure Code, Polynomial Commitment, Distributed Storage.

Abstract: Erasure coding is a common tool that improves the dependability of distributed storage systems. Basically,
to decode data that has been encoded from k source shards into n output shards with an erasure code, a node
of the network must download at least k shards and launch the decoding process. However, if one of the
shards is intentionally or accidentally modified, the decoding process will reconstruct invalid data. To allow
the verification of each shard independently without running the decoding for the whole data, the encoder
can add a cryptographic proof to each output shard which certifies its validity. In this paper, we focus on the
following commitment-based schemes: KZG+, aPlonK-PC and Semi-AVID-PC. These schemes perform
polynomial evaluations in the same way as a Reed-Solomon encoding process. Still, such commitment-based
schemes may introduce huge computation times as well as large storage space needs. This paper compares
their performance to help designers of distributed storage systems identify the optimal proof depending on
constraints like data size, information dispersal and frequency of proof verification against proof generation.
We show that in most cases Semi-AVID-PC is the optimal solution, except when the input files and the
required amount of verifications are large, where aPlonK-PC is optimal.

1 INTRODUCTION

Erasure code is interesting in many applications like
distributed storage or real-time streaming. In the case
of distributed storage, a file F containing |F | bytes
is generally split into k shards of m elements which
are combined to generate n encoded shards (n ≥ k).
These shards are then distributed on different storage
servers, nodes or pairs. When a user wants to recover
F , they must download any k shards among the n ones
and apply the decoding process to reconstruct the file.

One potential issue in this scheme is that some
shards can be corrupted or intentionally modified by
their server. In this case, the reconstructed file does
not correspond to the initial file.

Even if it is generally easy to detect this event,
for example by verifying that the hash of the file cor-

a https://orcid.org/0009-0003-5684-5862
b https://orcid.org/0000-0001-9869-5856
c https://orcid.org/0000-0002-3121-4824
d https://orcid.org/0000-0002-4237-5981
e https://orcid.org/0009-0002-2542-0004

responds to a hash initially published when the data
is put into this system, it can be time-consuming and
difficult to identify the corrupted shard(s) and replace
them with non-corrupted ones.

This issue can be solved by using cryptographic
proofs. The principle is to publish a commitment of
the file and to add a proof linked to this commitment
to each encoded shard.

This scheme is of interest for trustless distributed
storage systems using erasure codes, such as peer-to-
peer distributed file systems (Daniel and Tschorsch,
2022). Also, large data availability systems that
store the data associated to rollups of next-generation
blockchains like Ethereum (Wood et al., 2014) or
even code-based low storage blockchain nodes (Per-
ard et al., 2018) may also be improved.

In this paper, we will focus on polynomial com-
mitment schemes taken from the most recent cryp-
tographic systems, that prove that a shard was really
encoded from the initial shards of the file. We assume
that the initial data is arranged in an m× k matrix of
finite field elements. A shard corresponds to a column
and thus the data is split into k shards. The encoding

522
Stevan, A., Lavaur, T., Lacan, J., Detchart, J. and Pérennou, T.
Performance Evaluation of Polynomial Commitments for Erasure Code Based Information Dispersal.
DOI: 10.5220/0012377900003648
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 10th International Conference on Information Systems Security and Privacy (ICISSP 2024), pages 522-533
ISBN: 978-989-758-683-5; ISSN: 2184-4356
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

process combines these shards row-by-row to produce
n encoded shards. Figure 1 presents in a simplified
way the three considered schemes.

C1
C2
C3

p1 p2 p3 p4

C1 C2 C3

1

3

encoding

C4

p5 p6

k n

m

p1 p2 p3 p4

2

p5 p6

C
pC

Figure 1: Polynomial commitment schemes for erasure
codes: It is assumed that the input data is the same for all
schemes, depicted with the same gray matrix of elements
to the left. The n output shards are shown with different
colors, one for each column, and are thus the same for each
scheme: ➀ KZG+ will commit the m lines and generate one
proof for each of the n output columns, ➁ aPlonK-PC will
commit a single commit for the whole data, with a proof
for that commitment as well as one proof for each of the n
shards and ➂ Semi-AVID-PC will commit the k columns
and does not require any proof.

Rationale. The first naive solution is the well-
known Kate-Zaverucha-Goldberg (KZG) tech-
nique (Kate et al., 2010) detailed in Section 2. Then
KZG+ is a straightforward non-interactive extension
to any number of polynomials. Its commitment is
a vector of m KZG commitments and a witness,
computed as the aggregation of m KZG witnesses,
and is joined to each encoded shard. Next comes
aPlonK-PC which reduces the commitment of
KZG+ to a constant size. It is a part of the verifiable
computation protocol aPlonK (Ambrona et al., 2022).
In counterpart, the generation and the verification of
the witnesses is more complex. Finally Semi-AVID-
PC from Semi-AVID-PR (Nazirkhanova et al., 2021)
is of interest because it does not use any proof and
is a lot simpler than all the other techniques. The
commitment is a vector of k KZG commitments. The
verifier will use the additive homomorphic property
of the commitments to verify that a given shard is
indeed a linear combination of the source shards.

Even if a quick analysis of Figure 1 seems to indi-
cate that the main difference between these solutions
concern the commitment, they strongly differ in sev-
eral points. First, for sake of simplicity, we have de-
noted all the proofs with the same notation πi, but in
reality their sizes are very different from one scheme
to another. Moreover, for each scheme, three algo-
rithms can be identified : the commitment generation,
the proof generation and the proof verification. Since
the mathematical tools used by each technique are dif-
ferent, their complexities strongly vary.

Contributions. In this paper, all these techniques
are compared in terms of time complexities and
proof lengths. We have fully implemented each of
these algorithms with the library Arkworks (arkworks
contributors, 2022) at https://gitlab.isae-supaero.fr/
dragoon/pcs-fec-id and conducted benchmarks on the
same architecture for a large set of parameters. The
obtained results are then analyzed and should help
making the best choice of mechanisms according to
the constraints of a given system.

This analysis should be of interest for the de-
signers of distributed storage systems, especially re-
garding new data availability systems for blockchains.
Another application could be a swarm of military
drones that need to store and share trusted data in an
untrusted and potentially adversarial environment.

Outline. First, in Section 2, a broad overview of
Erasure Codes and commitment-based protocols will
be given. The next Section 3 will be dedicated to
the Rust implementation that goes alongside this pa-
per, which part of the algorithms have been discarded
and why, as well as which parts have been kept and
tweaked to the applications put forward in this docu-
ment. Then, the performance of the three main algo-
rithms and protocols selected here, KZG+, aPlonK-
PC and Semi-AVID-PC will be compared in Sec-
tion 4, in which 4 decision criteria have been iden-
tified. Section 5 will propose a discussion about a
few real-world use cases related to the applications
introduced earlier and determine which scheme ap-
pears best in each one of them. Finally, Section 6 will
conclude this paper.

2 BACKGROUND AND RELATED
WORK

All operations described in this paper are performed
on a finite field F of large prime order p.

Performance Evaluation of Polynomial Commitments for Erasure Code Based Information Dispersal

523

The concept of Information Dispersal of a file with
erasure code was first introduced by (Rabin, 1989)
and the validity of the distributed shards was first
considered by (Krawczyk, 1993). In this paper, we
analyse some mechanisms providing the verifiability
property of the coded shards.

2.1 Erasure Coding

In distributed storage systems, whether it is on hard-
ware, on local networks or with the World Wide Web,
there will be issues and mishaps. Nodes can have
trouble reaching and communicating between each
other. Communication channels can introduce poten-
tially irrecoverable errors. Nodes and their data can
become unavailable and, in a worst-case scenario, the
network could end up split into multiple subnetworks
that are unable of communicating.

With all these potential risks, the goal would be
to be able to recover the data of interest even if the
network falls in anyone of the cases above.

One naive way of doing this is introducing redun-
dancy to the data by duplicating the whole sequence
of bytes. This has the benefit of making the network
more resilient -if one or more nodes storing the data
are lost, it might still be possible to recover the whole
data by querying another node. However, this clearly
introduces a big overhead because the storage capac-
ity must be multiplied by a factor that is the redun-
dancy requirement of the system.

Another way of achieving the same level of re-
silience without storing the same data a lot of times is
to use Erasure Coding, one of them being the Reed-
Solomon encoding.

Such a scheme uses two parameters k and n, or
alternately k and ρ where ρ is the code rate of the
encoding and n = k

ρ
. Given some data, the algorithm

consists in splitting the bytes into k shards of equal
size, applying a linear transformation, namely a k×
n matrix multiplication to generate n news shards of
data. Each one of these shards is a linear combination
of all the k source shards. The biggest advantage of
this technique is that one needs to retrieve only any k
of the total n shards to recompute the original data.

With Erasure coding and especially Reed-
Solomon codes, a network which is more resilient to
losing nodes and copies of the data can be created,
while keeping low overhead and redundancy. How-
ever, such a code never ensures the integrity of the
data, i.e. there is no guarantee as the receiving node
that the shard has been indeed generated as a linear
combination of the source data...

The simplest solution to implement this scheme
is to use Merkle trees (Merkle, 1988) built from the

encoded shards. The commitment of the file is the
Merkle root and the proof joined to each encoded
shard is their Merkle proof. However, this proof just
certifies that the shard was included in the computa-
tion of the Merkle root, but not that it is the result of
an encoding process. A node querying the network
will need to rely on the good behaviour of the Merkle
prover and could be easily tricked. Furthermore, gen-
erating additional proven shards from the data would
require to reconstruct a full Merkle tree whereas the
methods explored in the rest of this paper allow to
craft a single additional shard with a single proof.

To this end, cryptographic schemes can be used to
add hard-to-fake guarantees that any of the n shards
of data has indeed been generated as a linear com-
bination of the k source shards. The following sec-
tion will be dedicated to introducing a particular class
of such cryptographic schemes known as Polynomial
Commitment Schemes or PCS.

2.2 Polynomial Commitments Schemes

In the rest of this paper, we introduce a few notations:
H is a one-way hash function that takes an input se-
quence of bytes of any length and computes a fixed-
size output, e.g. SHA256. G1, G2 and GT are additive
sub-groups associated with a chosen elliptic curve. E
is a bilinear pairing operation that maps elements of
G1 ×G2 to GT .

Polynomial Commitment Schemes are generally
used as an interactive process between a prover and a
verifier. Later, this interaction can be removed with
the Fiat-Shamir transform (Fiat and Shamir, 1987).
Because the non-interactive counterparts of each al-
gorithm has been implemented alongside this paper,
the schemes will be presented with the non-interactive
transformation already applied.

Let us assume a prover Peggy has a polynomial
P and she wants to prove to a verifier called Victor
that she knows the value of such a polynomial when
evaluated at a point x.

Peggy wants to convince Victor with overwhelm-
ing probability that she knows the value of P evalu-
ated at some point x, i.e. P(x) = y, without reveal-
ing any information to Victor about the polynomial
P itself. Moreover, she wants this operation to be
lightweight and easy to create and verify.

2.2.1 KZG and KZG+

The first protocols that have been studied were the
KZG PCS of (Kate et al., 2010) and its multi-
polynomial extension introduced in (Boneh et al.,
2020) and (Gabizon et al., 2019) that will be called

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

524

KZG+ in the rest of this paper, to clearly denote it is
a quite straightforward extension of regular KZG.

The motivations behind starting with these two al-
gorithms are the following:

• when Peggy constructs a proof for one of the n
shards of data, she will be evaluating the polyno-
mial P on predefined points, e.g. 1, 2, ..., n, and it
is straightforward to show that this computation is
equivalent to performing a Reed-Solomon encod-
ing with a Vandermonde matrix.
This is very interesting because, while Peggy is
creating the proof πα of a given shard α she can
reuse the polynomial evaluations and get a Reed-
Solomon encoding for free.

• the proof size is constant and does not depend on
the degree of the polynomial P.

• the proof is fast to generate and is also fast for
Victor to verify.

The KZG protocol is the simplest one to explain:

• Peggy and Victor generate a trusted setup to-
gether (Bowe et al., 2017), i.e. the d + 1 pow-
ers of a secret number τ encoded on an elliptic
curve, [1]1, [τ]1, [τ2]1, ..., [τ

d]1 where d = deg(P)
and [x]1 := x×G1 where G1 is a generator of the
G1 elliptic curve group.

• Peggy constructs a commit of the polynomial P,
i.e. an evaluation of P on τ using the trusted
setup. Note that there is no need to know the ac-
tual value of τ because the encoding on an elliptic
curve is homomorphic: [a + b]1 = (a + b)G1 =
aG1 +bG1 = [a]1 +[b]1.

• then Peggy can construct a proof πα that links the
polynomial P to the shard of RS data.

• finally Victor will be able, by using a part of the
trusted setup and some operations on the elliptic
curve, to verify the integrity of the encoded shard.

This whole protocol ensures that the shard of en-
coded data has been generated as an evaluation of a
polynomial whose coefficients are the rows of the k
source shards.

However, this KZG protocol is limited to a single
polynomial. In the following of the paper, larger and
larger data will be considered. Once encoded as ele-
ments of the chosen finite field, the bytes could be in-
terpreted as a single polynomial. However, this naive
approach would require k to be very large and thus
will slow down the decoding process. The approach
that will be used in this paper is to arrange the el-
ements in an m× k matrix where k is the encoding
parameter and m is the number of polynomials. If the
size of the data is not divisible by k, padding can be

used. This will help keep the value of k lower and
leverage the aggregation capabilities of KZG+.

A naive approach would be to run a different KZG
on each one of the m lines and thus create m commits
in total and m proofs by shard of encoded data.

This is clearly not scalable for a particular value
of k when the size of the data gets larger and this is
where KZG+ starts to shine.

In this paper and section, the multipolynomial
KZG protocol from (Boneh et al., 2020), which is in-
teractive, has been adapted to a non-interactive setup,
and will be called KZG+.

KZG+ starts just as KZG with a setup and com-
mitting the m polynomials:

Ci = [Pi(τ)]1 = Pi(τ)G1, for i = 1, . . . ,m (1)

However, instead of constructing one proof for
each polynomial (Pi)1≤i≤m, Peggy will aggregate the
m polynomials into a single polynomial called Q as a
uniformly random linear combination of the (Pi) and
then she will run a normal KZG on Q.

• for the non-interactive part of the protocol, the
prover hashes the evaluations of all the polyno-
mials on the shard evaluation point, α

r = H(P1(α)|P2(α)|...|Pm(α)) (2)

• Peggy computes the polynomial Q(X) as

Q(X) =
m

∑
i=1

ri−1Pi(X) (3)

• finally the proof πα of shard α is computed as a
KZG opening on the point α

πα =

[
Q(τ)−Q(α)

τ−α

]
1

(4)

On the other side, Victor will have to compute the
same random linear combination from the shard of
encoded data he received and compare it to the com-
bination of all the commitments. He has access to the
commitments from Equation 1, the shard (si)1≤i≤m
and the proof πα from Equation 4:

• the verifier computes the same non-interactive
hash as in Equation 2

r = H(s1|s2|...|sm) (5)

• Victor recomputes Q(α) with r and the shard as

y =
m

∑
i=1

ri−1si (6)

• the verification also requires to compute the com-
mitment of Q(X)

c =
m

∑
i=1

ri−1Ci (7)

Performance Evaluation of Polynomial Commitments for Erasure Code Based Information Dispersal

525

• finally, Victor can perform a check with 2 pairings

E(c− [y]1, [1]2) = E(πα, [τ−α]2) (8)

With this scheme, some performance is lost in the
proof and verification steps, because both Peggy and
Victor have more work to do, but a lot is gained in
proof sizes, going down from m proofs to a single one.

It has been seen that KZG+ introduces a proto-
col that can scale up KZG when the size of the data
grows. However, the number of commits is still grow-
ing, which can become large for very big data and
values of |F |.

2.2.2 aPlonK-PC

The next protocol of interest is the PCS part of
aPlonK in (Ambrona et al., 2022).

Without the arithmetization part of aPlonK, the
protocol basically starts in the same way as in KZG+,
Peggy will commit all of the m polynomials, generat-
ing m elements of the elliptic curve. One proof is also
constructed for each shard of encoded data. This sub-
set of the aPlonK protocol will be called aPlonK-PC
in this document.

The improvement comes in the reduction of the
size of the overall commitment. Peggy won’t be send-
ing m commits, but rather a single meta-commit with
a proof that this commit was indeed generated thanks
to the m polynomial commits. This proof is gener-
ated through an expensive folding algorithm similar
to the one of Inner Product Arguments (Bünz et al.,
2018) but with elements of G2 instead of elements of
F which will required a lot of pairing operations on
the elliptic curve.

This algorithm will fold the m commits into a sin-
gle one, alongside a proof of size O(log(m)).

So far, KZG has been made more scalable with
KZG+ at the cost of more commitments and KZG+

has been made more scalable with aPlonK-PC by
reducing the number of commitments at the cost of
harder to generate proofs, longer verification and a
slightly bigger proof and trusted setup but which only
scale with the log(m).

But is the generation of proofs required at all to
reach the same level of security? The next section
will show that it is not and that some proof time and
storage capacity can be trade for much smaller proofs
and algorithmic complexity.

2.3 Semi-AVID-PC

Up until now, to prove some input data and generate
encoded shards, Peggy has been putting all the bytes,
once converted to elements of the finite field, into an

m× k matrix. Then she committed the rows of the
matrix, constructing m commits and one proof per
column, i.e. by aggregating elements of the elliptic
curve into one per shard.

In (Nazirkhanova et al., 2021), the authors in-
troduce a protocol called Semi-AVID-PR which does
commit the polynomials in an orthogonal way. In-
stead of committing each one of the m lines, each
column of the matrix will be interpreted as its own
polynomial and committed. Peggy does not have
to do anything else apart from evaluating the row-
polynomials to generate the encoded shards of data.
Note that here, the prover does not prove individ-
ual polynomial evaluations like KZG+ and aPlonK-
PC did, rather the linear combination of commits
and thus of the underlying shards. The interest of
the polynomial evaluations is that they prove that the
encoding corresponds to a Reed-Solomon encoding
which ensures that the file can be recovered with any
k shards among the n ones. This is not the case for
the simple linear combination scheme which could
need more than k shards to recover the file. How-
ever, if the verifier checks that the coefficients of the
linear combination corresponds to the powers of the
shard index, the Reed-Solomon encoding is also ver-
ified . As the focus here is only on the commitment
part of Semi-AVID-PR and to stay consistent with the
other schemes which are true polynomial commit-
ments, this new and last scheme will be called Semi-
AVID-PC.

The job of Victor is quite simple and fast as well.
Because the commit is homomorphic, the linear com-
bination of the commits of some polynomials is equal
to the commit of the same linear combination of the
same polynomials. As the shard of encoded data Vic-
tor would like to verify has been generated as a known
linear combination of the original source data shards,
it is very easy for him to first compute the commit of
the shard he received by interpreting the bytes as the
coefficients of a polynomial, then compute the linear
combination of the k commits that Peggy sent him and
finally check that the commit of this polynomial is in-
deed equal to the expected linear combination of the
commits from Peggy.

As one can see in the previous paragraphs, both
the work of Peggy and Victor are very simple and fast,
only k commits for Peggy, and one commit and a lin-
ear combination of elements of the elliptic curve for
Victor. Moreover, if the protocol can keep the value of
k as low as possible, the size of the proof will remain
very small and constant with the size of the data.

The major drawback of this scheme is that Victor
needs to have access to the full trusted setup to ver-
ify one given shard of encoded data, whereas KZG+

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

526

and aPlonK-PC required only one or at most a few
elements of the elliptic curve. Here Semi-AVID-PC
needs to store or retrieve the m first elements of the
trusted setup which will get bigger and bigger when
the data becomes larger for a given fixed value of k.

3 IMPLEMENTATION

All the algorithms introduced in Sections 2.2 and 2.3
have been implemented on the ISAE-SUPAERO Git-
Lab 1.

These schemes have been implemented using the
Arkworks library written in Rust (arkworks contribu-
tors, 2022). They can all work over several pairing-
based elliptic curves. In Section 4, we show some
results based on the BLS-12-381 elliptic curve.

Note that, thanks to the design of the Arkworks li-
brary, another curve could be easily switched to, e.g.
another common pairing-friendly curve is BN-254.
However, one single curve has been chosen because
changing to another one would affect all the proving
schemes in the same exact way as they all use the
same curve and the same kind of operations on said
curve. As an example, switching from BLS-12-381
to BN-254 would roughly decrease both the time and
the sizes of everything by 30% at the cost of a few bits
of security, which might become a decision level for
some applications. This means that measuring per-
formance on any of the curves would lead to the same
conclusions as our goal is to compare the schemes be-
tween each other and not absolutely.

For aPlonK-PC, the only noticeable optimization
that has been added to the implementation as com-
pared to the algorithms presented in the paper of (Am-
brona et al., 2022) is the computation of the powers of
the random r scalar element which is done recursively
to avoid computing many times the same power of r
over and over.

In (Nazirkhanova et al., 2021), the authors use a
polynomial interpolation and the FFT to make some
computations faster. To the best of our knowledge,
the interpolation is not required. Instead of seeing the
k columns of the input data as evaluations of the tar-
get polynomials, the same finite field elements can be
directly interpreted as the coefficients of the polyno-
mials, saving k polynomial interpolations.

Furthermore, the FFT does not appear to be of par-
ticular interest for the applications in the scope of this
paper. In (Nazirkhanova et al., 2021), the authors say
that the performance bottleneck the FFT solves starts
to make sense when the polynomials are evaluated on

1https://gitlab.isae-supaero.fr/dragoon/pcs-fec-id

n points when the global system under study is big,
namely when n ≥ 1024. With the analysis of the per-
formance in the next section, the FFT was discarded
because the values of k and n never go high enough
for the FFT to have a significant impact for the price
to pay to use it.

Related to FFTs and optimizing the energy cost of
many computations that could run in parallel, multi-
threading has not been implemented for the same rea-
sons as for the curve switch explained above: en-
abling multi-threading would benefit all the schemes
in the same way because they all work in the same
manner, i.e. a loop with n rounds to generate n shards
and proofs or a loop with k rounds to verify k shards,
so the comparison between the schemes would not
change with that new feature enabled, the times are
expected to all decrease.

Lastly, one of the main contributions regarding the
algorithms themselves is that the whole proof systems
have not been implemented as-is but rather the pro-
tocols have been tailored to the needs of the appli-
cations in the scope of this paper by removing un-
necessary parts. When implementing aPlonK-PC
from (Ambrona et al., 2022), the whole arithmetiza-
tion part of the protocol which is useful when build-
ing a full SNARK circuit has been discarded. How-
ever, in the applications of this paper, the polynomi-
als to prove are already available, so there is no need
to create arithmetic circuits to convert any general
computation to polynomials. As for Semi-AVID-PC
from (Nazirkhanova et al., 2021), the signature and
proof part of the whole protocol, which is focused on
rollups for the Ethereum blockchain and data avail-
ability sampling as their main applications, has been
taken out and the committing of data columns, which
is enough to prove the integrity of data in the applica-
tions put forward in this paper has been kept.

4 PERFORMANCE EVALUATION

The original papers of the three schemes present al-
gorithmic complexities. However, in the context of
advanced performance analysis including execution
times, asymptotic complexities and the O notation are
not enough to compare the real-world implementa-
tions.

In this section, the different schemes introduced
in Sections 2.2 and 2.3 are evaluated and compared
with varying data sizes. For each size, several sets of
parameters m and k were evaluated because the per-
formance of the various schemes strongly depends on
them. Section 4.1 studies the raw measurements and
how they were computed. Four performance criteria

Performance Evaluation of Polynomial Commitments for Erasure Code Based Information Dispersal

527

(a) Time to generate one commitment and n proofs

49
6 B
99
2 B
1.9
 Ki
B
3.9
 Ki
B
7.8
 Ki
B

15
.5
KiB

31
.0
KiB

62
.0
KiB

12
4.0
 Ki
B

24
8.0
 Ki
B

49
6.0
 Ki
B

99
2.0
 Ki
B

1.9
 Mi
B

3.9
 Mi
B

7.8
 Mi
B

15
.5
MiB

31
.0
MiB

62
.0
MiB

12
4.0
 Mi
B

10
9
8
7
6
5
4
3
2

lo
g(
k)

aPlonK-PC

49
6 B
99
2 B
1.9
 Ki
B
3.9
 Ki
B
7.8
 Ki
B

15
.5
KiB

31
.0
KiB

62
.0
KiB

12
4.0
 Ki
B

24
8.0
 Ki
B

49
6.0
 Ki
B

99
2.0
 Ki
B

1.9
 Mi
B

3.9
 Mi
B

7.8
 Mi
B

15
.5
MiB

31
.0
MiB

62
.0
MiB

12
4.0
 Mi
B

10
9
8
7
6
5
4
3
2

lo
g(
k)

KZG+

49
6 B
99
2 B
1.9
 Ki
B
3.9
 Ki
B
7.8
 Ki
B

15
.5
KiB

31
.0
KiB

62
.0
KiB

12
4.0
 Ki
B

24
8.0
 Ki
B

49
6.0
 Ki
B

99
2.0
 Ki
B

1.9
 Mi
B

3.9
 Mi
B

7.8
 Mi
B

15
.5
MiB

31
.0
MiB

62
.0
MiB

12
4.0
 Mi
B

10
9
8
7
6
5
4
3
2

lo
g(
k)

Semi-AVID-PC

1ms
10ms
100ms
1s
10s
100s
1000s
10000s
100000s

(b) Time to verify k shards

49
6 B
99
2 B
1.9
 Ki
B
3.9
 Ki
B
7.8
 Ki
B

15
.5
KiB

31
.0
KiB

62
.0
KiB

12
4.0
 Ki
B

24
8.0
 Ki
B

49
6.0
 Ki
B

99
2.0
 Ki
B

1.9
 Mi
B

3.9
 Mi
B

7.8
 Mi
B

15
.5
MiB

31
.0
MiB

62
.0
MiB

12
4.0
 Mi
B

10
9
8
7
6
5
4
3
2

lo
g(
k)

aPlonK-PC

49
6 B
99
2 B
1.9
 Ki
B
3.9
 Ki
B
7.8
 Ki
B

15
.5
KiB

31
.0
KiB

62
.0
KiB

12
4.0
 Ki
B

24
8.0
 Ki
B

49
6.0
 Ki
B

99
2.0
 Ki
B

1.9
 Mi
B

3.9
 Mi
B

7.8
 Mi
B

15
.5
MiB

31
.0
MiB

62
.0
MiB

12
4.0
 Mi
B

10
9
8
7
6
5
4
3
2

lo
g(
k)

KZG+

49
6 B
99
2 B
1.9
 Ki
B
3.9
 Ki
B
7.8
 Ki
B

15
.5
KiB

31
.0
KiB

62
.0
KiB

12
4.0
 Ki
B

24
8.0
 Ki
B

49
6.0
 Ki
B

99
2.0
 Ki
B

1.9
 Mi
B

3.9
 Mi
B

7.8
 Mi
B

15
.5
MiB

31
.0
MiB

62
.0
MiB

12
4.0
 Mi
B

10
9
8
7
6
5
4
3
2

lo
g(
k)

Semi-AVID-PC

1ms
10ms
100ms
1s
10s
100s
1000s
10000s
100000s

Figure 2: Execution times of proof generation and verification for the three schemes, with different input data sizes and values
of k. All the scales are log for readability. The vertical axis shows log2(k) for convenience while the horizontal axis shows
the data size |F |. For any (k, |F |) pair, a square indicates the execution time using a colored log scale: blue squares indicate
short times and good performance while red squares indicate longer times.

that one might want to optimize for their particular
needs are detailed. A synthesis of the raw data will
be presented when k is fixed (Section 4.2) and then
when k is chosen to optimize one of the criteria (Sec-
tion 4.3).

4.1 Raw Time Performance

In the rest of this section, the time it takes for each
stage of our protocols, i.e. the proofs, the verification
and the decoding of shards, has been measured. The
code rate has been set to ρ = 1

2 such that n = k
ρ
= 2k.

Regardless of the proving scheme, the end-to-end
process can be decomposed as follows, where items
written in bold have been measured:

• splitting the data: the |F | input bytes are arranged
in an m× k matrix of finite field elements, 31 ∗
(m× k) = |F |, possibly with padding

• commitment: commit the whole data

• proof: construct a proof for each one of the n out-
put shards and disseminate them onto the network

• verification: verify any k of the n output shards,
e.g after retrieving enough shards to theoretically
reconstruct the original data

• decoding: decode the k shards into the original
data by inverting a k× k matrix of curve elements
and then performing a k×k matrix-vector product

A performance measurement campaign has been
conducted on a box with values:

• ranging from 4 = 22 to 1024 = 210 for k

• ranging from 496 B to 124 MiB, i.e. from 31×24

to 31×218 bytes, for the size of the data |F |
• spanning over KZG+, aPlonK-PC and Semi-

AVID-PC for the scheme
The resulting raw measurements can be found in

Figure 2. The top-left triangle of the whole square
of input parameters is white because these are impos-
sible parameter values, e.g. when the data contains
992 B, if k was set to 256, a polynomial of degree
255 would need to be proven where there are only
992/31 = 32 finite field elements in the case of BLS-
12-381, thus 192 elements would be added as padding
and mostly padding bytes would be proven. So these
areas are shaded and considered as invalid.

For all schemes, both proof and verification times
increase with k and data size |F |. For aPlonK-PC,
the value of k does not matter when k is small and
choosing k as small as possible leads to shorter veri-
fication times. For KZG+, there is an optimal region
in-between large and small values of k, both for the
proof and the verification. Finally, Semi-AVID-PC is
the fastest in all aspects when k is small.

4.2 Systems Where k is Fixed

All schemes perform better with a small value of k,
but there are situations where the system requires a
larger k. For instance, in order to tolerate malicious
intrusion on one or more nodes without losing pri-
vacy, it is necessary that compromised nodes do not
host enough shards to decode any original data, which
is more difficult with low values of k.

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

528

(a) Proof time for n shards

49
6 B
99
2 B
1.9
 Ki
B
3.9
 Ki
B
7.8
 Ki
B

15
.5
KiB

31
.0
KiB

62
.0
KiB

12
4.0
 Ki
B

24
8.0
 Ki
B

49
6.0
 Ki
B

99
2.0
 Ki
B

1.9
 Mi
B

3.9
 Mi
B

7.8
 Mi
B

15
.5
MiB

31
.0
MiB

62
.0
MiB

12
4.0
 Mi
B

1ms

10ms

100ms

1s

10s

100s

1000s

10000s

100000s
aPlonK-PC k=4
aPlonK-PC k=64
KZG+ k=4
KZG+ k=64
Semi-AVID-PC k=4
Semi-AVID-PC k=64

(b) Verification time for k shards

49
6 B
99
2 B
1.9
 Ki
B
3.9
 Ki
B
7.8
 Ki
B

15
.5
KiB

31
.0
KiB

62
.0
KiB

12
4.0
 Ki
B

24
8.0
 Ki
B

49
6.0
 Ki
B

99
2.0
 Ki
B

1.9
 Mi
B

3.9
 Mi
B

7.8
 Mi
B

15
.5
MiB

31
.0
MiB

62
.0
MiB

12
4.0
 Mi
B

10ms

100ms

1s

10s

100s

1000s aPlonK-PC k=4
aPlonK-PC k=64
KZG+ k=4
KZG+ k=64
Semi-AVID-PC k=4
Semi-AVID-PC k=64

(c) Size overhead for n shards

49
6 B
99
2 B
1.9
 Ki
B
3.9
 Ki
B
7.8
 Ki
B

15
.5
KiB

31
.0
KiB

62
.0
KiB

12
4.0
 Ki
B

24
8.0
 Ki
B

49
6.0
 Ki
B

99
2.0
 Ki
B

1.9
 Mi
B

3.9
 Mi
B

7.8
 Mi
B

15
.5
MiB

31
.0
MiB

62
.0
MiB

12
4.0
 Mi
B

100B

1kB

10kB

100kB

1MB

10MB
aPlonK-PC k=4
aPlonK-PC k=64
KZG+ k=4
KZG+ k=64
Semi-AVID-PC k=4
Semi-AVID-PC k=64

Figure 3: Comparison of execution times and size over-
heads for the three schemes with a low k = 4 (dashed lines)
and a high k = 64 (solid lines). Note that the solid plots are
not drawn for small values of |F |. This is for the same rea-
son as for Figure 2: k is too big compared to |F |, thus a lot
of padding has to be used to have even a single polynomial.
We decided to omit these parameters.

Figure 3 compares the performance of the three
schemes for a low k = 4 and a high k = 64. Regard-
ing the proof time (Figure 3a), no matter the value
of k or the data size |F |, the schemes can be ordered
from fastest to slowest: Semi-AVID-PC, KZG+ and
aPlonK-PC. Verification time (Figure 3b) is more
complex: aPlonK-PC eventually becomes faster than
Semi-AVID-PC when |F | increases (1.9 MiB for k =
4 and 31 MiB for k = 64). For both values of k,
KZG+ is largely outperformed by either Semi-AVID-
PC or aPlonK-PC. For proofs and commits sizes
(Figure 3c), Semi-AVID-PC is the smallest no matter
the value of k or the data size |F | because the overhead
is constant in k. KZG+ and aPlonK-PC have much
larger overhead sizes, although aPlonK-PC eventu-
ally becomes smaller when |F | increases (248 KiB for
k = 4 and 124 MiB for k = 64).

4.3 Choosing the Optimal k

These general trends from Section 4.1 and 4.2 have
been further investigated: for each data size, scheme
and selected performance goals (proof time, verifi-
cation time and proof size), the best (lowest) values
were identified among all values measured with dif-
ferent k values. The optimal k values are summarized
in Table 1 and the corresponding best values are plot-
ted on Figure 4. Figure 4a focuses on proof times: it
contains the proof times for KZG+, aPlonK-PC and
Semi-AVID-PC, for all optimal k values (optimal kprf
for proof time, but also optimal kvrf for verification
time and optimal ksz for proof size; for Semi-AVID-
PC, the same kopt values optimizes the three perfor-
mance goals). Similarly, Figure 4b focuses on veri-
fication times, Figure 4c focuses on proof sizes and
Figure 4d focuses on decoding times.

For instance, for |F | = 7.8MiB of data, KZG+

best proof time plotted on Figure 4a is 4.6 s with
kprf = 64. For the same data size, aPlonK-PC best
proof time is 2544 s, with kprf = 32, and Semi-AVID-
PC best proof time is 625 ms with yet another dif-
ferent kprf = 4. In addition to the three best proof
time curves, Figure 4a shows the proof times obtained
with kvrf values optimizing the verification time and
ksz values optimizing the proof size.

To get a clear idea on which scheme to choose,
all four sub-figures must be used jointly. Continuing
the 7.8 MiB data example, Figure 4a showed that the
best proof time is 625 ms, obtained with Semi-AVID-
PC and kprf = 4. Keeping this value for k, Figure 4b
shows that Semi-AVID-PC verification time is 1.1 s,
larger than aPlonK-PC’s 820 ms obtained with k =
kvrf = 4 to optimize verification time, but lower than
any other; Figure 4c shows that proof size is 992 B,

Performance Evaluation of Polynomial Commitments for Erasure Code Based Information Dispersal

529

(a) Proof time for n shards

49
6 B
99
2 B
1.9
 Ki
B
3.9
 Ki
B
7.8
 Ki
B

15
.5
KiB

31
.0
KiB

62
.0
KiB

12
4.0
 Ki
B

24
8.0
 Ki
B

49
6.0
 Ki
B

99
2.0
 Ki
B

1.9
 Mi
B

3.9
 Mi
B

7.8
 Mi
B

15
.5
MiB

31
.0
MiB

62
.0
MiB

12
4.0
 Mi
B

1ms

10ms

100ms

1s

10s

100s

1000s

10000s

100000s
aPlonK-PC kprf
aPlonK-PC kvrf
aPlonK-PC ksz
KZG+ kprf
KZG+ kvrf
KZG+ ksz
Semi-AVID-PC

(b) Verification time for k shards

49
6 B
99
2 B
1.9
 Ki
B
3.9
 Ki
B
7.8
 Ki
B

15
.5
KiB

31
.0
KiB

62
.0
KiB

12
4.0
 Ki
B

24
8.0
 Ki
B

49
6.0
 Ki
B

99
2.0
 Ki
B

1.9
 Mi
B

3.9
 Mi
B

7.8
 Mi
B

15
.5
MiB

31
.0
MiB

62
.0
MiB

12
4.0
 Mi
B

10ms

100ms

1s

10s

100s

1000s aPlonK-PC kprf
aPlonK-PC kvrf
aPlonK-PC ksz
KZG+ kprf
KZG+ kvrf
KZG+ ksz
Semi-AVID-PC

(c) Size overhead for n shards

49
6 B

99
2 B

1.9
37

5 K
iB

3.8
75

 Ki
B

7.7
5 K

iB

15
.5

KiB

31
.0

KiB

62
.0

KiB

12
4.0

 Ki
B

24
8.0

 Ki
B

49
6.0

 Ki
B

99
2.0

 Ki
B

1.9
37

5 M
iB

3.8
75

 MiB

7.7
5 M

iB

15
.5

MiB

31
.0

MiB

62
.0

MiB

12
4.0

 MiB

1kB

10kB

100kB

1MB

10MB

Proof size
aplonk_best_proof_time
aplonk_best_verif_time
aplonk_best_proof_size
kzg_best_proof_time
kzg_best_verif_time
kzg_best_proof_size
semi_avid

(d) Decoding time for k shards

49
6 B
99
2 B
1.9
 Ki
B
3.9
 Ki
B
7.8
 Ki
B

15
.5
KiB

31
.0
KiB

62
.0
KiB

12
4.0
 Ki
B

24
8.0
 Ki
B

49
6.0
 Ki
B

99
2.0
 Ki
B

1.9
 Mi
B

3.9
 Mi
B

7.8
 Mi
B

15
.5
MiB

31
.0
MiB

62
.0
MiB

12
4.0
 Mi
B

100us

1ms

10ms

100ms

1s

10s

100s aPlonK-PC kprf
aPlonK-PC kvrf
aPlonK-PC ksz
KZG+ kprf
KZG+ kvrf
KZG+ ksz
Semi-AVID-PC

Figure 4: Times of proof, verification and decoding operations for the three schemes, using optimal k values for three criteria:
optimizing proof time, verification time and proof size; and size of proofs generated by the three schemes according to these
optimal k values. Note that for times, the vertical axes are different and use a log scale. The horizontal axis shows the data
size |F |. As proof and verification are used in the context of FEC(k,n) encoding and decoding, proof is plotted for n shards,
and verification/decoding are plotted for k shards. The exact values of k are not shown in these figures but are summarized
in Table 1. Note that in Figure 4c, all the KZG+ curves overlap and in Figure 4d, the kvr and ksz curves of aPlonK-PC are
hidden behind the Semi-AVID-PC curves. All seven curves have been kept accross subfigures for consistency.

the lowest value; and Figure 4d shows that decoding
time is 91 ms, the lowest value again.

This quick first analysis must be deepened accord-
ing to what needs to be optimized: execution time,
storage space, or both? Before a general application-
level analysis in Section 5, the four following sec-
tions present a separate performance comparison of
the three schemes for each measured data: proof time
(Section 4.3.1), verification time (Section 4.3.2), de-
coding time (Section 4.3.3) and commit and proof
size (Section 4.3.4). These sections will take the data
size and the code rate of the encoding as input param-
eters imposed by the system and will help choose the
best scheme and the associated value of k.

4.3.1 Commit and Proof Generation

In this section, the schemes are compared when the
interest is in low proof times. The results can be found
in Figure 4a and the associated values of k are listed in
Table 1. For each scheme, data size |F | and optimiza-
tion criterion, Figure 4a shows the time to commit the
whole data once and to prove the n = k

ρ
output shards.

Note that for Semi-AVID-PC, because k has the same
value for any given data size only one curve is plotted
to avoid curves overlapping.

For Semi-AVID-PC and aPlonK-PC, the three
curves are identical or very close, so optimizing for
a metric or another has no significant impact. The
performance of KZG+ varies a bit more depending
on the metric being optimized.

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

530

Table 1: Optimal k value for each data size |F |, scheme and optimization goal. For brevity, each scheme is denoted with
only the first letter, i.e. A for aPlonK-PC, K for KZG+ and S for Semi-AVID-PC. The colors have been kept the same as in
Figure 4

Data size in B KiB MiB
496 992 1.9 3.9 7.8 15.5 31 62 124 248 496 992 1.9 3.9 7.8 15.5 31 62 124

kprf 4 8 16 32 64 128 256 256 256 128 128 64 128 32 32 1024 512 256 1024
A kvrf 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 8 8

ksz 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
kprf 4 4 4 8 8 16 16 16 32 32 32 32 32 64 64 64 64 64 64

K kvrf 4 4 4 4 4 4 4 4 4 4 8 8 4 4 16 8 4 128 64
ksz 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

S kopt 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

aPlonK-PC is around 1 order of magnitude
slower than KZG+ which is itself between 0.5 and
1 order of magnitude slower than Semi-AVID-PC,
which is by far the best scheme for this metric.

4.3.2 Shard Verification

The verification time will be optimized in Figure 4b.
As the reconstruction of a file of size |F | needs

k shards, the time to verify k shards has been mea-
sured. Note that, as the shards can be received asyn-
chronously, no batch method has been used, the time
needed to perform k successive shard verifications has
simply been computed.

As before, Semi-AVID-PC features a single curve
because all the values for k are the same regardless of
the metric optimized.

This figure is not as straightforward as the pre-
vious one from Section 4.3.1. For small file sizes,
KZG+ and even more Semi-AVID-PC are far more
efficient than aPlonK-PC is. However, thanks to
its logarithmic time complexity, aPlonK-PC quickly
catches up as the data size |F | gets bigger. Around 1
MiB, the time goes below the curve of Semi-AVID-
PC, making aPlonK-PC the go-to scheme when the
file is really big. Values of k are listed in Table 1.

4.3.3 Decoding File From k Shards

In this section, the focus will be low decoding times,
to allow frequent and fast full reconstruction of the
original data.

When a node verifies k shards, it can decode them
in order to reconstruct the original data. The decoding
time has been measured function of the file size, and
the best k parameter for each scheme. If k is small, the
decoding time is negligible. This can be explained be-
cause most of the decoding complexity comes from
the fact that the reconstructing node needs to invert
a k× k matrix of elliptic curve elements. This opera-
tion has a complexity between O(k2) and O(k3) which
grows rapidly as k gets bigger.

The results for this metric optimization are shown
in Figure 4d and the associated values of k are again
listed in Table 1.

Note that, with this plot, the decoding time does
not really depend on the scheme and algorithm used
but rather completely on the value of k. Of course, the
value of k is a function of the scheme but this means
that, if two schemes have the same best k, then the
decoding times will be perfectly identical.

Because the optimal k stays small for both KZG+

and Semi-AVID-PC, the decoding time associated to
these schemes is low compared to aPlonK-PC.

This metric has the lowest impact of all the four
metrics because, in general, the decoding time is neg-
ligible as compared to the proof and verification times
for the whole data.

As before, note that, because k has the same value
for any given data size when looking at Semi-AVID-
PC only one curve has been plotted to avoid having
curves hidden behind each other.

4.3.4 Size Overhead of Commitments and Proofs

Function of k and |F |, the overhead of the commit-
ments and proofs needed to be stored in the shards
has been analyzed.

The theoretical proof and commit sizes have been
summarized in Table 2. This overhead for each
scheme is plotted against data size |F | in Figure 4c.
This figure shows the total size overhead of n com-
mits and n shards. The motivation is a network of
peers where each node of the network stores one of
the n shards, to disseminate the data, and one commit,
to be able to verify any of the shards when needed.

As expected, Semi-AVID-PC has the lowest
proofs + commitments size, because this scheme does
not have to construct any proof at all, and does only
rely on the homomorphic property of the commit op-
eration and asks the verifier to do more work. When
|F | is big and thanks to its logarithmic complexity,
aPlonK-PC can have a lower overhead than KZG.

Another object that takes up more or less space
depending of the scheme and the size of the data is
the trusted setup and verification keys.

As can be seen in the implementation, all schemes
require some form of trusted setup to construct the
commits and the proofs and verification keys to verify
any encoded and proved shard.

Performance Evaluation of Polynomial Commitments for Erasure Code Based Information Dispersal

531

Table 2: Commit and proof sizes for a code rate ρ. On both BLS-12-381 and BN-254, and without any compression of field
elements, G2 = 2G1 and GT = 12G1.

scheme commiment (c) proof (π) total
KZG+ mG1 1G1

k
ρ
(c+π)aPlonK-PC 1GT 2(log2(m)+1)G1 +2G2 +2log2(m)GT

Semi-AVID-PC kG1 0

KZG+ and Semi-AVID-PC use the same trusted
setup to prove the data, i.e. a list of the powers of a se-
cret element τ of the elliptic curve, KZG+ needs m of
these powers whereas Semi-AVID-PC requires k of
them to commit the data. On the other hand, aPlonK-
PC needs the same m powers as KZG+ does to com-
mit the data but also needs an additional element of
G1 and a list of log2(m) elements of G2 to construct
the Inner Product Argument. Even though the number
of elements may vary from one scheme to the other,
all the schemes require around O(m) elements of the
elliptic curve to commit and prove the whole data.

The biggest difference between the three schemes
under study comes with the verification stage. KZG+

needs a verification key which is a single element of
G1 and two elements of G2. aPlonK-PC requires a
bit more with an extra element of G1. In a nutshell,
both KZG+ and aPlonK-PC asks for roughly a few
elliptic curve elements that grow with O(1) with the
data size |F |.

Because the Semi-AVID-PC verifier needs to
compute the commit of the shard itself, he needs the
full m-long trusted setup, which will grow linearly
with the file size for a given value of k.

On any curve, the size of the trusted setup will
be equal to |F |

|G1|×k elements, where |G1| is the size of

one element of G1, and thus |F |
|G1|×k ×|G1| = |F |

k , e.g.
for k = 4 and |F | = 124MiB, the size of the trusted
setup will be 1

4 or the whole data, i.e. 31 MiB of setup
elements.

5 DISCUSSION

The previous section showed that some compromises
have to be made. Most significantly, when the data is
large, it is not possible to have both fast proving and
fast verification. With big values of |F |, aPlonK-PC
and Semi-AVID-PC are competing, aPlonK-PC be-
ing better for verification in the long run and Semi-
AVID-PC having lower proving time. In this sec-
tion, a few use-cases will be detailed and links will
be drawn between the raw analysis of Section 4 and
the applications introduced in Section 1.

In the first scenario, suppose we want to prove a
file of size |F | = 7.8MiB, but also want the verifica-

tion to be as fast as possible. As seen in Figure 4b,
the best verification time for this case is obtained by
aPlonK-PC in around 800 ms. However, with this
scheme, Figure 4a shows that the proof time reaches
around 2500 s. On the other hand, if we want the best
proof time for a given file of size |F | = 7.8MiB, the
best scheme is Semi-AVID-PC which will prove in
700 ms and verify in approximately 1 s. The time lost
in the verification step is greatly gained and balanced
by the orders of magnitude of proof time.

Another scenario could be blockchain blocks
availability. Indeed, rather than duplicating the full
blocks on a large number of nodes, a solution could
be to encode the blocks as in Data Availability Sam-
pling (Perard et al., 2018) and adding a proof such
that the verifiers can detect errors in the shards be-
fore decoding them. In this scenario, the Ethereum
blockchain with an average block size of up to 32 MiB
and k = 1024 will be considered. Proof times and ver-
ification times for k = 1024 can be estimated from the
top lines of Figure 2a and Figure 2b. In this particular
case, there is no contest between the schemes: Semi-
AVID-PC is better (bluest) in proof time, verification
time, size overheads and decoding time, by orders of
magnitude and always lower than 100 ms.

Finally, given the different operations, we can see
that the decoding time is negligible compared to the
proof time and the verification time. Furthermore, we
can conclude that aPlonK-PC is the fastest scheme
for verification for data sizes |F | larger than 31 MiB.
Semi-AVID-PC, even if a trusted setup is needed,
seems to be the best scheme for the proof genera-
tion and the proof size. The performance of this last
scheme in the verification step is the best one for
smaller data sizes, and does not end up far behind
the best one, aPlonK-PC, for larger data sizes. This
makes this last Semi-AVID-PC scheme the overall
best of the three that have been studied.

6 CONCLUSION

This paper evaluates protocols that enhance the se-
curity of erasure code based distributed storage sys-
tems by allowing the early detection of corrupted data
shards. This is done by adding cryptographic proofs
to the data shards produced by an erasure code, using

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

532

existing commitment schemes: KZG+, aPlonK-PC
and Semi-AVID-PC. Then, these output shards can
be verified individually before trying to decode the
full data.

We implemented the KZG+, aPlonK-PC and
Semi-AVID-PC commitment schemes using the Ark-
works cryptographic libraries. Their performance in
terms of execution time (generating or verifying cryp-
tographic proofs) and storage space (size of trusted
setup and generated proofs and commits) was then
analysed. In most cases Semi-AVID-PC is the op-
timal solution, except when the input files are large
and when the verification time must be optimized. In
this case, aPlonK-PC is optimal.

For a designer of distributed storage systems, this
means that if a lot of individual shard verifications
must be done as compared to data addition and proofs
generation, aPlonK-PC should be considered as a
possible alternative to Semi-AVID-PC.

This can be the case for blockchains or their com-
panion rollups, where newly created blocks become
available only after numerous verifications are per-
formed by different nodes. This may also be the case
for systems where massive store-and-forward (gossip-
based protocols) is used for data dispersal, so that
only valid shards are stored on any node. In other
cases, Semi-AVID-PC is clearly the optimal solution.
Note, however, that it does not prove a Reed-Solomon
encoding, but simply a linear combination encoding,
which can be considered as weaker according to the
context.

Moreover, the performance costs to enhance the
security is acceptable. This allows for distributed stor-
age systems where only verified shards are stored, and
corrupted shards can be easily detected and discarded.

REFERENCES

Ambrona, M., Beunardeau, M., Schmitt, A.-L., and Toledo,
R. R. (2022). aPlonK : Aggregated PlonK from multi-
polynomial commitment schemes. Cryptology ePrint
Archive, Report 2022/1352. https://eprint.iacr.org/
2022/1352.

arkworks contributors (2022). arkworks zkSNARK
ecosystem. https://github.com/arkworks-rs. Ac-
cessed: 2023-10-18.

Boneh, D., Drake, J., Fisch, B., and Gabizon, A. (2020). Ef-
ficient polynomial commitment schemes for multiple
points and polynomials. Cryptology ePrint Archive.

Bowe, S., Gabizon, A., and Miers, I. (2017). Scalable multi-
party computation for zk-SNARK parameters in the
random beacon model. Cryptology ePrint Archive,
Report 2017/1050. https://eprint.iacr.org/2017/1050.

Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., and

Maxwell, G. (2018). Bulletproofs: Short proofs for
confidential transactions and more. pages 315–334.

Daniel, E. and Tschorsch, F. (2022). IPFS and Friends: A
Qualitative Comparison of Next Generation Peer-to-
Peer Data Networks. IEEE Communications Surveys
& Tutorials, 24(1):31–52.

Fiat, A. and Shamir, A. (1987). How to prove your-
self: Practical solutions to identification and signature
problems. pages 186–194.

Gabizon, A., Williamson, Z. J., and Ciobotaru, O. (2019).
PLONK: Permutations over lagrange-bases for oe-
cumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, Report 2019/953. https:
//eprint.iacr.org/2019/953.

Kate, A., Zaverucha, G. M., and Goldberg, I. (2010).
Constant-size commitments to polynomials and their
applications. pages 177–194.

Krawczyk, H. (1993). Distributed fingerprints and secure
information dispersal. In Proceedings of the Twelfth
Annual ACM Symposium on Principles of Distributed
Computing, PODC ’93, page 207–218, New York,
NY, USA. Association for Computing Machinery.

Merkle, R. C. (1988). A digital signature based on a con-
ventional encryption function. pages 369–378.

Nazirkhanova, K., Neu, J., and Tse, D. (2021). Informa-
tion dispersal with provable retrievability for rollups.
Cryptology ePrint Archive, Report 2021/1544. https:
//eprint.iacr.org/2021/1544.

Perard, D., Lacan, J., Bachy, Y., and Detchart, J. (2018).
Erasure code-based low storage blockchain node. In
2018 IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Phys-
ical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), pages 1622–1627.

Rabin, M. O. (1989). Efficient dispersal of information for
security, load balancing, and fault tolerance. J. ACM,
36(2):335–348.

Wood, G. et al. (2014). Ethereum: A secure decentralised
generalised transaction ledger. Ethereum project yel-
low paper, 151(2014):1–32.

Performance Evaluation of Polynomial Commitments for Erasure Code Based Information Dispersal

533

