
Scale and Time Independent Clustering of Time Series Data

Florian Steinwidder1,2 a, Istvan Szilagyi3 b, Eva Eggeling2 c and Torsten Ullrich1,2 d

1Institute of Computer Graphics and Knowledge Visualization, Graz University of Technology, Graz, Austria
2Fraunhofer Austria Research GmbH, Graz, Austria

3Medical University Graz, Graz, Austria

Keywords: Time Series Analysis, Cluster Analysis, Visualization Toolkits.

Abstract: The analysis of time series, and in particular the identification of similar time series within a large set of time
series, is an important part of visual analytics. This paper describes extensions of tree-based index structures to
find self-similarities within sets of time series. It also describes filters that extend existing algorithms to better
fit real-world, error-prone, incomplete data. The ability of time series clustering to detect common errors in
real data is also described. These main contributions are illustrated with real data and the findings and lessons
learned are summarised.

1 INTRODUCTION

The analysis of data in which a temporal compo-
nent is an essential aspect is called time series anal-
ysis. These data are recorded over time and are as-
sumed to have an internal time-dependent structure
that should be taken into account when building mod-
els. The application areas are numerous and continue
to grow with digitisation and the associated increase
in data collection of all areas of society and industry
is leading to a greater need for data analysis in gen-
eral. In the case of monitoring, time series analysis
provides the essential tools for forecasting. Despite
the variety of applications in very different domains,
the mathematical toolbox remains the same (Ott and
Longnecker, 2015). In addition to predicting future
values, finding similar time series in a collection of
data, i.e. clustering time series (Aghabozorgi et al.,
2015), (Hennig et al., 2015), is an important task
in exploratory data analysis and in preparation for
model building (Hochheiser and Shneiderman, 2003),
(Neamtu et al., 2016).

In this work the focus is on time series clustering
and the task to identify similar time series in a large
data collection.

a https://orcid.org/0009-0004-5337-1195
b https://orcid.org/0000-0001-7542-3911
c https://orcid.org/0000-0001-6703-2865
d https://orcid.org/0000-0002-7866-9762

2 RELATED WORK

A time series T is a sequence of pairs (xi,yi), which
consists of a time component xi and an arbitrary com-
ponent yi. The time component can be continuous
xi ∈R or discrete xi ∈ Z (if the absolute timing is less
important than the relative timing, the data set may be
indexed with (semi-) positive integers xi ∈ N). If the
context describes the timing implicitly, e.g. by a reg-
ular sampling in fixed intervals, the time component
may be omitted.

The identification of similar time series is called
“twin subsequence search”. In detail, the problem is
to find subsequences S in a larger time series T that
are similar to a query sequence Q. The subsequences
have the same length as the query sequence and their
similarity is defined by a distance metric.

The naive approach to finding similar subse-
quences in a time series is to use a sweepline scan,
moving a sliding window of the same length as the
query sequence Q along the time series and compar-
ing at each time stamp the distance between Q and the
subsequence currently covered by the sliding window.
Obviously, this approach is not efficient for time se-
ries consisting of many time stamps. Instead, index-
based methods can be used to search for twin sub-
sequences, which have the advantage of being more
efficient and scalable.

Steinwidder, F., Szilagyi, I., Eggeling, E. and Ullrich, T.
Scale and Time Independent Clustering of Time Series Data.
DOI: 10.5220/0012377000003660
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2024) - Volume 1: GRAPP, HUCAPP
and IVAPP, pages 583-592
ISBN: 978-989-758-679-8; ISSN: 2184-4321
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

583

2.1 KV-Index

The key-value index (KV index) exploits the property
of data locality, which states that the values of suc-
cessive time stamps are often close to each other (Wu
et al., 2019). Thus, adjacent sliding windows will
have similar mean values. The index is constructed
over all subsequences of a predefined length that can
be extracted from an input time series. A subsequence
is represented as a pair (p,µ), where the first entry
denotes its starting position and the second entry de-
notes the mean value over the time stamps covered.
These pairs are used to construct an inverted index
data structure with ordered rows. The key of each
row represents a range of mean values, while the cor-
responding value is a list of starting positions of sub-
sequences whose mean values fall within the range
given by the key.

The KV index can be used to search for twin sub-
sequences in the following way: two subsequences
S and S′ of the same length are twins if the Eu-
clidean distance between them is less than a prede-
fined threshold ε. It follows that the means of two
twin subsequences cannot differ by more than this
threshold. For a given query sequence with mean
µq, potential twin subsequences are those within a list
with key [µmin,µmax], such that

µmin − ε ≤ µq ≤ µmax + ε.

Each candidate obtained must be verified by calculat-
ing its actual distance to the query sequence before it
can be called a twin subsequence.

2.2 iSAX

The indexable symbolic aggregate approximation
(iSAX) is used for similarity search between z-
normalised time series (Shieh and Keogh, 2008). Z-
normalisation (Goldin and Kanellakis, 1995) ensures,
that all elements of the input vector are transformed
into an output vector whose mean is 0 and whose
standard deviation is 1. Specifically, the time series
mean is subtracted from the original values and the
difference is divided by the standard deviation value.
According to most of the recent work on time series
structural pattern mining, z-normalisation is an essen-
tial preprocessing step that allows a mining algorithm
to focus on the structural similarities/dissimilarities
rather than the amplitude-driven ones. iSAX is a tree-
based structure that indexes time series based on their
symbolic aggregate approximation (SAX). A time se-
ries is transformed into its symbolic representation by
the following two steps:

• In the first step, the piecewise aggregate approx-
imation (PAA) (Keogh et al., 2001) is applied to

the time series. This involves dividing the time se-
ries into a predefined number m of segments and
approximating each segment by its mean.

• In the second step, a discrete SAX symbol X is as-
signed to each mean using specified breakpoints
pre-computed for z-normalised time series. This
allows a time series to be represented as a se-
quence of m SAX symbols. This sequence is
called a SAX word, and each SAX symbol X
within the word corresponds to a range of mean
values [µXmin ,µXmax).

A iSAX index can be constructed from one or more
SAX words. Each node in the index contains one
SAX word and represents a subset of the SAX space.
As already observed for the KV-Index, the difference
between the mean values of two subsequences S and
S′ of length l and the SAX representations

SAX(S) = {X1,X2, . . . ,Xm}

and

SAX(S′) = {X ′
1,X

′
2, . . . ,X

′
m}

are bounded by a threshold ε, if S and S′ are twins.
Furthermore, if S and S′ are twin subsequences with
respect to ε, then any two time-aligned segments ex-
tracted from S and S′ are also twins. Based on these
two properties, two subsequences can be identified as
twins if the difference between the mean values of
each pair of SAX symbols Xi and X ′

i in their SAX
words is less than or equal to a predefined threshold.

Twin subsequence search can be performed for a
given time series T and query sequence Q by first ex-
tracting all subsequences of length l from T and cre-
ating a iSAX index over these subsequences. The in-
dex is then traversed from top to bottom, checking at
each node whether the node’s SAX word satisfies the
above properties when compared to the query’s SAX
word. If the difference between the mean values of
the SAX symbols contained in the node and the SAX
symbols of the query sequence is above the threshold,
the node can be ignored and its subtree pruned. On
the other hand, if the properties are met, the search
continues until a leaf node is reached. Subsequences
indexed within this leaf node are possible twin subse-
quences and are used for a final check.

2.3 TS-Index

The time series index (TS-Index) is a tree-based in-
dex dedicated to the twin subsequence search prob-
lem (Chatzigeorgakidis et al., 2021). Its leaf nodes
store subsequences of the same length as the length of
a given query sequence, while the nodes above sum-
marise the contained subsequences. This allows the

IVAPP 2024 - 15th International Conference on Information Visualization Theory and Applications

584

filter-verification algorithm to prune the search space,
speeding up the search for twin subsequences within
the TS index. The nodes summarise the contained
subsequences using “Minimum Bounding Time Se-
ries” (MBTS), the core concept of the TS-Index. An
MBTS consists of two sequences enclosing a set of
time series. This pair of sequences B⊓ and B⊔ forms
a tube, with the upper sequences running along the
maximum values and the lower along the minimum
values at each time stamp (see Figure 1).

T1

T2

T3

T4

B

t

v

B

Figure 1: A set of four time series is enclosed by a “Mini-
mum Bounding Time Series” (MBTS) using the minimum
and maximum values at each time stamp. The result is a
pair of time series with upper B⊓ and lower B⊔ limit. Al-
though all time series are equally sampled in this example
illustration, this is not a requirement. Time series with dif-
ferent sampling can also be combined to form an MBTS.

As mentioned above, the TS-Index has a tree data
structure. Its internal nodes point to child nodes at
the next level. Each leaf node points to the starting
positions, relative to the input time series T , of its in-
dexed subsequences. All leaf nodes must be on the
same level. Furthermore, each internal node as well
as each leaf node has an MBTS that encloses all in-
dexed subsequences contained in the node. As the
number of indexed subsequences per node decreases
from the root node downwards, the MBTS also be-
come narrower.

Figure 2: The TS-Index is a tree structure with a pair of
boundary time series in each node.

The TS-Index construction requires an input time
series T and a desired subsequence length l. The in-
dex is constructed by sequentially extracting all pos-
sible subsequences of l length from T and inserting
them one by one into the TS-Index. As the construc-

tion follows a top-down approach, the tree must be
traversed from the root node to its leaf nodes when
inserting a subsequence S. At each level, the MBTS
of the nodes within are compared with S. By repeat-
edly selecting the nodes with the smallest distance to
S at each level, a leaf node is reached. Among all
leaf nodes, this leaf node has the smallest distance be-
tween its MBTS and S. Therefore, the starting posi-
tion of S can be added to the set to which this leaf node
points. As subsequences are added to the TS-Index,
a minimum-maximum criterion forces nodes to split
in order to evenly distribute the number of children
per node. The resulting tree structure is shown in Fig-
ure 2.

For a given query sequence Q, the twin subse-
quence search uses a filter-verification algorithm. As
a prerequisite, the query sequence Q must be of the
same length as the subsequences used to construct the
TS-Index.

A subsequence S is similar to the query sequence
Q if the distance between the two sequences is less
than or equal to a desired threshold ε. Each node N
within the TS-Index contains an MBTS that bounds
all subsequences indexed by N. Thus, once the filter-
verification algorithm encounters a node where the
distance between its MBTS and Q is greater than
ε, the search space can be pruned, as the algorithm
does not need to check for similar subsequences in
N and N’s child nodes. In this procedure, the algo-
rithm filters leaf nodes that contain possible twin sub-
sequences compared to Q. Then, in the verification
phase, each subsequence S contained in the filtered
leaf nodes is compared to Q.

3 METHOD

The extended method presented in this paper is based
on the TS-Index data structure introduced by Chatzi-
georgakidis et al. (Chatzigeorgakidis et al., 2021). It
extends the “Twin Subsequence Search in Time Se-
ries” approach in several ways:

• tree balancing for better performance,

• exploration method using self-similarities,

• not-a-number handling, and

• uncertainty quantification.

3.1 Unbalanced Trees

The original implementation of TS-Index uses a
minimum-maximum criterion during the tree con-
struction to ensure an almost balanced tree for opti-
mal run-time performance. The tree is constructed by

Scale and Time Independent Clustering of Time Series Data

585

inserting one time series at a time. The maximum
capacity specifies the limit when a node has to be
split into two new ones; the minimum capacity de-
fines the number of child nodes a parent node must
at least point to. When a node is split into two new
nodes, its indexed subsequences are assigned to one
of the two new nodes based on their similarity. The
main assumption of this approach is a common uni-
form distribution of all time series with a positive ex-
pectation value of the distance between two series. If
the distribution differs significantly, especially if sev-
eral time series are the same, the advantages of the
tree structure for speeding up the search are no longer
effective and the disadvantages of the overhead of the
acceleration structure prevail.

Therefore, our implementation does not use a
minimum and maximum number of child nodes, but
the distance measure as a separation rule. Similar
(and especially identical) time series should be close
together in the tree structure, ideally in the same node;
very different time series should not be unnecessarily
grouped together. This is particularly useful if identi-
cal series occur frequently in the data.

3.2 Self-Similarities Between all Time
Series

Most data structures are optimized for a single search
task consisting of a query time series Q and a set T
of time series {T1,T2, . . . ,Tn}. The desired result is
the element Ti with the smallest distances to Q – the
so-called nearest neighbour of Q in T .

In the context of exploratory time series analysis,
the task is similar, but differs in one important aspect:
the nearest neighbour query does not consist of a sin-
gle time series Q, which may not even be an element
of the set T , but of all elements {T1,T2, . . . ,Tn} of T .
This extended search for similar elements in a set in-
evitably leads to many “hits” – at least the number of
elements in T . When all elements of a set are com-
pared with all elements of the same set, these “hits”
occur on the diagonal:

T1 T2 . . . Tn
T1 d(T1,T1) d(T1,T2) d(T1,Tn)
T2 d(T2,T1) d(T2,T2) d(T2,Tn)
...

. . .
Tn d(Tn,T1) d(Tn,T2) d(Tn,Tn)

These diagonal elements are usually not wanted in the
result list of similarities and can be easily filtered out.

However, this problem does not only occur with
identical subsequences of the same time series, but
also with small temporal shifts in the start times of
two subsequences of the same sequence. The question

of whether these similarities are desirable in the list
of results cannot be answered without context. While
small temporal shifts should normally be filtered out,
similarities with a large temporal offset indicate cycli-
cal, seasonal or generally recurring patterns within a
time series and are therefore desirable detection re-
sults. We have solved this problem with a new pa-
rameter ∆, which filters out self-similarities within
the same time series by means of a minimum time
distance threshold. This solution generalises the fil-
tering to avoid the “diagonal self-similarity problem”
described above.

3.3 Not-A-Number

Apart from the theory, time series are characterised
by a multitude of potential problems: synchronisation
problems, calibration problems, sensor failures, etc.
Every real-world system therefore needs a strategy for
dealing with these problems.

Our approach contains three filters that require a
valid parameter range to be specified for each time
series: Values that are below this parameter range are
replaced by a user-defined value; values that exceed
this parameter range are replaced by a second user-
defined value; undefined values (not-a-number) are
replaced by a third value.

The choice of these three replacement values
should be adapted to the metric used; in particular,
the error case of not-a-number propagation through
the calculation should be taken into account (Monni-
aux, 2008).

3.4 Uncertainty and Inaccuracy

Real data, even if complete, is always subject to mea-
surement error and imprecision (Fuller, 2006). This
imprecision should be represented together with the
data and also taken into account in the distance and
comparison metrics (Wang and Bi, 2021). By con-
sistently accounting for imprecision, a distance met-
ric on time series becomes a statistical adjustment
test (Zhang and Chen, 2018).

The approach we have chosen to cope with
imprecision and uncertainty extends a time series
x0,x1,x2,x3, . . . by quantifying uncertainty in terms of
standard deviations xi ± ti:

x0 ± t0,x1 ± t1,x2 ± t2,x3 ± t3, . . .

In the visualisation, this inaccuracy can be reflected
in a diffuse interval that is drawn semi-transparently
as an offset (Bhatt et al., 2021). Figure 3 shows the
visualisation of a time series including its standard de-
viations xi ± ti.

IVAPP 2024 - 15th International Conference on Information Visualization Theory and Applications

586

Figure 3: A time series of real data often contains measure-
ment errors and imprecisions. One method of communi-
cating these measurement errors and inaccuracies is to use
semi-transparent intervals surrounding a time series.

3.5 System Implementation

The TS-Index data structure and the filter verification
search algorithms are implemented in Java. In addi-
tion, a graphical user interface (GUI) is developed us-
ing JavaFX to facilitate user interaction and provide
visualisations of the search results. The implementa-
tion of the system can be divided into two steps: the
construction phase and the clustering process.

In the construction phase, each time series is split
into all its possible subsequences using a sliding win-
dow. For each time series, a separate TS-Index is con-
structed by sequentially inserting the extracted subse-
quences. This approach is chosen over inserting all
subsequences into a single TS-Index due to the im-
proved efficiency it offers: This method allows us
to take advantage of multithreading, starting separate
threads for the creation of each time series’ TS-Index.
In contrast, inserting all subseries sequentially into a
single large TS-Index would lead to a higher num-
ber of node splits and distance calculations, resulting
in slower performance. The maximum node capacity
parameter is set to max = 5, which strikes a good bal-
ance between minimising the time required for node
splits and maximising the efficiency gained by early
search space pruning.

For the cluster creation, query sequences cover-
ing a specified time span are extracted from each time
series. The filter-verification algorithm is then ap-
plied to each query sequence to search for similar
subsequences within the previously constructed TS-
Indices. Similar to the construction phase, the identi-
fication of similar subseries is performed concurrently
on separate threads for each query to further increase

efficiency. A threshold value is used to quickly decide
whether two time series are similar: The threshold is
set to the expected value of the absolute difference be-
tween two stochastically independent, uniformly dis-
tributed random variables X , Y . Distances greater
than this expected value E(|X −Y |) indicate a higher
probability of random occurrence, which means that
subsequences with such distances are not considered
to be twin subsequences of the query.

For each query sequence, the twin subsequences
identified by the filter verification algorithm are fur-
ther sorted based on their Chebyshev distance to
the query. If the number of identified subsequences
exceeds the desired cluster size, the excess subse-
quences are removed. Notably, since the algorithm
compares the query to all time series indices, the
query sequence itself is included in the results due
to its distance of 0, thus ensuring its presence within
the cluster. Within a cluster, the subsequence with
the largest Chebyshev distance determines the over-
all cluster distance, allowing the clusters to be ranked
from most similar to least similar.

The GUI provides a visual interface for users to
interact with the system. Through the GUI, users can
select a metadata and time series attributes that will
display the corresponding time series in a line graph.
The graph provides information on observed values
and standard deviations. In addition, by hovering over
the time series, users can view different time series
values at the same time. To determine the time span
of queries for the clustering process, users can define
a specific start and end date of interest. The GUI al-
lows users to create clusters of a specified size con-
taining subsequences from all time series, or to per-
form a faster twin subsequence search for a specific
country and search term. The latter option also allows
users to specify a similarity threshold.

4 EVALUATION

The presented system is primarily used for the explo-
ration of one’s own time series and is adapted to the
specific needs and peculiarities of one’s own data.

4.1 Medical Data Analysis

The use case of the application is the data exploration
of several datasets, all based on the idea described in
“Detecting influenza epidemics using search engine
query data” (Ginsberg et al., 2009): people who no-
tice symptoms of an illness first google for medical
advice before consulting a doctor. Thus, days before
an officially confirmed influenza epidemic (based on

Scale and Time Independent Clustering of Time Series Data

587

Figure 4: The first visual inspection of the time series input data has the goal to check completeness and plausibility. Further-
more, this is the starting point of the interactive visual analytics process.

diagnoses with pathological test results), the Google
database already contains clusters of influenza-like
symptoms as search terms.

Following this idea, the COVID-19 pandemic has
been analysed. Each dataset contains a time series of
one country on a search term translated into the lo-
cal language and associated with a direct pandemic
symptom or an indirect health impact. The task of
exploratory data analysis is to look for similarities
and differences between countries and to relate these
to the number of cases and countermeasures (lock-
down, etc.) taken by each country. In detail, the
dataset consists of a list of countries. For each country
it comprises

1. a time series of COVID-19 cases reported to/by
the European Centre for Disease Prevention and
Control (ECDC),

2. a time series of COVID-19 counter measures (clo-
sure of ed. institutions, stay-at-home orders, . . .)
reported to/by ECDC,

3. a translated list of direct pandemic symptoms
(back pain, chest pain, . . .) and indirect health
impacts (anxiety, depression, . . .) into the of-

ficial language(s) of the corresponding country
(based on the International Classification of Dis-
eases, ICD-10), and

4. a time series of Internet query frequencies for
each entry of the translated list as reported by
Google Trends.
The starting point of the analysis is transformation

and normalisation of the individual time series (Keim
et al., 2008); Google Trends does not provide abso-
lute numbers of Internet queries, but only relative in-
creases and decreases. This step is completely auto-
matic; the starting point of the interactive visual anal-
ysis is the inspection of the data to visually check
its completeness and plausibility. Figure 4 shows the
graphical user interface (GUI) after loading and trans-
forming the dataset at the starting point of interactive
data exploration.

The visual analytics process aims to make the best
use of huge amounts of information in a wide range
of applications by combining the strengths of intelli-
gent automatic data analysis with the visual percep-
tion and analysis skills of the human user (Kohlham-
mer et al., 2011). This interactive process combines
data transformation, model building and model visu-

IVAPP 2024 - 15th International Conference on Information Visualization Theory and Applications

588

Figure 6: This screenshot shows a time series cluster centred on the time series “UK worthlessness 160–182”; the time series
describes the frequency of internet search queries from the UK containing the term worthlessness over the period from the
160th to the 182nd week since 1 January 2017.

alisation with the aim of gaining knowledge in an it-
erative loop (see Figure 5).

Figure 5: The visual analytics knowledge discovery process
combines data transformation, model building and model
visualisation in an iterative feedback loop (Keim et al.,
2010). Image source: (Kohlhammer et al., 2011).

In this particular application, the modelling and visu-
alisation is based on unsupervised clustering, which
identifies the time series that are similar. The common
features found were then correlated with the context
(countermeasures) of the respective country to iden-

tify a general pattern. This pattern was then tested
for plausibility and further refined by domain experts
from medicine and psychology. Figure 6 shows one
cluster of the clustering process applied to all time
series data. The similarity of the individual time se-
ries within this cluster to each other is particularly
striking from a visual point of view. This interac-
tive process resulted in common patterns identified in
the data; i.e., appropriate knowledge was extracted.
However, these findings need to be confirmed. For
this purpose, the extracted hypotheses were analysed
with statistical tests and their significance was eval-
uated. The medical and psychological findings are
published in “Google Trends for Pain Search Terms
in the World’s Most Populated Regions Before and
After the First Recorded COVID-19 Case: Infodemi-
ological Study” (Szilagyi et al., 2021) and “Impact
of the pandemic and its containment measures in Eu-
rope upon aspects of affective impairments: a Google
Trends informetrics study” (Szilagyi et al., 2023) and
are not the primary concern of this paper, which fo-
cuses on the process, the tools used in the process,
and the lessons learned.

Scale and Time Independent Clustering of Time Series Data

589

4.2 Filter Results & Effects

The first step is to find similar time series in the
frequencies of internet search queries from different
countries. The results are not always as nice as shown
in Figure 7.

Figure 7: Different keywords from searches in different
countries can show the same frequency over time.

However, some clusters from unsupervised cluster
analysis stand out from the rest, forming a subset of
time series that not only share similarities but also
a common problem. If there are not enough queries
from a country, Google Trends returns a correspond-
ing flat line (complete or temporary). These zero
lines, indicating data gaps, are obviously similar to
each other and are therefore grouped into a cluster
(see Figure 8). Identifying these clusters and exclud-
ing them from further analysis reduces the subsequent
analysis effort and is therefore desirable.

Figure 8: Different keywords from searches in different
countries can show the same frequency over time.

An undesirable similarity is self-similarity. Figure 9
illustrates such a situation: the Figure shows the fre-
quency distribution of the time series “Poland, panic
attack, 196–221”, i.e. the frequencies of search
queries from Poland containing the keyword “panic
attack” in the weeks 196 to 221 since 1.1.2017. This

time series is of course similar to the time series
“Poland, panic attack, 194–219”, which is only offset
by two weeks. Likewise, the cluster contains not only
the time series that was two weeks earlier, but also the
time series that was two weeks later and other variants
with different time offsets.

This self-similarity is in the nature of time series.
Any time series that is Lipschitz continuous has a
bounded distance to a time-shifted instance of itself.
This fact does not provide any new insight into the
application domain of time series and is therefore not
desirable.

Figure 9: Most time series are similar to shifted versions of
themselves. This fact provides no insight into the applied
use case.

However, this “uninteresting” self-similarity should
be excluded with caution in further analysis, as it be-
comes more “interesting” as the time shift increases.
Figure 10 shows one such interesting shift, which
prompted further investigation: Internet searches for
sleep problems in the United Kingdom show an an-
nual pattern. The corresponding time series with a
high level of similarity

• “United Kingdom, insomnia, 39–60”

• “United Kingdom, insomnia, 91–112”

• “United Kingdom, insomnia, 143–164”

are shifted by exactly 52 weeks. This annual peak
is a regularity that stimulates further analysis and re-
search (outside of time series analysis and partly out-
side of medical or psychological domains of appli-
cation). For this reason, the choice of the minimum
distance between two instances of a time series that
are shifted in time is critical and should not be made
carelessly.

IVAPP 2024 - 15th International Conference on Information Visualization Theory and Applications

590

Figure 10: Seasonal and cyclical effects are self-similar.
Detecting these properties within time series can provide
new insights.

5 CONCLUSION

The presented time series analysis extends the state of
the art by several improvements that have been imple-
mented and tested on real data.

5.1 Contribution

Our contribution to the scientific community is the ex-
tension of the TS-Index approach to unbalanced trees
in order to prioritise similarity over performance op-
timised tree structures – especially in visual analytics
use cases with many similar elements, the similarity-
based tree structure can be beneficial to analysis per-
formance. Many identical elements can be quickly
excluded when searching the tree.

The issue of self-similarity is also the subject
of our second suggestion for improvement: self-
similarity may be inherent in the time series or an
indication of an external, application-specific factor.
The detection of self-similarity is therefore both de-
sirable and unnecessary noise in the analysis. The
difference between the two possibilities is reflected in
the time difference: the shorter the shift between two
similar time series, the less interesting the similarity;
large distances, on the other hand, indicate interesting
patterns, especially seasonal or cyclical patterns. Ap-
propriate filters, such as those we have implemented,
offer the possibility of separation.

In addition to filtering out unwanted self-
similarities, the efficient and effective handling of
data problems (gaps, outliers, etc.) is a tedious but
important issue. In theory, these cases are consid-
ered much less often than in practice. Here we have
extended the existing algorithms with Not-a-Number
and Out-Of-Range mapping filters. These allow to
use of even short subsequences of valid time series

and not to filter or discard them. Furthermore, the
subsequent analysis steps do not need to consider spe-
cial cases (NaN, PosInf, . . .).

We have also added imprecision and uncertainty
handling to the existing algorithms. Many time se-
ries (measurements, surveys, etc.) have precision in-
formation (range of variation, measurement precision,
etc.) that usually goes unnoticed. In our implementa-
tion, this is taken into account throughout and is also
displayed in the visualisations, if wanted.

5.2 Benefit

The lessons learned from this study are particularly
valuable because the effects described are indepen-
dent of the application domain and can occur in many
different contexts.

The examples and the effects that occurred illus-
trate the problem of self-similarity and its ambiguous
nature: self-similarities due to short shifts should be
interpreted and filtered as noise; with increasing tem-
poral distance, self-similarity gains importance and
should be taken into account.

Another important benefit is the realisation that
cluster analysis can also be used for data inspection
and data transformation: similar errors often produce
similar indications, an example of the feedback loop
from knowledge back into data preparation.

ACKNOWLEDGMENT

The work was partially funded by the Austrian Re-
search Promotion Agency (FFG) within the frame-
work of the flagship project ICT of the Future
PRESENT, grant FO999899544.

REFERENCES

Aghabozorgi, S., Shirkhorshidi, A. S., and Wah, T. Y.
(2015). Time-series clustering – A decade review. In-
formation Systems, 53:16–38.

Bhatt, U., Antorán, J., Zhang, Y., Liao, Q. V., Sattigeri, P.,
Fogliato, R., Melançon, G., Krishnan, R., Stanley, J.,
Tickoo, O., Nachman, L., Chunara, R., Srikumar, M.,
Weller, A., and Xiang, A. (2021). Uncertainty as a
Form of Transparency: Measuring, Communicating,
and Using Uncertainty. AAAI/ACM Conference on AI,
Ethics, and Society, 4:401–413.

Chatzigeorgakidis, G., Skoutas, D., Patroumpas, K., Pal-
panas, T., Athanasiou, S., and Skiadopoulos, S.
(2021). Twin Subsequence Search in Time Series. In-
ternational Conference on Extending Database Tech-
nology (EDBT), 24:475–480.

Scale and Time Independent Clustering of Time Series Data

591

Fuller, W. A. (2006). Measurement Error Models. Wiley-
Interscience, 1 edition.

Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L.,
Smolinski, M. S., and Brilliant, L. (2009). Detecting
Influenza Epidemics using Search Engine Query Data.
Nature, 457:1012–1014.

Goldin, D. and Kanellakis, P. (1995). On similarity queries
for time-series data: Constraint specification and im-
plementation. International Conference on Principles
and Practice of Constraint Programming, 976:137–
153.

Hennig, C., Meila, M., Murtagh, F., and Rocci, R.
(2015). Handbook of Cluster Analysis. Chapman and
Hall/CRC, 1 edition.

Hochheiser, H. and Shneiderman, B. (2003). Interactive Ex-
ploration of Time Series Data. The Craft of Informa-
tion Visualization, 1:313–315.

Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlham-
mer, J., and Melançon, G. (2008). Visual Analyt-
ics: Definition, Process, and Challenges. Information
Visualization (Lecture Notes in Computer Science),
4950:154–175.

Keim, D., Kohlhammer, J., Ellis, G., and Mansmann, F.
(2010). Mastering the Information Age Solving Prob-
lems with Visual Analytics. CEurographics Associa-
tion, 1 edition.

Keogh, E., Chakrabarti, K., Michael, P., and Mehrotra, S.
(2001). Dimensionality Reduction for Fast Similarity
Search in Large Time Series Databases. Knowledge
and Information Systems, 3:263–286.

Kohlhammer, J., Keim, D., Pohl, M., Santucci, G., and An-
drienko, G. (2011). Solving Problems with Visual An-
alytics. Procedia Computer Science, 7:117–120.

Monniaux, D. (2008). The pitfalls of verifying floating-
point computations. ACM Transactions on Program-
ming Languages and Systems, 30:1–41.

Neamtu, R., Ahsan, R., Rundensteiner, E., and Sarkozy, G.
(2016). Interactive Time Series Exploration Powered
by the Marriage of Similarity Distances. Very Large
Data Base (VLDB) Endowment, 10:169–180.

Ott, R. L. and Longnecker, M. T. (2015). An Introduction
to Statistical Methods and Data Analysis. Cengage
Learning, 7 edition.

Shieh, J. and Keogh, E. (2008). ISAX: Indexing and Mining
Terabyte Sized Time Series. International Conference
on Knowledge Discovery and Data Mining, 14:623–
631.

Szilagyi, I. S., Eggeling, E., Bornemann-Cimenti, H., and
Ullrich, T. (2023). Impact of the pandemic and its con-
tainment measures in Europe upon aspects of affec-
tive impairments: a Google Trends informetrics study.
Psychological Medicine, online:1–13.

Szilagyi, I. S., Ullrich, T., Lang-Illievich, K., Klivinyi,
C., Schittek, G. A., Simonis, H., and Bornemann-
Cimenti, H. (2021). Google Trends for Pain Search
Terms in the World’s Most Populated Regions Be-
fore and After the First Recorded COVID-19 Case:
Infodemiological Study. Journal of Medical Internet
Research, 23:e27214.

Wang, W. and Bi, L. (2021). Research on strategies to im-
prove model accuracy based on incomplete time series
data. Asian Conference on Artificial Intelligence Tech-
nology (ACAIT), 5:45–52.

Wu, J., Wang, P., Pan, N., Wang, C., Wang, W., and Wang,
J. (2019). KV-Match: A Subsequence Matching Ap-
proach Supporting Normalization and Time Warping.
IEEE International Conference on Data Engineering
(ICDE), 35:866–877.

Zhang, B. and Chen, R. (2018). Nonlinear Time Series
Clustering Based on Kolmogorov-Smirnov 2D Statis-
tic. Journal of Classification, 35:394–421.

IVAPP 2024 - 15th International Conference on Information Visualization Theory and Applications

592

