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Taking a better look at subjects of interest helps humans to improve confidence in their age estimation. Unlike

still images, sequences offer spatio-temporal dynamic information that contains many cues related to age
progression. A review of previous work on video-based age estimation indicates that this is an underexplored
field of research. This may be caused by a lack of well-defined and publicly accessible video benchmark
protocol, as well as the absence of video-oriented training data. To address the former issue, we propose
a carefully designed video age estimation benchmark protocol and make it publicly available. To address
the latter issue, we design a video-specific age estimation method that leverages pseudo-labeling and semi-
supervised learning. Our results show that the proposed method outperforms image-based baselines on both
offline and online benchmark protocols, while the online estimation stability is improved by more than 50%.

1 INTRODUCTION

Human visual and cognitive systems allow us to
perform many incredibly complex tasks effortlessly.
However, estimating biological age from unknown
faces based only on visual cues is a challenging task,
even for humans. Research suggests that humans mis-
estimate age from facial images by 4.7 to 7.2 years on
average (Han et al., 2013). Large variations in appar-
ent age for subjects of the same biological age can be
caused not only by genetic predispositions and health,
but also by many different external factors such as
living conditions, weather exposure, facial cosmetics,
surgical operations, facial hair, and even facial expres-
sions (Dibeklioglu et al., 2015).

While automatic age estimation has prominent ap-
plication fields, such as human-computer interaction
(HCI), precision advertising, and the beauty industry,
some more strict fields, such as security, forensics,
and law enforcement, are yet to reach widespread use.
Age estimation models often fail under in-the-wild
conditions by a margin that is not acceptable for such
demanding application fields.

Humans and ML models can estimate biological
age from a single image with comparable accuracy.
However, when humans are not confident in their es-

https://orcid.org/0000-0002-5861-7076
@ https://orcid.org/0000-0002-2075-8295
¢ https://orcid.org/0000-0002-6763-5487

Beseni¢, K., Pandzi¢, I. and Ahlberg, J.

Let Me Take a Better Look: Towards Video-Based Age Estimation.
DOI: 10.5220/0012376800003654

Paper published under CC license (CC BY-NC-ND 4.0)

timation, they tend to fake a better look by examining
the subject for a longer period of time and from differ-
ent viewpoints. This observation is supported by the
review in (Hadid, 2011) stating that psychological and
neural studies (Bassili, 1979; Hill and Johnston, 2001;
Knight and Johnston, 1997; O’Toole et al., 2002) in-
dicate that head-pose and facial expression changes
provide important cues for face analysis. Existing
image-based methods can be applied directly to video
frames. However, (Ji et al., 2018) point out that de-
ploying image-based age estimation models directly
to videos leads to estimation stability issues, while
(Hadid, 2011) states that the image-based approach
exploits the abundance of frames in videos but ignores
useful temporal correlations and facial dynamics.
This work explores the potential of videos and
video-based methods for refinement of automatic fa-
cial age estimation. Our main contributions are sum-
marized as follows: (i) We review previous research
and public datasets for video-based age estimation to
pinpoint the main obstacles in this underresearched
field. (ii) We reproduce the recent frame-based age
estimation benchmark from (Hazirbas et al., 2021),
achieve state-of-the-art result on their protocol, and
make the missing benchmark metadata publicly avail-
able. (iii) We design a new video-based age estima-
tion benchmark and ensure reproducibility by mak-
ing the framework and metadata publicly available.
(iv) We design a semi-supervised video age estima-
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tion method that overcomes the lack of labeled train-
ing data and outperforms its image-based counterpart,
thus setting baseline results on the proposed bench-
mark.

2 RELATED WORK

The main premise of this study is that videos can pro-
vide extensive information useful for age estimation.
However, there is still only a handful of published
datasets and methods that leverage video information
to improve age estimation. Systematic surveys on
image-based age estimation methods and datasets can
be found in (Panis et al., 2016; Angulu et al., 2018;
Al-Shannaq and Elrefaei, 2019; Othmani et al., 2020;
Agbo-Ajala and Viriri, 2021). This section briefly re-
views video-based age estimation methods and video
datasets with age annotations.

2.1 Video-Based Age Estimation
Methods

According to (Hadid, 2011), there are two main
strategies for video-based face analysis. The simplest
strategy is to apply image-based methods to all video
frames or a set of sampled frames from a video. In-
dividual frame results are then fused across the se-
quence. A more elaborate strategy consists of lever-
aging both face appearance and face dynamics infor-
mation through spatio-temporal modeling. Hadid im-
plemented two baseline methods based on SVM clas-
sifiers, LBP features (Ojala et al., 1996; Ojala et al.,
2002) for static images, and Volume-LBP features
(Zhao and Pietikainen, 2007) for video sequences.
They used 2,000 web-scraped videos manually an-
notated with apparent age labels. Their experiments
indicated that the video-based approach can improve
performance for face recognition, gender classifica-
tion, and ethnicity classification tasks, but not for age
estimation.

(Dibeklioglu et al., 2012a) focused on the dis-
criminative power of smile dynamics for age estima-
tion. They leveraged movement features of facial key
points to complement appearance-based LBP features
and improve SVM estimation accuracy. Their exper-
iments on the UvA-NEMO Smile Database (Dibek-
lioglu et al., 2012b) showed significant performance
improvement over the image-based method, as well
as compared to the method from (Hadid, 2011). In
(Dibeklioglu et al., 2015), they also considered IEF
(Alnajar et al., 2012), GEF (Alnajar et al., 2012), and
BIF (Guo et al., 2009) features. Surface area features
based on a mesh model were used instead of facial
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key-point movement features, followed by a novel
two-level classifier. Experimentation was extended to
the introduced UvA-NEMO Disgust dataset. Video-
based methods significantly outperformed the image-
based baseline on both versions of the UvA-NEMO
dataset.

Instead of handcrafted features used in (Hadid,
2011; Dibeklioglu et al., 2012a; Dibeklioglu et al.,
2015), (Pei et al., 2019) used a combination of
CNN, RNN, and attention modules. Their proposed
Spatially-Indexed Attention Model (SIAM) used a
CNN for appearance modeling, a spatial attention
module for the detection of salient facial regions, an
RNN model for capturing facial dynamics, and a tem-
poral attention module for temporal saliency, trained
in an end-to-end manner. UvA-NEMO Smile and
UvA-NEMO Disgust datasets were once again used,
following protocol from (Dibeklioglu et al., 2015).
The proposed neural network-based approach outper-
formed previous methods based on handcrafted fea-
tures. (Ji et al.,, 2018) pointed out that deploying
image-based age estimation models directly to videos
often suffers from estimation stability issues. To ad-
dress this, they proposed a combination of CNN-
based feature extraction and attention-based feature
aggregation modules, sharing some similarities with
(Pei et al., 2019). Their loss function combined MSE
loss and a component for estimation stability. The
model was not trained in an end-to-end manner, as
the CNN was trained on the MORPH-II (Ricanek and
Tesafaye, 2006) image dataset. To train the feature
aggregation module, they built a video dataset com-
prising 18,282 frames from a single twelve-minute
video of one subject. Their experiments demonstrated
improvements with respect to both age estimation ac-
curacy and stability.

To attenuate the effect of head-pose on video-
based age estimation, (Han et al., 2021) based their
method on pose-invariant uv texture maps recon-
structed from video frames by a Wasserstein-based
GAN. They introduced the UvAge video dataset and
used it both for training and evaluation. (Zhang and
Bao, 2022) combined multi-loss CNN for head-pose
estimation (Ruiz et al., 2018) and DRF (Shen et al.,
2018) for age estimation. To mitigate the negative ef-
fect of head-pose variation, they trained a head-pose
model on the 300W-LP dataset (Zhu et al., 2016) and
used it to create multiple subsets of the CACD (Chen
et al., 2015) and AFAD (Niu et al., 2016) datasets.
Two 12-minute facial videos from two subjects were
collected for evaluation purposes. Using frontal mod-
els and selecting frames with near-frontal faces im-
proved both age estimation accuracy and stability.
Both this work and the work from (Han et al., 2021)
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Table 1: Overview of the video-based age estimation datasets.

Dataset Subjects  Videos Agerange Demographics Head pose Tllumination
UvA-NEMO Smile (Dibeklioglu et al., 2012b) 400 1,240 8-76 unbalanced mostly frontal constrained
UvA-NEMO Disgust (Dibeklioglu et al., 2015) 324 518 8-76 unbalanced mostly frontal constrained
UvAge (Han et al., 2021) 516 6,898 16 - 83 unconstrained unconstrained  unconstrained
Casual Conversations (Hazirbas et al., 2021) 3,011 45,186 18 -85 semi-balanced  unconstrained  unconstrained
Casual Conversations Mini (Hazirbas et al., 2021) 3,011 6,022 18-85 semi-balanced  unconstrained balanced
Casual Conversations v2 (Porgali et al., 2023) 5,567 26,467 18 - 81 semi-balanced  unconstrained  unconstrained

were focused on achieving robustness to head pose
changes without exploiting any temporal information
from videos.

A recurring topic in the reviewed work is the lack
of publicly available video data, as almost all au-
thors resorted to data collection. However, the col-
lected data was not made publicly available in (Hadid,
2011; Ji et al., 2018; Zhang and Bao, 2022). Manual
data collection often results in very small datasets. Ji
et al. and Zhang et al. used very limited amounts
of video data (i.e., one or two videos), undermining
the reliability of their conclusions. Dibeklioglu et al.
based their work on a larger video dataset, but used it
for both training and evaluation. A very specific na-
ture of the used data, where every subject transitions
from neutral to smiling facial expression, potentially
caused overfitting to this specific type of data. They
introduced a dataset related to a different facial ex-
pression (disgust), but did not perform cross-domain
testing, same as Pei ef al.. Ji et al., Han et al., and
Zhang et al. did not perform a comparison with pre-
vious video-based age estimation methods.

2.2 Video-Based Age Estimation
Datasets

A lack of a large public in-the-wild video-based age
estimation benchmark undermines the convincing-
ness of some of the reviewed findings and the ability
to fairly compare introduced methods. This section
reviews video-based age estimation datasets used in
the reviewed work, as well as some recent datasets
suitable for this purpose.

UvA-NEMO Smile Dataset was initially intro-
duced to study differences between spontaneous and
posed smiles in (Dibeklioglu et al., 2012b). The
dataset consists of 597 spontaneous and 643 posed
smile recordings, totaling in 1,240 videos. The videos
were collected from 400 volunteers (185 female and
215 male) with ages ranging from 8 to 76 years. Sub-
jects were mostly Caucasian. The recordings were
done in a controlled environment, with constrained il-
lumination and high-resolution cameras. Each video
segment starts with a neutral expression and transi-
tions to a smiling expression.

UvA-NEMO Disgust Dataset (Dibeklioglu et al.,
2015) was collected concurrently with the UvA-
NEMO Smile Dataset following the same record-
ing setup. 324 volunteers (152 female, 172 male)
were recorded posing disgust facial expressions. 313
of them also participated in the UvA-NEMO Smile
Dataset collection. Similar to the Smile version of the
dataset, age varies from 8 to 76 years, and the subjects
are mostly Caucasian. Each of the 518 disgust video
segments once again starts with a neutral expression
and transitions to the target expression.

UvAge Dataset (Han et al., 2021) was created
specifically for age estimation from videos. It con-
sists of 6,898 videos from 516 subjects. The proposed
web-scraping technique was based on collection of
videos of celebrities with birth information available
on Wikipedia. To get a reliable video recording
time, they used traceable public events such as the
Academy Awards or the G20 summit. The videos
were manually verified and segmented into sequences
containing only one subject. Along with age labels,
each video was also annotated with identity, gender,
ethnicity, and occupation.

Casual Conversations Dataset (CC) (Hazirbas
etal., 2021) is a recently published video dataset from
Facebook (Meta) Al designed for measuring fairness
of computer vision and audio models across a diverse
set of ages, genders, apparent skin tones, and ambi-
ent lighting conditions. It consists of 45,186 high-
quality videos collected from 3,011 paid individuals
who agreed to participate in the project and explicitly
provided age and gender labels themselves. A group
of trained annotators additionally labeled skin tone
according to Fitzpatrick scale (Fitzpatrick, 1975) and
ambient light type. The authors also proposed a well-
balanced subset of the CC dataset, denoted as Ca-
sual Conversations Mini (CCMini). The subset was
formed by selecting one dark and one bright video
per subject (when possible) to have a balanced light-
ing distribution, with a total of 6,022 videos.

Casual Conversations v2 Dataset (Porgali et al.,
2023) is a follow-up to the original CC dataset
(CCv2), curated with special focus on geographical
diversity. 5,567 subjects from 7 countries were paid
to participate in data collection. The 26,467 col-
lected videos amount to 320 hours of scripted and 354
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hours of non-scripted conversations. Some of the la-
bels, such as age, gender, language/dialect, disabil-
ity, physical adornments/attributes, and geo-location,
were self-provided by the participants. Trained an-
notators were used to additionally label for Fitz-
patrick Skin Type (Fitzpatrick, 1975), Monk Skin
Tone (Monk, 2014), voice timbre, recording setup,
and per-second activity.

A summary of the reviewed datasets is presented
in Table 1. Our efforts to receive access to UvA-
NEMO Smile, UvA-NEMO Disgust, and UvAge
datasets were unsuccessful, making the Casual Con-
versation datasets the only publicly accessible re-
source suitable for video-based age estimation re-
search. However, the CC dataset licenses permit the
use of provided labels only for evaluation purposes.

3 VIDEO AGE ESTIMATION
BENCHMARK DATA

Not only that Casual Conversations are the only pub-
licly accessible video-based datasets, they were also
curated with a special focus on ethical data collec-
tion and demographic fairness. Moreover, they are
the largest video datasets with precise self-provided
age annotations, and their licenses allow for evalua-
tion of both academic and commercial models!. All
this makes them great candidates for a video age esti-
mation benchmark.

3.1 CCMiniIMG

The authors of the CC dataset explored its poten-
tial for age estimation evaluation on CCMini; a well-
balanced subset of the CC dataset. Their benchmark
data consists of 100 frames sampled from each of the
videos.

For further reference, we dub this image set as
CCMiniIMG. Although this initial effort toward a
CC-based age estimation benchmark motivated our
work, we discuss its adequacy for video-based age es-
timation. CCMiniIMG is made available in the form
of pre-extracted raw video frames, where 100 frames
are provided for each of 6,022 videos. However, the
authors did not provide face detection metadata or
clear information on the frame sampling procedure.
The lack of face detection metadata prevents the ex-
act reproduction of their evaluation protocol as some
frames contain multiple subjects. The lack of infor-
mation on the frame sampling method and the fact

IFor specific conditions please refer to the CC license
agreements.
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Figure 1: CCMiniVID video processing framework. All
faces are tracked with a commercial tracking system. The
metadata of multi-subject videos is manually filtered to con-
tain only data related to the subject of interest. The frame-
work extracts aligned face crop sequences using the raw CC
videos and the produced tracking data.

that the protocol relies only on frames rather than con-
tinuous sequences prevents the evaluation of video-
based age estimation methods that leverage temporal
information.

3.2 CCMiniVID

To design a video benchmark dataset for age esti-
mation based on the CC data, we follow CCMini-
IMG and select 6,022 well-balanced videos from the
CCMini subset. All videos were recorded at 30 FPS
and the mean video duration is 64.44 +13.56 seconds,
with 99% of videos lasting for at least 20 seconds.
We set our target to extract sequences with 20 sec-
onds of continuous face presence from each video,
where possible. We utilize a commercial face tracking
system from Visage Technologies” to produce high-
quality frame-level tracking data comprising 75 facial
landmark points, apparent pitch, yaw, and roll head
angles, tracking quality, and face scale. We proceed
with semi-automatic tracking data analysis, as shown
in Figure 1.

The CC data does not provide correspondence be-
tween subjects and labels for the multi-subject videos,
potentially causing erroneous subject-level labels. We
perform automatic detection of multi-subject video
candidates, followed by manual verification and se-
lection of tracking streams in 108 videos. In two of
the videos subjects of interest are facing away from
the camera, making their faces fully self-occluded.
These videos are not suitable for a face-oriented eval-
uation benchmark. Continuous face tracking with a
target duration of 20 seconds was achieved for 5,932
of 6,022 videos. Manual verification of the remain-
ing 90 videos showed that in 21 videos continuous
tracking was not sustainable due to occlusions, self-
occlusions, camera issues, or extreme lighting. 69
videos were shorter than 20 seconds, with the shortest
one lasting for only 6 seconds.

Zhttps://visagetechnologies.com/facetrack/
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Table 2: Age classification accuracy results for the baseline methods from (Hazirbas et al., 2021) and our image-based age
estimation model from (BeSeni¢ et al., 2022) on the CCMiniIMG benchmark data according to the image-based evaluation

protocol.
Gender Skin type Lighting
Overall Female Male Other Type I Type I Type 11T Type IV Type V Type VI Bright Dark
(Levi and Hassner, 2015) 38.05 37.44 39.48 66.67 39.56 38.72 40.84 36.47 36.47 34.89 38.49 37.04
(Lee et al., 2018) 42.26 42.28 44.53 100.00 42.33 41.78 42.30 42.79 42.44 37.99 4294 41.12
(Serengil and Ozpinar, 2020) 54.32 54.21 56.18 83.33 46.51 55.52 54.59 55.78 53.78 52.57 54.17 55.20
(BeSenic et al., 2022) 73.06 70.20  76.48 87.50 76.72 82.15 72.90 70.24 67.52 65.61 7390  71.64

Table 3: Age classification accuracy results for our image-based age estimation model from (BeSeni¢ et al., 2022) on the three
versions of CCMiniVID benchmark data according to the image-based evaluation protocol.

Gender Skin type Lighting
Overall Female Male Other  Typel Type I Type III Type IV Type V Type VI Bright Dark
CCMiniIMG 73.06 70.20 76.48 87.50 76.72 82.15 72.90 70.24 67.52 65.61 73.90 71.64
CCMiniVID-O0 7360 7090 7675 9375 7759 813l 74.25 7409 6582 6748 7518 7096
CCMiniVID-A 7350 7056 7702 8750 7759 8155 73.13 7409 66.67 67.24 7500  70.98
CCMiniVID-R 73.59 70.85 76.81 93.55 77.23 81.38 74.43 73.88 65.70 67.49 75.17 70.99
Based on the obtained tracking data and man- Fer:safnder Skin tone Lighting
ual verification, we propose three versions of the T y’
CCMiniVID benchmark data. CCMiniVID-O, where 3 ' ¥
O stands for “original”, comprises only videos from . A
the original CCMini subset. It contains 5,932 4‘,
sequences with continuously tracked 600 frames s o P
(20s@30FPS) and 90 outlier videos that have be- Age distribution
tween 100 and 599 continuously tracked frames. It 200
also contains the aforementioned 2 videos where sub- 150
jects of interest are not visible. In CCMiniVID-A, Emo

where A stands for “alternatives”, replacements for
92 problematic videos were manually selected from
the full CC dataset by looking for the most similar
substitutes in video galleries of target subjects. This
allows for consistent evaluation with 600 consecu-
tively tracked frames for all 3,011 subjects from the
CC dataset. Additionally, we propose CCMiniVID-
R, where R stands for “reduced”; a simple subset
of CCMiniVID-O where the 92 problematic videos
were removed. This allows for precise and consis-
tent testing without the need for downloading the full
6.9 TB CC dataset. Figure 2 presents distributions
for CCMiniVID-R main labels, while a broader ex-
plorative analysis is available in Appendix B.

4 VIDEO AGE ESTIMATION
BENCHMARK PROTOCOL

To design the benchmark protocol, we first review the
image-based age classification protocol introduced in
(Hazirbas et al., 2021).

o
S

20 30 40 50 60 70 80
Age

Figure 2: CCMiniVID-R label distributions for gender, age,
and skin tone (subject-level) and lighting (video-level).

4.1 Image-Based Benchmark Protocol

The authors of (Hazirbas et al., 2021) extracted 100
frames from each of the 6,022 CCMiniIMG videos
and detected faces with the DLIB face detector (King,
2009). The authors provide only video-level metadata
and raw frames. Face detection metadata was not pro-
vided, and neither face detection setup nor frame sam-
pling algorithm were specified. In the proposed pro-
tocol, age estimation is treated as a 3-class age classi-
fication task. The median of 100 image-level age es-
timations is used as the video-level estimation which
is then mapped to 3 predefined age groups (i.e., 18-
30, 31-45, and 46-85). Classification accuracy was
selected as the main metric. The protocol addition-
ally relies on the dataset’s auxiliary labels to calcu-
late accuracy across 3 gender groups, 6 apparent skin
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tone types, and 2 ambient lighting types. The proto-
col reproduction details and metadata are available in
Appendix A.

4.1.1 Image-Based Baseline Results

We evaluate the performance of our best-performing
image-based age estimation model from (BeSenié
et al., 2022) and compare it to the previously re-
ported SOTA results from (Hazirbas et al., 2021).
The selected model is based on a CNN architecture
from MobileFaceNet family (Chen et al., 2018) and
trained on the large in-the-wild B3FD image dataset
(Beseni¢ et al., 2022) using the DLDLv2 age esti-
mation method (Gao et al., 2018). The model takes
128 %128 RGB face crop inputs and outputs 101 val-
ues corresponding to ages from O to 100. More details
are available in (BeSeni¢ et al., 2022).

Table 2 presents the baseline results. The selected
model outperforms the overall age classification ac-
curacy of the previously reported leading method
(Serengil and Ozpinar, 2020) by a large margin of
18.74 points, establishing the new state-of-the-art on
this benchmark. Although it outperforms the base-
line methods by a large margin, it shows similar rela-
tive performance drop for female subjects, darker skin
tones, and poorly illuminated recordings.

To validate the CCMiniVID benchmark data from
Section 3, we apply the image-level baseline model
and protocol to its three versions. Table 3 shows
a comparison with results obtained on the original
CCMiniIMG data. The results are closely matched,
showing that while the CCMiniVID benchmark data
offers several benefits over CCMiniIMG, such as con-
tinuous video sequences, face tracking data, and clear
mapping between video subjects and the dataset’s
metadata, it retains a very similar difficulty level.

4.2 Video-Based Benchmark Protocol

Methods that work with sequential (i.e., temporal)
data can be either offline or online. Offline methods
process a video as a unit non-causally and produce a
single estimate for the whole video. Temporal stabil-
ity is not an issue since only one estimate per video
is produced. Therefore, we find Mean Absolute Error
(MAE) to be a sufficient metric for offline estimation
methods. The absolute error is calculated based on a
single estimate per video, while the mean is calculated
over all videos in the dataset. Online methods produce
updated age estimations in real-time as new video
frames are captured. For online methods, we propose
Temporal Mean Absolute Error (tMAE) and Tempo-
ral Standard Deviation (ST D) as the benchmark met-
rics to evaluate both method’s accuracy and online
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estimation stability, respectively. These are standard
MAE and ST D metrics calculated at the frame level,
as online methods produce new estimates for each of
the frames in the temporal dimension. Following the
CCMiniIMG protocol, we rely on the dataset’s addi-
tional labels to calculate the proposed metrics across
3 gender groups, 6 apparent skin tone types, and
2 ambient lighting types. To unambiguously define
the benchmark protocol, we make the metadata (in-
cluding the face tracking data from the commercial
tracking system), the test set extraction framework,
and the evaluation framework publicly available at
https://github.com/kbesenic/CCMiniVID.

4.2.1 Video-Based Baseline Results

Tables 4 and 5 present results of our image-based age
estimation model described in Section 4.1.1 on the
three CCMiniVID benchmark dataset versions, fol-
lowing the previously described offline and online
video protocols, respectively. To comply with the of-
fline estimation protocol, which expects a single esti-
mate per video, we use the median of the frame-level
estimations to calculate MAE. The tMAE and tSTD
metrics for the online protocol are calculated directly
from the frame-level estimation errors.

The results obtained on the three versions are very
similar, and the relative performance drop can be ob-
served in the case of female subjects, darker skin
tones, and lack of good lighting. High #ST D numbers
indicate unstable age estimation across video frames.
The large gap between overall offline and online MAE
indicates that video-level estimations are more precise
than frame-level estimations.

S5 TOWARDS VIDEO-BASED AGE
ESTIMATION METHOD

All previously presented results are obtained with
image-based age estimation methods. The main
premise of this work is that age can be estimated more
precisely by taking a better look, i.e. by using a longer
video sequence instead of a single image. To verify
this, we first analyze how video sequence duration af-
fects the age estimation accuracy.

5.1 Taking a Better Look

For this experiment, we use the CCMiniVID-A
video benchmark data which contains 600 frames
(20s@30FPS) of continuous face tracking for two
videos of each subject in the CCMini dataset. We
find this version of the benchmark data most suitable
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Table 4: Offline age estimation MAE for our image-based age estimation model from (BeSeni¢ et al., 2022) on the three
versions of CCMiniVID benchmark data according to the offline video-based evaluation protocol.

Gender Skin type Lighting
Overall Female Male Other Type I Type I Type III Type IV Type V Type VI Bright Dark
CCMiniVID-O 5.25 5.61 4.81 3.82 5.14 4.78 5.02 5.15 5.56 5.95 5.04 5.60
CCMiniVID-A 5.25 5.64 4.78 3.63 5.03 4.74 5.05 5.14 5.59 6.00 5.00 5.67
CCMiniVID-R 5.23 5.60 4.78 3.89 4.94 4.79 4.97 5.19 5.57 592 5.01 5.59

Table 5: Online age estimation tMAE and tST D for our image-based age estimation model from (BeSeni¢ et al., 2022) on the
three versions of CCMiniVID benchmark data according to the online video-based evaluation protocol.

Gender Skin type Lighting
Overall Female Male Other Type I Type I Type III Type IV Type V Type VI Bright Dark
CCMiniVID-O 6.194+3.25 6.77+3.73 5.4742.66 4.77+2.61 6.1943.44 5.6442.98 5.8442.99 5.98+3.01 6.63+3.60 7.04£3.71 5.97+3.13 6.56+3.46
CCMiniVID-A 6.10+£3.12 6.68+3.58 5.3942.54 4.4342.54 6.03+3.33 5.53+2.84 5.7842.88 5.84+2.84 6.58+3.44 6.98+3.57 5.85+3.02 6.52+3.29
CCMiniVID-R 6.17£3.25 6.75+3.73 5.4542.66 4.83+2.61 6.02+3.44 5.64+2.98 5.794+2.98 6.01£3.02 6.64+3.60 7.01£3.71 5.94+3.13 6.54+3.46
Age estimation MAE in relation to video duration ment. Using the full sequences reduces the estima-
60 "\ peiiacay’ 4 tion error by 13.35%, compared to the single-frame
was N approach. The results demonstrate that taking a bet-
E: | ter look is very useful for age estimation, even with a
c N . . . . .
2°° N basic image-based estimation method and simple me-
£ on . .
g e I ! dian aggregation of the frame-level results.
T g
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Figure 3: Age estimation MAE of our 2D CNN image-
based age estimation model from (BeSeni¢ et al., 2022) and
the proposed video-based model (2D CNN + TCN4) in re-
lation to video sequence duration on the CCMiniVID-A of-
fline video-based benchmark protocol.

since it contains all subjects while all video subse-
quences are of the exact same duration. The majority
of video-based methods rely on frame subsampling
techniques to avoid redundant processing of nearly
identical neighboring frames and to reduce compu-
tational complexity. We set the subsampling step to
6, following various video processing methods (Gao
et al., 2017; Xu et al., 2019; Eun et al., 2021; Xu
et al., 2021; Chen et al., 2022). We calculate age es-
timation MAE for video subsequences lasting from a
single frame (0 seconds) to 20 seconds. The results
are presented in Figure 3, denoted as 2D CNN.

By using video sequences of 1 second, the single-
frame-based estimation error is reduced by 5.59%.
By using 5 seconds, the error is reduced by 10.29%.
Increasing sequence duration from 5 to 15 seconds
reduces the error by an additional 2.67 percentage
points. However, increasing the sequence duration
from 15 to 20 seconds results in almost no improve-

Cherry-picking is a popular name for a technique
based on selection of the best or most suitable el-
ements from a set. A frontal-face cherry-picking
approach was proposed by (Zhang and Bao, 2022),
where a fixed threshold was used on the sum of abso-
lute head-pose angles. To evaluate the cherry-picking
approach, we can utilize the produced frame-level
tracking data described in Section 3.2 (i.e., head-pose
angles, tracking quality, and face scale). Using a fixed
threshold is not suitable for our evaluation protocol
since it might cause biases in video-based or even
subject-based label distributions. For example, there
might be more female subjects with bad lighting in the
non-frontal subset. To mitigate this issue, we extract
three equally sized subsets from each of the bench-
mark videos. As a baseline, we extract the chronolog-
ically first 50% of the video frames. We also extract
the best and the worst 50% of the video frames based
on a certain criterion. This ensures that all videos and
all subjects are used in all three subsets and that the
subsets are of equal size. Results of this experiment
are presented in Table 6.

Contrary to the findings in (Zhang and Bao, 2022),
head-pose angles seem to have negligible influence
on age estimation error in our experiments. The used
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Table 6: Age estimation MAE of our image-based age
estimation model from (BeSeni¢ et al., 2022) on the
CCMiniVID-A benchmark data for frame cherry-picking
approaches based on different face tracking data.

Criterion Yaw  Pitch  Roll  Tracking quality = Face scale
First 50% 5.29 529 529 5.29 5.29
Best 50% 532 526 529 5.27 5.27
Worst 50%  5.26 532 526 5.30 5.31

image-based age estimation model was trained on the
B3FD dataset (BeSenié et al., 2022), a very large in-
the-wild age estimation dataset with unconstrained
head poses. The model was also trained with data
augmentations to make it robust to tracking instabil-
ities and low face resolution, further explaining why
filtering based on auxiliary tracking data did not result
in significant improvements.

5.3 Video-Based Age Estimation
Method

The main obstacle to training an age estimation model
that leverages facial dynamics and temporal informa-
tion from videos is the lack of video data with age la-
bels. As mentioned in our data review in Section 2.2,
there are no publicly accessible video datasets that
permit training of age models. As reviewed in Sec-
tion 2.1, some researchers resorted to a manual col-
lection of very small video datasets (e.g., only one or
two subjects). Our opinion is that this is not enough to
train a reliable model with generalization capabilities.

To deal with the lack of annotated video data that
restricts usability of fully supervised learning, we
explore pseudo-labeling and semi-supervised learn-
ing. Whereas supervised learning requires labels for
all training samples, semi-supervised learning algo-
rithms aim at improving their performance by utiliz-
ing unlabeled data (Oliver et al., 2018). One approach
for making use of unlabeled data is generating pseudo
labels. Pseudo labels are weak labels generated by the
model itself and subsequently used to further train the
model (Hu et al., 2021). In our setup, we leverage
the fact that subject’s age does not change during a
single video recording. We rely on an image-based
age estimation model and apply it to every frame of
an unlabeled facial video dataset. The frame-level re-
sults are aggregated to get video-level pseudo labels.
These pseudo labels can then be used to supervise
learning of spatio-temporal models. In case of end-to-
end training, the image-based backbone used to gen-
erate the pseudo-labels is also further optimized and
improved.
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Figure 4: The proposed video age estimation method based
on a 2D CNN feature extractor and a 4-layer TCN tempo-
ral model (4L TCN), followed by a fully connected layer
(FC) for dimensionality reduction. The model takes 16 in-
put video frames (VID) denoted as x; to x;_;5 to produce an
age estimation probability vector y,.

5.3.1 Pseudo-Labeled Training Data

The main advantage of the proposed approach is that
any source of unlabeled facial videos can be used for
model training. We combine two large sources of
raw videos. The video portion of the IJB-C dataset
(Maze et al., 2018) is selected since the dataset’s gen-
eral statistics indicate good age distribution. CelebV-
HQ dataset (Zhu et al., 2022) is selected for its size
and good distribution with respect to facial expres-
sions, appearance attributes, and actions. The raw
videos were once again processed with the commer-
cial face tracking system and frame-level estimations
were produced with the image-based age estimation
model from Section 4.1.1. The median was used
to aggregate frame-level estimations into video-level
pseudo labels. We filtered the video data with respect
to face scale, tracking quality, and sequence duration.
The produced set consists of 28,619 videos with a to-
tal of 7,535,299 frames, averaging 263 continuously
tracked frames per video. Pseudo-label distribution
ranges from 6 to 89 years.

5.3.2 Semi-Supervised Video-Based Method

In Section 4.2.1 we demonstrated that offline me-
dian estimation across video sequences can be much
more precise than frame-level predictions. Our goal
is to use the median pseudo labels to train a temporal
model that will be able to replicate that performance
boost, but in an online fashion and based on a much
shorter time window.
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Table 7: Offline age estimation MAE for our 2D CNN image-based age estimation model (BeSeni¢ et al., 2022) and the
proposed video-based age estimation models (2D CNN + TCN) on the CCMiniVID-A benchmark data according to the

offline video-based evaluation protocol.

Gender Skin type Lighting
Overall Female Male Other Type I Type I Type IIT Type IV Type V Type VI Bright Dark
2D CNN 5.25 5.64 4.78 3.63 5.03 4.74 5.05 5.14 5.59 6.00 5.00 5.67
2D CNN + TCN3 5.07 5.39 4.68 372 4.98 4.64 4.81 5.03 5.40 5.72 4.78 5.57
2D CNN + TCN4 4.95 5.25 4.58 3.81 4.71 4.49 4.76 4.83 5.27 5.61 4.76 5.27

Table 8: Online age estimation tMAE and tST D for our 2D CNN image-based age estimation model (Beseni¢ et al., 2022)
and the proposed video-based age estimation models (2D CNN + TCN) on the CCMiniVID-A benchmark data according to

the online video-based evaluation protocol.

Gender Skin type Lighting
Overall Female Male Other Type I Type II Type III Type IV Type V Type VI Bright Dark
2D CNN 6.104+3.12 6.68+3.58 5.394+2.54 4.4342.54 6.03+3.33 5.5342.84 5.784+2.88 5.8442.84 6.58+3.44 6.98+3.57 5.85+3.02 6.52+3.29
2D CNN + TCN3 5.36+1.79 5.75+2.07 4.88+1.44 4.12+1.70 5.3341.82 4.9141.64 5.0741.68 5.23+1.64 5.73£1.98 6.0542.03 5.0641.71 5.854+1.93
2D CNN + TCN4 5.16+1.51 5.52+1.74 4.71+1.23 4.02+1.40 4.97+£1.53 4.6941.40 4.94+1.42 5.00+1.37 5.5241.67 5.85+1.70 4.96+1.44 5.4941.62

Our method follows the basic design principle
of many video-processing methods (De Geest et al.,
2016; De Geest and Tuytelaars, 2018; Xu et al., 2019;
Kim et al., 2021; Wang et al., 2022), including some
previously reviewed video age estimation methods
(Pei et al., 2019; Ji et al., 2018), meaning that the
model consists of an image-based 2D CNN feature
extractor and a temporal model that learns to aggre-
gate frame-level features in an optimal way.

For feature extraction, we once again rely on our
2D CNN model for image-based age estimation from
Section 4.1.1. The feature extractor backbone is
stripped of its last age classification layer to produce
features of 512 elements. Motivated by the results
of (Bai et al., 2018), we base our temporal model
on their implementation of Temporal Convolutional
Network (TCN)3. The proposed TCN can be parame-
terized with respect to number of layers, kernel size,
and number of input and output channels. We set the
kernel size to 2 and parameterize the TCN to input
and output feature vectors of size 512, matching the
chosen feature extractor output. The TCN’s output
is passed to a fully connected layer that translates the
temporal feature vectors to age estimations. The num-
ber of layers determines the network’s receptive field
and therefore the time window size used in online pro-
cessing. We experiment with 3 and 4 layers, resulting
in receptive fields of 8 and 16 frames, respectively.

An overview of the method is presented in Fig-
ure 4. The figure illustrates the method’s processing
pipeline for a 4-layer TCN with a receptive field of
16 frames. The method predicts a softmax probabil-

3 github.com/locuslab/TCN/blob/master/TCN/tcn.py

ity vector y, of size 1 x 101 (mapping to ages from 0
to 100) based on the current frame face crop x; and 15
previous face crops (x;—1 to x;—15). The weighted sum
of the softmax probabilities is used as the final age
prediction, according to the DLDLv2 method (Gao
etal., 2018).

We train the proposed model in an end-to-end
manner, meaning that we jointly optimize both the
image-pretrained feature extractor and the randomly
initialized TCN. The training data is divided into
training and validation subsets with a random 80:20
split. The model is trained with the DLDLv2 age esti-
mation method and Adam optimization (Kingma and
Ba, 2014), using a learning rate of 107® and weight
decay of 10~3. We adopt an early stopping approach,
where training is ended when the validation subset
MAE plateaus.

5.3.3 Video-Based Benchmark Results

The results in Tables 7 and 8 show that we outper-
formed image-based baseline according to both of-
fline and online evaluation protocols, even though our
model trainings were supervised with pseudo labels
generated by that exact baseline model. Figure 3
presents consistent improvements of the 4-layer TCN
model (TCN4) on the offline protocol in relation to se-
quence duration. Significant improvements can also
be observed in the online protocol results in Table 8§,
where the TCN4 overall tMAE is reduced by 15.41%,
while tSTD is reduced by an even larger margin of
51.60%.

The TCN3 model uses a time window of size 8,
which amounts to just 1.6 seconds of video data un-
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der the proposed frame subsampling setting. By us-
ing the first 1.6 seconds of each video, TCN3 can
achieve MAE of 5.32 with a single online inference
pass, compared to 5.52 in the case of the aggregated
image-based results. Image-based result aggregation
on the full 20-second videos gives MAE of 5.25. By
using a single online TCN4 inference pass on the first
3.2 seconds of each video, we even outperform the
full-video results with MAE of 5.15, simultaneously
achieving 84% shorter estimation time and improved
estimation accuracy.

6 CONCLUSIONS

Aligned with our initial premise for this work, tak-
ing a better look on video sequences significantly im-
proves age estimation, compared to the single-image
approach. Our evaluation also confirmed previous
findings regarding inconsistent performance with re-
spect to gender, skin tone, and lighting type, high-
lighting the issue of demographic biases in ML. Con-
trary to the findings of previous work, our experi-
ments showed that the correlation between age esti-
mation error of contemporary age estimation models
and auxiliary face tracking data (i.e., head-pose an-
gles, tracking quality, and face scale) is negligible,
making the frame cherry-picking method ineffective.
The proposed video age estimation method, based on
pseudo-labeling and semi-supervised learning, over-
comes the lack of available annotated training data
and improves age estimation accuracy according to
both offline and online evaluation protocols, while
estimation stability is improved by more than 50%.
Our goal is that our carefully designed and publicly
available benchmark protocol, along with the baseline
video age estimation results, encourages and supports
further research on the topic of video-based age esti-
mation, as the potential of this underexplored field of
research is clearly demonstrated.
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APPENDIX A: CCMiniIMG
Metadata Reproduction

As discussed in Sections 3.1 and 4.1, the authors of
(Hazirbas et al., 2021) extracted 100 frames from
each of the 6,022 videos and detected faces with the
DLIB face detector (King, 2009). The authors pro-
vide only video-level metadata and raw frames. Face
detection metadata was not provided, and neither face
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detection setup nor frame sampling algorithm were
specified.

To reproduce the evaluation protocol, we first pro-
cess CCMiniIMG raw frames following the limited
information available in (Hazirbas et al., 2021) and
explore DLIB’s face detection options. DLIB offers
two types of face detectors: HOG-based and CNN-
based. The HOG-based face detector is very light,
but it is not able to detect many of the challenging
samples from this dataset, therefore we choose the
CNN-based detector. We experiment with DLIB’s
sole face detection parameter (i.e., upsampling factor)
and CLAHE image enhancement (Pizer et al., 1987)
with different tile sizes and clip limits to push the de-
tection rate to 99.82%. No protocol for handling mul-
tiple detections was specified, so in each frame, we
select the detection with the highest detection confi-
dence. 62 of the 3,011 subjects didn’t provide age
labels, eliminating 12,400 images from the test set.
This results in 588,720 video frames with success-
fully detected faces and valid age labels. We proceed
by extracting face crops with DLIB’s affine alignment
algorithm which uses 5 face landmarks detected by
DLIB’s shape predictor. Face crops were extracted
with 50% context and resized to 256 x256p.

To enable easy reproduction of this evaluation
protocol, we make DLIB’s detection metadata and
CCMiniIMG frame processing scripts publicly avail-
able* and encourage authors to utilize it in their work
to avoid inconsistencies.

APPENDIX B: CCMiniVID
Explorative Analysis

All three versions of the CCMiniVID are based on
videos from the same 3,011 subjects, with two videos
per subject selected from CC to create a balanced
subset. Videos of 62 subjects that did not provide
age information are not suitable for an age estima-
tion benchmark. That leaves us with 5,898 videos
of 2,949 unique subjects used in CCMiniVID bench-
mark datasets.

The original CC metadata provides some subject-
level labels (i.e., age, gender, and skin tone) and
video-level labels for lighting (i.e., bright or dark).
The authors encourage users to extend the annotations
on their dataset (Hazirbas et al., 2021). To this ex-
tent, we processed the dataset with a commercial face
tracking system® and filtered the results by automat-
ically processing the tracking data and manually val-

“https://github.com/kbesenic/CCMiniVID
Shttps://visagetechnologies.com/facetrack/



idating edge cases. The tracking data consists of 75
facial landmark points, apparent pitch, yaw, and roll
head rotation, and tracking quality for each frame.

CCMiniVID-O label distributions for labels from
the original CC metadata are presented in Section 3.2.
We can see that gender and lighting label distributions
are fairly balanced, with some reasonable underrepre-
sentations in the skin tone distribution. CCMiniVID-
A shares the same distribution for the subject-level
labels (i.e., age, gender, and skin tone), but there is
a minor difference in the lighting distribution caused
by the selection of alternative videos (i.e., 62.67%
bright and 37.33% dark). Videos of 10 subjects were
dropped in the reduced CCMiniVID-R version, caus-
ing a very minor variation in all distributions.

Head-pose distribution
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Figure 5: CCMiniVID-O head-pose angle distributions,
based on the produced face tracking data.
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Figure 6: CCMiniVID-O face scale distribution, based on
the produced face tracking data.
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Figure 7: CCMiniVID-O tracking quality distribution,
based on the produced face tracking data.
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Figures 5, 6 and 7 present distribution for rele-
vant tracking data from our extended CCMiniVID-
O metadata. Head-pose angle distributions show that
this conversational dataset is oriented towards frontal
and near-frontal faces, with some occurrences of ex-
treme head poses. The face scale distribution, where
the face scale is the width or height of a square face

Let Me Take a Better Look: Towards Video-Based Age Estimation

bounding box in pixels, shows that the provided high-
quality videos contain faces that are mostly in the 100
to 400 pixel range. The tracking quality distribution
indicates continuous face tracking with high confi-
dence was sustained on a large majority of the videos.
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