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Abstract: Satellite imagery provides a unique and comprehensive view of the Earth's surface, enabling global-scale land 
cover mapping and environmental monitoring. Despite substantial advancements, satellite imagery analysis 
remains a highly challenging task due to intrinsic and extrinsic factors, including data volume and variability, 
atmospheric conditions, sensor characteristics and complex land cover patterns. Early methods in remote 
sensing image classification leaned on human-engineered descriptors, typified by the widely used Scale-
Invariant Feature Transform (SIFT). SIFT and similar approaches had inherent limitations in directly 
representing entire scenes, driving the use of encoding techniques like the Bag-of-Visual-Words (BoVW). 
While these encoding methods offer simplicity and efficiency, they are constrained in their representation 
capabilities. The rise of deep learning, fuelled by abundant data and computing power, revolutionized satellite 
image analysis, with Convolutional Neural Networks (CNNs) emerging as highly effective tools. Nevertheless, 
CNNs' extensive need for annotated data limits their scope of application. In this work we investigate the 
fusion of two distinctive feature extraction methodologies, namely SIFT and CNN, within the framework of 
Support Vector Machines (SVM). This fusion approach seeks to harness the unique advantages of each feature 
extraction method while mitigating their individual limitations. SIFT excels at capturing local features critical 
for identifying specific image characteristics, whereas CNNs enrich representations with global context, 
spatial relationships and hierarchical features. The integration of SIFT and CNN features helps thus in 
enhancing resilience to perturbations and generalization across diverse landscapes. An additional advantage 
is the adaptability of this approach to scenarios with limited labelled data. Experiments on the EuroSAT 
dataset demonstrate that the proposed fusion approach outperforms SIFT-based and CNN-based models used 
separately and that it achieves either better or comparable results when compared to existing notable 
approaches in remote sensing image classification.

1 INTRODUCTION 

Satellite imagery plays a pivotal role in various 
applications, including land cover mapping, 
environmental monitoring, disaster assessment, and 
urban planning. Thanks to advances in Earth 
observation technology, the volume of remote 
sensing images is rapidly increasing. Understanding 
these vast and complex images has become an 
increasingly important and challenging task (Janga et 
al., 2023). At the heart of this challenge lies scene and 
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images classification, a complex task that has 
garnered significant attention from the research 
community. The central goal of remote sensing scene 
classification is to accurately assign predefined 
semantic categories to images. Scene classification 
requires a high degree of accuracy and adaptability, 
as the scenes encountered in practice are typically 
diverse, spanning both rural and urban 
landscapes(Wang et al., 2022). To meet the 
requirements of these diverse applications, a 
classification model must be equipped to handle 
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variations in scale, atmospheric conditions, and noise, 
while also being capable of recognizing complex 
spatial patterns(Weiss et al., 2020). 

In the early stages of remote sensing scene 
classification, many methods relied heavily on 
human-crafted features, with Scale-Invariant Feature 
Transform (SIFT) being a prominent example. SIFT 
and similar methods faced the challenge of directly 
representing an entire image due to their inherent 
local nature (Weinzaepfel et al., 2011). To address 
this limitation, local descriptors often employed 
encoding methods, such as the popular Bag-of-
Visual-Words (BoVW). While these encoding 
methods offered simplicity and efficiency, they 
simultaneously had limited representation 
capabilities, especially as they do not allow to 
represent spatial relationships ( Cheng et al., 2019). 
In response to these limitations, unsupervised 
learning methods, which autonomously learn features 
from unlabeled images, emerged as an attractive 
alternative to human-crafted descriptors. These 
methods, often employing techniques like k-means 
clustering, presented a promising avenue for scene 
classification. Nevertheless, unsupervised methods 
lack the supervised learning's advantage of having 
class labels to guide the feature learning process, 
which often lead to learn features that are not relevant 
to the classification task ( Cheng et al., 2019).  

The advances in deep learning theory, coupled 
with the increased availability of remote sensing data 
and parallel computing resources, ushered in a new 
era for remote sensing image scene classification. 
Deep learning models have demonstrated their 
prowess in feature description across various 
domains, and remote sensing image scene 
classification was no exception (Aksoy et al., 2023). 
Convolutional Neural Networks (CNNs) emerged as 
a powerful tool, pushing the boundaries of 
classification accuracy in the field. However, the 
data-hungry nature of CNNs and their extensive need 
for annotated training data limit their scope of 
application. 

In this study, we investigate the fusion of two 
distinctive feature extraction methods, namely SIFT 
and CNN, within the framework of Support Vector 
Machines (SVM) for remote sensing images 
classification. This approach aims to harness the 
benefits of both feature extraction approaches, while 
overcoming the limitations of each method used 
separately. SIFT excels in capturing unique local 
features that are essential for recognizing unique 
characteristics within an image. The global context 
and the hierarchical features learned by CNNs 
contribute to better generalization, ensuring that the 

model can accurately classify scenes exhibiting 
complex patterns that are challenging to capture with 
local features alone. An additional advantage of this 
approach is its adaptability to situations with limited 
labeled data, a common issue in remote sensing. 

The EuroSAT dataset (Cheng et al., 2020) is a 
widely recognized and extensively employed 
collection of satellite images containing 10 classes of 
land cover. It consists of 27,000 images collected by 
the Sentinel-2 satellite, having a spatial resolution of 
10 meters. Experiments on EuroSAT dataset 
demonstrate that our fusion approach outperforms, 
not only SIFT and CNN used separately, but also 
existing remote sensing image classification 
approaches. 

The remainder of this paper is organized as 
follows. Section II briefly reviews related work. 
Section III presents our features fusion approach. 
Section IV provides a comparative experimental 
study on EuroSAT dataset. Finally, section V 
concludes the paper. 

2 RELATED WORK 

Land Use and Land Cover (LULC) classification has 
garnered substantial attention within the scientific 
community, with numerous studies and reviews 
dedicated to the comparison of various approaches 
and emerging trends. For the sake of conciseness and 
due to lack of space, we mainly focus in the sequel on 
approaches that employ the EuroSAT dataset used in 
our experimental study or presenting similarities with 
our approach. Existing approaches and studies can be 
broadly classified into two families: Machine 
Learning (ML)-based algorithms and Deep Learning 
(DL)-based methods(Yaloveha et al., 2023).  

The studies presented in (Hu et al., 2014), (Chen 
& Tian, 2015), and (Thakur & Panse, 2022) are 
representative of ML-based approaches. Hu et al. 
(2014) proposed a method that utilizes randomly 
sampled image patches for Unsupervised Feature 
Learning (UFL) in image classification. They applied 
the BOVW model to this approach and conducted 
experiments on an aerial scene dataset. The 
experiments on the dataset present encouraging 
results with an accuracy of 90.03%. (Chen & Tian, 
2015) introduced the Pyramid of Spatial Relations 
(PSR) model, designed to incorporate both relative 
and complete spatial information into the BOVW 
framework for LULC classification. Experiments 
conducted on a high-resolution remote sensing image 
revealed that the PSR model achieves an average 
classification accuracy of 89.1%.  In (Thakur & 
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Panse, 2022), the authors evaluate the performance of 
four machine learning algorithms: decision tree (DT), 
k-nearest neighbor (KNN), support vector machine 
(SVM), and random forest (RF). The results indicate 
that RF exhibits superior performance compared to 
DT, KNN, and SVM, while SVM and DT exhibit 
similar levels of effectiveness. 

The studies (P Helber et al., 2018), (Dewangkoro 
& Arymurthy, 2021) and (Temenos et al., 2023) are 
representative of DL-based studies. The authors in 
(Temenos et al., 2023) introduce an interpretable deep 
learning framework for LULC classification using 
SHapley Additive exPlanations (SHAPs). (Temenos 
et al., 2023) uses a compact CNN model for images 
classification and then feeds the results to a SHAP 
deep explainer. Experimental results on the EuroSAT 
dataset demonstrate the CNN’s accurate 
classification with an overall accuracy of 94.72%, 
whereas the classification accuracy on three-band 
combinations on each of the dataset’s classes 
highlight its improvement when compared to 
standard approaches. The SHAP explainable results 
of the proposed framework shield the network’s 
predictions by showing correlation values that are 
relevant to the predicted class, thereby improving the 
classifications occurring in urban and rural areas with 
different land uses in the same scene. 

Another interesting DL-based study is presented 
in (Dewangkoro & Arymurthy, 2021). The approach 
of (Dewangkoro & Arymurthy, 2021) uses different 
CNN architectures for feature extraction, namely 
VGG19, ResNet50, and InceptionV3. Then, the 
extracted feature is recalibrated using Channel 
Squeeze & Spatial Excitation (sSE) block. The 
approach also uses SVM and Twin SVM (TWSVM) 
as classifiers. VGG19 with sSE block and TWSVM 
achieved the highest experimental results with 
94.57% accuracy, 94.40% precision, 94.40% recall, 
and 94.39% F1-score.  

In the study by (P Helber et al., 2018), the authors 
compares vaious CNN architectures, namelya 
shallow CNN, a ResNet50-based model model and a 
GoogleNet-based model. The overall classification 
accuracy achieved is 89.03%, 98.57%, 98.18% 
respectively. The authors also evaluated the 
performance of the Bagof-Visual-Words (BoVW) 
approach using SIFT features and a trained SVM. The 
study of (P Helber et al., 2018) shos that all CNN 
approaches outperform the BoVW method and, 
overall, deep CNNs perform better than shallow 
CNNs which achieves an overall accuracy of 89.03% 
on EuroSAT dataset. 

The aforementioned studies demonstrate that 
there is no one-size-fits-all algorithm that can attain 

the highest accuracy for all the classes under 
consideration. Furthermore, as this section highlights, 
existing approaches tend to concentrate on either 
classical machine learning methods or deep learning 
algorithms, with none delving into the advantages 
that can be derived from integrating classical methods 
with deep learning algorithms. Our study aims to 
underscore and quantify the potential benefits of such 
an integration. 

3 FEATURES FUSION VS.  
HAND-CRAFTED AND  
CNN-LEARNED FEATURES 

Hand-crafted features have played a significant role 
in computer vision applications, particularly image 
classification. These features are derived through 
non-learning processes, directly applying various 
operations to image pixels. They offer advantages 
like rotation and scale invariance, achieved by 
efficiently encoding local gradient information. 
However, hand-crafted features have three notable 
limitations (Tsourounis et al., 2022): (i) They provide 
a low-level representation of data and lack the ability 
to offer an abstract representation crucial for 
recognition tasks; (ii) Local descriptors like SIFT do 
not yield a fixed-length vector representation of input 
images, necessitating additional logic for local 
descriptor encoding, such as Bag-of-Visual-Words 
(BoVW); and (iii) Their capacity is fixed and limited 
by a predefined mapping from data to feature space, 
regardless of specific recognition needs. 

In the past decade, hand-crafted methods have 
been largely supplanted by deep Convolutional 
Neural Networks (CNNs). CNNs employ an end-to-
end learning approach, typically in a supervised 
manner. Each input image is associated with a 
ground-truth label, and the CNN model's weights are 
updated iteratively until the model's output aligns 
with the label. This way, CNNs construct hierarchical 
feature representations through a learning process 
that minimizes a defined cost function. CNNs learn 
feature representation and encoding directly from 
images, resulting in a model that provides high-level 
feature representations once trained on a particular 
dataset and task. However, CNNs demand extensive 
data and are sensitive to data quality, making them 
dependent on large annotated datasets while posing 
challenges related to achieving scale, rotation, or 
geometric invariance. 

In this study, we investigate the synergy between 
local descriptors (SIFT) and CNN-learned 
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descriptors. To this end, we compare the fusion of 
CNN-SIFT features to the cases where SIFT and 
CNN are used separately. The framework of the 
proposed models is shown in Figure1. It is worth 
noting that to gain a more comprehensive 
understanding of the isolated impact of the fusion 
approach without any additional considerations or 
optimizations, we opted for a basic SIFT-based model 
and a straightforward CNN architecture for feature 
extraction. While we acknowledge that more complex 
CNN architectures, such as those used in (Patrick 
Helber et al., 2019) and (Dewangkoro & Arymurthy, 
2021), have the potential to further improve 
predictive performance, such complex architectures 
make it difficult to quantify the specific advantages 
gained from incorporating SIFT-based descriptors. 
The three models that we study are presented in the 
sequel.  

3.1 Model 1: CNN-Based Remote 
Sensing Image Classification 

The architectural components of the explored CNN 
model are depicted in Figure 2. The model 
incorporates two convolutional layers to capture 
essential image features. The initial convolutional 
layer operates on input images with dimensions of 
(64, 64, 3) and employs 32 filters with Rectified 
Linear Unit (ReLU) activation functions, each having 
a size of 3x3. This layer effectively extracts 
fundamental characteristics from the input data. The 
output features from the first layer are further refined 
by a second convolutional layer, consisting of 64 
filters, each with a size of 3x3. The model integrates 
two max-pooling layers for spatial dimension 
reduction. The first max-pooling layer reduces the 
spatial dimensions of the feature maps by a factor of 
two, enhancing computational efficiency. The second 
max-pooling layer further compresses the spatial 
dimensions, facilitating more abstract feature 
extraction. A flattened layer precedes the fully 
connected layers, transforming the 2D feature maps 
into a 1D vector. The network architecture comprises 
also two dense layers, with the first layer housing 128 
neurons activated by ReLU. This configuration 
allows the model to learn intricate representations 
from the data. For multi-class classification tasks, the 
final layer encompasses ten neurons, utilizing the 
SoftMax activation function to generate class 
probabilities. During training, we employ the Adam 
optimizer and a sparse categorical cross-entropy loss 
function to optimize the model. The primary 
objective is to minimize the loss and ensure accurate 
categorization through the training process. "Rather 

than training the investigated CNN model from 
scratch, we employ transfer learning and use a pre-
trained model with weights acquired from the 
ImageNet dataset (Abou Baker et al., 2022) . 

3.2 Model 2: SIFT-Based Remote 
Sensing Image Classification 

The different steps of the second studied approach are 
illustrated in Figure 3. The first step involves the 
conversion of the original satellite images into 
grayscale format, simplifying the data while retaining 
essential visual characteristics. Following this 
conversion, the SIFT algorithm is applied to identify 
key points and extract local feature descriptors. These 
SIFT descriptors represent distinctive image regions 
and are crucial for capturing unique visual patterns. 
To further streamline the feature representation and 
enable efficient classification, we adopt the Bag-of-
Visual-Words (BoVW). Here, the extracted SIFT 
descriptors are quantized into visual words, reducing 
the feature dimensionality and forming the basis for 
image representation. The quantization process is 
facilitated by k-means clustering, which groups 
similar descriptors into clusters, and the cluster 
centers become the visual words. Finally, we employ 
a Support Vector Machine (SVM) model to train on 
the BoVW-represented satellite images.  

3.3 Model 3: Fusion of SIFT and CNN 
Features 

This paper introduces a novel hybrid model that 
synergizes the strengths of CNN-learned features 
with SIFT descriptors to enhance remote sensing 
image classification (Figure 4). The proposed 
approach harnesses the power of the CNN to extract 
high-level, semantically rich features, providing a 
global understanding of the image. It also employs the 
SIFT detector (Open CV SIFT) to capture fine-
grained, local details, benefiting from its robustness 
to various transformations (e.g. scale and rotation). 

The SIFT features are flattened and have lengths 
that are either zero-padded or truncated to 128. To 
extract deep features, we leverage a pre-trained CNN 
architecture with weights sourced from ImageNet. 
The base model is modified by excluding the final 
fully connected layers (i.e. Include top=False), 
retaining only the convolutional layers. The input 
images, which are initially of varying dimensions, are 
pre-processed and resized to meet the (224, 224, 3) 
input shape requirement of the CNN model. 

Once the SIFT and the CNN features are 
generated, a unified feature vector is produced by 
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horizontally stacking the CNN features with the 
truncated/flattened SIFT features. Each image is 
represented by this feature vector combination, which 
is a rich representation, encapsulating both global and 
local information. For the task of classification, we 
employ a straightforward Support Vector Machine 
(SVM) with a radial basis function (RBF) kernel. The 
RBF kernel's flexibility enables the model to capture 
complex decision boundaries in the feature space. As 
demonstrated in our experimental study, this synergy 
between deep learning-based features from the CNN 
a conventional computer vision characteristic from 
SIFT yields enhanced classification performance. 

 
Figure 1: Frame Work for the proposed model. 

Input   (64x64x3 Image 
Data) 

Conv2D (32) 3x3,ReLU  
MaxPooling 2x2 

Conv2D (64) 3x3, ReLU 

MaxPooling 2x2 
Flatten 

Dense (128) |  ReLU 
Dense (10)  Softmax 
  Output   (10 classes)  

Figure 2: Proposed CNN architecture for classification 
Remote sensing images. 

 
Figure 3: Proposed SIFT procedure for classification 
Remote Sensing Images. 

 
Figure 4: Proposed Hybrid CNN with SIFT models. 

4 EXPERIMENTAL STUDY 

The EuroSAT dataset (Patrick Helber et al., 2019) 
used in our experiments, is openly and freely provided 
by the Copernicus Earth observation program. The 
dataset is generated with 27,000 labeled and 
georeferenced image patches, where the size of each 
image patch is 64_64 m. To ech of the 10 classes of 
the dataset corresponds 2000 to 3000 images. The 
LULC classes in this dataset are permanent crop, 
annual crop, pastures, river, sea & lake, forest, 
herbaceous vegetation, industrial building, highway 
and residential building (Patrick Helber et al., 2019). 

In our experiments, 80% of the dataset was 
allocated for training, while the remaining instances 
were reserved for testing. The studied CNN 
architecture was implemented using Tensorflow (Yu 
et al., 2019) and Keras (Lee & Song, 2019). OpenCV 
(Culjak et al., 2012) was used for SIFT features 
generation. All methods were run using their default 
settings, and no special tuning was done.  
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Figure 5: Sample images of Eurosat dataset ( Helber et al., 
2019). 

The primary goal of our study is to bring to light the 
advantages that can be drawn from combining SIFT 
and CNN features. We then compare and contrast 
three different remote sensing classification models: 
CNN-based, SIFT-based, and a fusion approach 
combining SIFT and CNN features. Figures 6, 7, 8, 9, 
10 and 11 illustrate, respectively, the confusion 
matrix and the detailed classification report of the 
CNN-based model (Model 1), The SIFT-based model 
(Model 2) and the model based on a fusion of CNN 
and SIFT features (Model 3). Table 4.1. provides the 
overall accuracy of the different models. As shown in 
these figures and in Table 4.1, the features fusion 
approach by far outperforms the SIFT-based model 
and the CNN-based model, allowing an enhancement 
of accuracy of 64.29% and 84.10% respectively. 

Table 4.2 compares the accuracy results of our 
models with some of notable existing approaches. As 
shown in Table 4.2  our approach achieves an overall 
accuracy of 92%, and, except for the approach 
presented in (Dewangkoro & Arymurthy, 2021), it 
outperforms all other models. The "BoVW (SVM, 
SIFT, k = 500)" model, based on BoVW with SVM 
and SIFT, achieves an overall accuracy of 70%. The 
"UFL" model achieves an overall accuracy of 90%, 
demonstrating the effectiveness of unsupervised 
feature learning. The "Pyramid of Spatial Relations"( 
Chen & Tian, 2015) model reaches 89% accuracy, 
emphasizing the importance of capturing spatial 
relationships. The approach presented in 
(Dewangkoro & Arymurthy, 2021) uses different 
CNN architectures for feature extraction, namely 
VGG19, ResNet50, and InceptionV3, and achieves an 
accuracy of 94%. The approach (Dewangkoro & 
Arymurthy, 2021) inherits the advantages and 
limitations of deep neural architectures. Our approach 
achieves comparable performance to that of  

(Dewangkoro & Arymurthy, 2021) while being less 
resource-intensive and less reliant on the availability 
of massive labelled data.  

As mentioned earlier, in order to better understand 
the impact of the fusion approach in isolation, we 
implemented a basic SIFT-based model and a simple 
CNN architecture for feature extraction. However, it 
is worth noting the use in our approach of more 
sophisticated CNN architectures, such as those used 
in (Helber et al., 2019) and (Dewangkoro & 
Arymurthy, 2021), have the potential to further 
enhance predictive performance. 

 
Figure 6: Confusion Matrix for CNN model for remote 
sensing images classification. 

 
Figure 7: Precision, Recall, F1-Score for CNN model for 
remote sensing images classification. 

 
Figure 8: Precision, Recall, F1-Score for SIFT model for 
remote sensing images classification. 

 

 

 

 

[[526   2  16  13   0  15  16   0   4   3]
 [  0 577   2   0   0  21   0   0   1   5] 
 [  6   3 479  16   3   8  71  10   5   1] 
 [ 16   0  23 358   6  11  42  14  45   0] 
 [  0   0  10  41 396   0   7  38   1   0] 
 [ 15   5  20  13   0 350   8   0   9   3] 
 [ 23   0  54  33   1   9 345   2   6   0] 
 [  0   0  14   9   3   0   6 565   0   0] 
 [ 37  12  13  84   1  13   6   3 320   1] 
 [  4   4   1   1   0   3   0   0   7 586]] 

  precision  recall   f1-score    support
  0       0.84      0.88      0.86       595 
  1       0.96      0.95      0.95       606 
  2       0.76      0.80      0.78       602 
  3       0.63      0.70      0.66       515 
  4       0.97      0.80      0.88       493 
  5       0.81      0.83      0.82       423 
  6       0.69      0.73      0.71       473 
  7       0.89      0.95      0.92       597 
  8       0.80      0.65      0.72       490 
  9       0.98      0.97      0.97       606 

                     precision    recall  f1-score   support
 
          AnnualCrop       0.65      0.71      0.68       520 
              Forest       0.00      0.00      0.00        66 
HerbaceousVegetation       0.40      0.36      0.38       461 
             Highway       0.53      0.45      0.49       483 
          Industrial       0.74      0.86      0.79       527 
             Pasture       0.28      0.65      0.40       244 
       PermanentCrop       0.51      0.41      0.45       483 
         Residential       0.77      0.78      0.78       592 
               River       0.42      0.29      0.35       458 
             SeaLake       0.00      0.00      0.00        54 

A Fusion Approach for Enhanced Remote Sensing Image Classification

559



 
Figure 9: Confusion Matrix for SIFT model for remote 
sensing images classification. 

 
Figure 10: Precision, Recall, F1-Score for Hybrid CNN 
with SIFT model for remote sensing images classification. 

 
Figure 11: Confusion Matrix for Hybrid CNN with SIFT 
model for remote sensing images classification. 

Table 4.1: The results of accuracy for the proposed models.  
AccuracyModel 

0.83CNN 
0.56SIFT 
0.92Fusion of CNNs and SIFT features 

Table 4.2: The accuracy Result of the proposed model 
compare with related work. 

AccuracyModels 
0.87CNN two layer ( Helber et al., 2018)    
0.70 BoVW (SVM, SIFT, k = 500) ( Helber et 

al., 2018) 
0.90UFL (Hu et al., 2014)  
0.89 Pyramid of spatial relatons( Chen & Tian, 

2015)  
0.94  Combination of different CNNs deep 

architectures (Dewangkoro & Arymurthy, 
2021)  

0.92 Fusion of CNNs and SIFT features 
(proposed model) 

5 CONCLUSION AND FUTURE 
WORK  

5.1 Conclusion 

Remote sensing image classification is a crucial task 
for various critical applications, including land cover 
mapping, environmental monitoring, and disaster 
response. In this work we investigated the fusion of 
hand-crafted features (SIFT) and CNN-learned 
features to enhance remote sensing image 
classification.  SIFT excels in capturing local features 
essential for discerning specific image attributes. 
Meanwhile, CNNs' ability to learn global context and 
hierarchical features, enhances generalization and 
allows accurate classification of scenes with complex 
patterns. The experimental study conducted over the 
EuroSAT dataset shows that our fusion approach 
allows a substantial classification enhancement with 
regards to CNN and SIFT used separately: up to 
10.84% accuracy enhancement when compared to 
CNN and up to 64.29% enhancement when compared 
to SIFT. Although our fusion approach was 
implemented using straightforward SIFT-based 
Model and CNN architecture (to better isolate the 
benefits of features fusion), our experimental study 
shows that it achieves better or comparable results 
with notable existing remote sensing image 
classification approaches. 

5.2 Future Work 

The promising obtained results pave the way for the 
exploration of other applications and further forms of 
collaboration between classical hand-crafted features 
and modern deep features. We are currently exploring 
two research directions. The first involves remote 
sensing images enhancement during registration, 
which aims at improving the quality of remote 
sensing images to make them more amenable to 
subsequent analysis. The second focuses on the 
detection of changes in images captured within the 
same geographic areas but at different time points. 
Such change detection is crucial several critical in 
domains such as environmental monitoring. To this 
end we are currently investigating the integration of 
SIFT and Siamese networks for efficient change 
detection in remote sensing image. 
 
 
 
 
 

[[371   0  20  15   0  67  12   0  35   0]
 [  2   0   5   0   0  57   0   0   2   0] 
 [ 21   1 167  29  39 100  51  24  29   0] 
 [ 46   0  36 216  25  20  56  23  61   0] 
 [  2   0   3  15 454   0  21  30   2   0] 
 [ 25   0  28   2   0 159   6  13  11   0] 
 [ 30   0  59  39  69  35 198  28  25   0] 
 [  2   0  34  17  27  24  14 464  10   0] 
 [ 66   0  57  73   3  73  34  17 135   0] 
 [  7   0   7   1   0  26   0   1  12   0]] 

                            precision    recall  f1-score   support
 
          AnnualCrop       0.91      0.97      0.94       534 
              Forest       0.88      0.93      0.90        69 
HerbaceousVegetation       0.89      0.90      0.89       473 
             Highway       0.90      0.87      0.89       479 
          Industrial       0.93      0.96      0.94       512 
             Pasture       0.93      0.90      0.91       251 
       PermanentCrop       0.90      0.87      0.88       486 
         Residential       0.97      0.97      0.97       591 
               River       0.91      0.88      0.89       441 
             SeaLake       0.96      0.88      0.92        52 

  

[[516   1   4   1   0   2   5   0   4   1] 
 [  0  64   1   0   0   3   0   0   1   0] 
 [  2   2 425   7   5   0  20   7   5   0] 
 [ 12   2   2 418   5   4   9   2  24   1] 
 [  0   0   1   6 489   0   7   9   0   0] 
 [  5   3  11   0   0 225   4   0   3   0] 
 [ 16   0  28   6  11   1 422   1   1   0] 
 [  0   1   3   0  12   0   1 574   0   0] 
 [ 13   0   3  27   1   7   2   0 388   0] 
 [  3   0   0   0   0   1   0   0   2  46]] 
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