
Machine Learning-Based Qualitative Analysis of Human Gait Through
Video Features

Nicoletta Balletti1,2 a, Roberto Zinni3, Marco Russodivito1 b, Gennaro Laudato1 c,
Simone Scalabrino1,4 d and Rocco Oliveto1,4 e

1STAKE Lab, University of Molise, Pesche (IS), Italy
2Defense Veterans Center, Ministry of Defense, Rome, Italy

3Word Power SRL, Italy
4Datasound srl, Pesche (IS), Italy

Keywords: Gait Analysis, Motion Tracking, DGI, Machine Learning.

Abstract: Strokes constitute a major cause of both mortality and disability, carrying significant economic implications
for healthcare systems. Evaluating the quality of gait in post-stroke patients during rehabilitation is essential
for providing effective care. The Dynamic Gait Index (DGI) is a valuable metric for evaluating gait quality.
However, the assessment of such an index typically requires invasive tests or specialized sensors. In this paper,
we introduce a machine learning-based approach for estimating DGI exclusively from video recordings. Our
research encompasses a comprehensive set of experiments, including data preprocessing, feature selection,
and the application of various machine learning algorithms. To ensure the robustness of our findings, we
employ the Leave 1 Subject Out (L1SO) cross-validation method. Our results underscore the challenge of
accurately estimating DGI using solely video data. We achieved an R-squared (R2) value of only 0.19 and a
mean absolute error (MAE) of 2.2. Notably, we observed that our approach yielded notably poorer results for a
specific subset of three patients. Upon excluding this subset, the R2 increased to 0.30, and the MAE improved
to 1.9. This observation suggests that incorporating patient-specific features into the model may hold the key
to enhancing its overall accuracy.

1 INTRODUCTION

Strokes provide a significant contribution to both mor-
tality and disability. From a clinical perspective, a
stroke occurs when there is a temporary interrup-
tion in the blood supply to a part of the brain.1 In
the US, the economic burden associated with strokes
amounted to approximately $57B between 2018 and
2019.1 Most of such costs are directed toward
addressing the long-term disabilities resulting from
strokes, which affect over half of stroke survivors
aged 65 and older.1 Gait abnormalities are frequently
encountered in patients who have suffered a stroke.1
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These individuals must undergo extended rehabil-
itation before they can regain the ability to walk. Prior
research has introduced various techniques to sup-
port the rehabilitation of post-stroke patients by as-
sessing the quality of their gait. For instance, Swank
et al. (2020) employed video gait analysis to establish
the effectiveness of Robotic Exoskeletons (EKSO) in
post-stroke rehabilitation therapy. Liu et al. (2021)
used the Microsoft Kinect camera to monitor the rota-
tion and movement of the Center of Mass in multiple
planes for gait analysis.

Recently, Balletti et al. (2023) introduced GIU-
LYO, an approach designed to automatically pre-
dict the number of independent co-excited muscle
groups by analyzing patients’ video recordings of
their gait. Indeed, specific muscle groups can be iden-
tified through Surface Electromyography (S-EMG)
by analyzing the number of channels displaying EMG
activity (Routson et al., 2014). GIULYO provides this
information without the need for installing sensors on
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the human body, and it was validated using the ARRA
post-stroke database (Routson et al., 2014). Although
GIULYO’s predictions support the evaluation of reha-
bilitation sessions, they are limited to distinguishing
only three classes (2, 3, or 4 co-excited muscles).

Ideally, healthcare practitioners would benefit
from a more granular measurement of gait quality.
The literature presents a metric known as the Dy-
namic Gait Index (DGI) (Shumway-Cook and Wool-
lacott, 1995), which aims to achieve this goal. DGI
assesses gait quality by providing an index ranging
from 0 to 24, with a lower index indicating lower gait
quality and a higher risk of falls (Herdman, 2000).
Currently, DGI can only be measured through inva-
sive tests, requiring patients to perform specific ex-
ercises or wear specialized sensors (Herdman, 2000;
Shumway-Cook and Woollacott, 1995).

This work aims to automatically estimate a re-
habilitation session’s DGI using a video recording,
providing a fine-grained assessment of gait quality.
To accomplish this, we introduce a machine learn-
ing (ML)-based approach that, based on features ex-
tracted from the gait video, predicts the DGI value.
Similar to GIULYO, our approach is device-agnostic
and does not rely on specific motion tracking instru-
ments.

To validate our approach, we conducted exten-
sive experiments involving various data preprocess-
ing techniques, feature selection strategies, and ML
algorithms to develop the best DGI prediction model.
We employed a Leave 1 Subject Out (L1SO) cross-
validation approach, ensuring that no subject’s data
used for testing was included in the training set.
Our results reveal the considerable challenge of ac-
curately measuring DGI exclusively from video data.
The most successful combination of preprocessing
techniques, feature selection, and ML algorithms
achieved an R2 value of only 0.19 for the regression
problem, with a mean absolute error of 3.1. How-
ever, we observed that the model’s errors are most
pronounced in patients with slower walking speeds.
By excluding such patients from the dataset upfront,
we achieved more favorable results (R2 = 0.24) with a
mean absolute error of 2.7. This figure falls below the
minimum detectable change for DGI (Romero et al.,
2011), which is 2.9.

2 BACKGROUND AND RELATED
WORK

We first introduce the Dynamic Gait Index (DGI).
Then, we review related studies concerning DGI es-
timation and the assessment of gait quality.

2.1 Dynamic Gait Index

The Dynamic Gait Index (DGI) is a clinical assess-
ment tool originally proposed by Shumway-Cook and
Woollacott in 1995 (Shumway-Cook and Woollacott,
1995). It is widely employed by healthcare profes-
sionals, particularly physical therapists and rehabili-
tation specialists, to evaluate an individual’s dynamic
balance and walking ability. DGI is often utilized to
assess those at risk of falling, such as the elderly pop-
ulation, post-stroke patients, individuals with vestibu-
lar disorders or brain injuries, and those experiencing
balance issues resulting from non-vestibular causes
(Jonsdottir and Cattaneo, 2007; Wrisley et al., 2003).

DGI comprises a sequence of eight distinct walk-
ing tasks or conditions designed to evaluate various
facets of gait and dynamic balance. These tasks are
typically administered in a controlled setting, with
the individual being assessed receiving a performance
score for each task.

The equipment necessary for the assessment in-
cludes a box, two cones, stairs, and a 6-meter-long,
40-centimeter-wide walkway. The specific activities
involved in the DGI assessment are as follows (Herd-
man, 2000; Shumway-Cook and Woollacott, 1995):

1. Gait Level Surface. Walk a distance of approxi-
mately twenty feet (or six meters) at your normal
pace.

2. Change in Gait Speed. Begin walking at your
usual speed, then, on the assessor’s cue, walk as
fast as possible. On the cue to slow down, walk as
slowly as you can.

3. Gait with Horizontal Head Turns. Walk at your
usual pace. When instructed to “look right”, con-
tinue walking straight but turn your head to the
right. Keep your gaze to the right until instructed
to “look left”, at which point you should turn your
head left. When told to “look straight”, return
your gaze to the center.

4. Gait with Vertical Head Turns. Tip your head
up and maintain your upward gaze until instructed
to “look down”. When prompted to look down,
continue walking straight while lowering your
head. Upon receiving the cue to “look straight”,
return your head to a neutral position while con-
tinuing to walk.

5. Gait and Pivot Turn. Begin walking at your
usual pace. Upon the cue to “turn and stop”,
swiftly pivot to face the opposite direction and
come to a stop.

6. Step Over Obstacle. Walk at your normal speed.
When you encounter a shoebox, step over it di-
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rectly, rather than circumventing it, and continue
walking.

7. Step Around Obstacles. Begin walking at your
normal pace. When you reach the first cone, ap-
proximately two meters away, circumnavigate it
on the right side. As you approach the second
cone, located approximately six meters beyond
the first, navigate around it on the left side.

8. Steps. Ascend the stairs as you would at home,
using the railing if necessary. Upon reaching the
top, pivot and descend the stairs.
Each task is assessed by a specialist on a scale

ranging from a minimum score of 0, indicating se-
vere impairment, to a maximum of 3, signifying nor-
mal function. Consequently, the overall DGI score
can range from 0 to 24 (Shumway-Cook and Woolla-
cott, 1995).

The DGI score serves as an indicator of a patient’s
propensity for falls. An index exceeding 22 character-
izes individuals as safe ambulators, whereas an index
below 20 denotes an increased risk of falls (Herdman,
2000; Whitney et al., 2000).

2.2 Related Work

We direct our focus towards gait analysis in individ-
uals who have undergone a stroke, with a brief refer-
ence to works concerning DGI reliability.

Nadeau et al. (2013) conducted a comprehensive
study that delved into the gait analysis process, shed-
ding light on key gait parameters and deviations ob-
served in stroke survivors. Their investigation re-
volved around the effects of gait speed and ground
response forces (GRFs). Notable findings included
reduced walking speed, an unsteady gait pattern, and
diminished peak moments and powers on the affected
side as common traits in post-stroke hemiparetic gait.
Remarkably, even when two hemiparetic individuals
exhibited similar walking speeds, their gait patterns
could exhibit significant disparities. This underscores
the critical role of GRFs in assessing gait abnormali-
ties among stroke patients, among other gait charac-
teristics.

Ferrarin et al. (2015) conducted an observational
study aimed at evaluating how gait analysis influ-
ences therapeutic decision-making, be it surgical or
non-surgical, for adult patients with chronic walk-
ing difficulties resulting from a stroke. Their re-
search unveiled substantial differences in recommen-
dations based solely on clinical examination and vi-
sual gait observation compared to those supplemented
with gait analysis data. This study underscored the
profound impact of gait analysis on treatment plan-
ning for chronic post-stroke patients with locomotor

dysfunction, endorsing both surgical and non-surgical
decision-making processes.

Li et al. (2019) employed dynamic time warp-
ing (DTW), sample entropy, and empirical mode
decomposition-based stability index to extract fea-
tures associated with symmetry, regularity, and sta-
bility in post-stroke hemiparetic gaits. Their study
encompassed 15 stroke survivors and 15 healthy con-
trol subjects, with findings strongly supporting the ef-
ficacy of the identified features in distinguishing post-
stroke hemiparetic patients from their healthy coun-
terparts.

Eichler et al. (2022) proposed an approach to au-
tomate the BBS fall risk assessment test. Subjects
are required to execute the BBS tasks while a com-
puter vision system captures poses and motion. Sub-
sequently, a multi-level machine learning model pre-
dicts the overall score. Results confirm the feasibil-
ity of predicting gait assessment indexes through non-
invasive video features.

Liuzzi et al. (2023) introduced machine learning
techniques for predicting mDGI, suggesting an in-
sightful comparison with its MDC (Minimally De-
tectable Change). Given that this research targets the
unmodified DGI, Romero et al. (2011) is used as a
reference, as it established an MDC95% of 2.9 points
for DGI.

Balletti et al. (2023) presented GIULYO, an ap-
proach designed to automatically predict the number
of co-excited muscles by visually analyzing patients’
gait. GIULYO offers an estimation of the number of
co-excited muscles during walking, categorizing gait
into three classes (2, 3, or 4 co-excited muscles). As
the authors note, the predictions furnished by this ap-
proach have the potential to support the evaluation of
rehabilitation sessions.

While the latter work lays a solid foundation for
assisting practitioners in the automatic evaluation of
patients’ gait, it remains a coarse-grained approach.
In this study, we strive to bridge this gap by the auto-
matic prediction of the DGI, a more refined measure
of gait quality.

3 ESTIMATING THE QUALITY
OF WALKING

Our primary design objective is to develop a system
capable of assessing the quality of a patient’s gait
without the need for specialized staff in the least inva-
sive manner. To achieve this, we employ a computer
vision markerless device with the capability to detect
the positions of subject joints and bone rotations in
real-time. Consequently, the input to our approach is
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Table 1: The features used to estimate the quality of walking
in our ML-based approach.

Aspect Aggregations

St
ri

de

Walking speed Mean, SD
Number of strides Mean, SD
Paretic step ratio over all steps Mean, SD
Paretic propulsion Mean, SD
Paretic stride length Mean, SD
Non-paretic stride length Mean, SD
Paretic step length Mean, SD
Non-paretic step length Mean, SD
Norm. foot height for paretic side Mean, SD
Norm. foot height for non-paretic side Mean, SD

W
al

ki
ng

C
yc

le Left single support percentage //
Right single support percentage //
Left step length Mean
Right step length Mean
Left stride length Mean
Right stride length Mean

L
eg

s+
Fe

et

Paretic leg sagittal-plane angle Sum, Min, Max, Mean, SD
Non-paretic leg sagittal-plane angle Sum, Min, Max, Mean, SD
Paretic leg frontal-plane angle Sum, Min, Max, Mean, SD
Non-paretic leg frontal-plane angle Sum, Min, Max, Mean, SD
Paretic leg length Sum, Min, Max, Mean, SD
Non-paretic leg length Sum, Min, Max, Mean, SD
Normalized paretic leg length Sum, Min, Max, Mean, SD
Normalized non-paretic leg length Sum, Min, Max, Mean, SD
Paretic leg vertical-length Sum, Min, Max, Mean, SD
Non-paretic leg vertical-length Sum, Min, Max, Mean, SD
Normalized paretic leg vertical-length Sum, Min, Max, Mean, SD
Normalized non-paretic leg vertical-length Sum, Min, Max, Mean, SD
Normalized paretic foot height Sum, Min, Max, Mean, SD
Normalized non-paretic foot height Sum, Min, Max, Mean, SD
Non-paretic leg angle Sum, Min, Max, Mean, SD
Paretic foot height Sum, Min, Max, Mean, SD
Non-paretic foot height Sum, Min, Max, Mean, SD

D
em

og
r. Age //

Gender //
Affected side //
Trial condition //

a video recording of the patient’s gait, while the out-
put is a numerical estimation of the DGI.

Irrespective of the selected acquisition device, our
system comprises two key modules: a recorder mod-
ule responsible for translating gait data into a stan-
dardized format, and a calculator module designed to
extract features related to the acquired video. Once
acquired the gait data, we perfom a video analysis
procedure aiming to obtain a feature vector that rep-
resents a single gait session for a given patient.

The features extracted capture four distinct as-
pects of the gait: stride-related, walking cycle-
related, leg and feet-related, and demographics. In
the following we provide a detailed description of
each of these features, which are also succinctly sum-
marized in Table 1.

Stride-Related Aspects. These aspects focuses
on stride measurements and timing data. They of-
fer insight into the impact of pathology on the sub-
ject’s stride, which can be instrumental in assessing
overall gait quality. For patients with a paretic side
and a non-paretic side, we consider the following as-
pects: (i) walking speed, (ii) number of strides, where
a stride represents a complete gait cycle consisting of
two steps, starting with one foot making contact with

the ground and ending when the same foot repeats this
contact, (iii) paretic step ratio calculated as the aver-
age of (paretic step length) / (stride length) over all
strides in the trial, (iv) paretic propulsion, (v) paretic
and non-paretic stride length, (vi) paretic and non-
paretic step length, and (vii) normalized foot height
for both paretic and non-paretic sides. Mean and stan-
dard deviation are computed for these aspects to ex-
tract relevant features.

Walking Cycle-Related Aspects. This aspects
comprise metrics derived from the walking cycle,
which can help in assessing disparities between the
paretic and non-paretic sides, contributing to the esti-
mation of DGI. These aspects include: (i) single sup-
port percentages, representing the (total time in which
the subject is supported by a single leg on the chosen
side) / (total trial time) for both sides, and (ii) step and
stride length averages across the entire trial.

Legs and Feet-Related Aspects. The third set
of aspects encompasses measurements related to the
legs and feet, both paretic and non-paretic, providing
insights into how this gait differs from a normal one
in terms of movement. Specific aspects include: (i)
sagittal plane leg angle, measured from pelvic Cen-
ter Of Mass (COM) to foot COM, (ii) frontal plane
leg angle, measured from pelvic COM to foot COM,
(iii) leg length, defined as the distance between pelvis
COM and foot COM, (iv) normalized leg length, ex-
pressed as (leg length) / (height of pelvis COM from
the floor), (v) vertical-only leg length, representing
the difference between the vertical components of
pelvis COM and foot COM, (vi) normalized vertical
length, defined as (vertical-only length) / (height of
pelvis COM), and (vii) normalized foot height, calcu-
lated as (foot COM height) / (pelvis COM height). For
each of these seven aspects, measured for both sides,
we compute the sum, maximum, minimum, mean,
and standard deviation.

Demographic and Clinical Aspects. To enhance
the effectiveness of the evaluation system, we include
demographic information known to the patient. This
data, collected alongside gait analysis, consists of the
patient’s age, gender, the affected side expressed as
1/2 for left/right, and the trial condition, represented
by an integer from 0 to 4, addressing one of the five
trial conditions described in Section 4.

The above features are then used to estimate the
DGI. Given the numerical nature of DGI, estimating it
naturally falls under the category of regression prob-
lems. Thus, we employ machine learning techniques
to train a regression model capable of estimating DGI.
Further details regarding the algorithms used are pre-
sented in our description of the experimental design
(Section 4).
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4 EMPIRICAL STUDY DESIGN

The goal of our empirical study is to understand to
what extent our approach can be used to automati-
cally assess DGI. Our study is guided by the follow-
ing research question: Can DGI be estimated through
machine learning approaches trained only on video
recordings of human gait?

The answer to this research question is crucial in
determining whether video data alone is sufficient for
DGI estimation.

4.1 Context Selection

For our study, we utilized the ARRA Post-Stroke
Database (Kautz, 2018; Routson et al., 2014). This
database originates from a study focused on eluci-
dating the cause-and-effect relationship between neu-
ral output and the level of walking functionality in
post-stroke patients. It encompasses a wide range of
data, including kinematics, kinetics (captured using
split belt treadmill force plates), and electromyogra-
phy (EMG) data collected from 27 post-stroke indi-
viduals (who were at least 6 months post-stroke) and
17 healthy control participants.

The dataset entails multiple gait trials performed
by each subject under five distinct conditions:

• Self-Selected (SS) walking pace: The participant’s
usual walking speed.

• Fastest Comfortable (FC): The participant’s max-
imum comfortable walking speed.

• High Step (HS): Participants were instructed to
take the highest possible steps while maintaining
their self-selected pace.

• Quick step (QS): Subjects walked at their self-
selected speed, taking the quickest possible steps.

• Long step (LS): While retaining their self-selected
speed, participants were instructed to take the
longest possible steps.

Data collection involved several measurement
techniques and equipment, including a 12-camera
motion capture system from PhaseSpace, Inc., which
employed active infrared markers placed on anatom-
ical landmarks to measure body movements. Ground
reaction forces and moments in three dimensions
were measured using a split-belt treadmill from FIT,
Bertec, Inc. Electromyography (EMG) data was ac-
quired using the MA400, a 16-channel EMG system
from Motion Lab Systems.

Each participant’s gait data consisted of multiple
trials, ensuring data diversity and representativeness.
The dataset includes raw measurements required to

derive the features utilized in our approach. Addi-
tionally, it contains EMG modules, a feature indi-
cating the number of independent co-excited muscle
groups measured during the trial, which we do not
use due to its requirement for invasive sensors. Simi-
larly, clinical assessments, such as the 6 Minutes Walk
Test (6MWT), the Berg Balance Scale (BBS), and the
Fugl-Meyer (FM) Score, were not used, as they ne-
cessitate specialized medical staff and would render
the estimation of DGI redundant.

Furthermore, the dataset provides the previously
assessed Dynamic Gait Index (DGI) for each partic-
ipant. DGI scores in the patient population ranged
from 8 to 22, though, as explained earlier, the theoret-
ical DGI range is 0 to 24.

4.2 Experimental Procedure

The dataset was pre-processed to create a single row
for each trial instance. This involved collecting de-
mographic data (gender, age, affected side, trial con-
dition, and treadmill speed, which serves as a proxy
for walking speed) directly from the dataset. Sub-
sequently, stride measurements, timing information,
and stride-related metrics were included for both the
paretic and non-paretic sides. For each bone type,
the mean and standard deviation were calculated from
the angles measured across the acquisition frames to
quantify these metrics.

The resulting dataset, derived from the ARRA
Post-Stroke Database (Kautz, 2018; Routson et al.,
2014), comprises 322 instances and 130 features.

We employed several machine learning algo-
rithms to train a regression model for DGI estima-
tion, including RandomForestRegressor (Liu et al.,
2012), MLPRegressorg, LogisticRegression, Lin-
earSVR (Boser et al., 1992), SVR (Gunn et al., 1998),
KNeighborsRegressor (Kramer, 2011), SGDRegres-
sor (Ketkar and Ketkar, 2017), DecisionTreeRegres-
sor (Loh, 2011), BaggingRegressor (Breiman, 1996),
GradientBoostingRegressor (Friedman, 2001), Ad-
aBoostRegressor (Freund and Schapire, 1997), Pas-
siveAggressiveRegressor (Crammer et al., 2006), Ex-
traTreesRegressor (Geurts et al., 2006).

In terms of pre-processing, we utilized two tech-
niques: automatic feature selection to exclude un-
necessary features and make the problem more
manageable for the machine learning algorithm,
and correlation-based feature selection to eliminate
highly correlated features that might not significantly
contribute to the estimation. We tested various com-
binations of these pre-processing techniques to opti-
mize performance.

For automatic feature selection, we employed
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a wrapper approach based on different regression
techniques, including LogisticRegression, Random-
ForestRegressor (Liu et al., 2012), AdaBoostRe-
gressor (Freund and Schapire, 1997), SGDRegres-
sor (Ketkar and Ketkar, 2017), PassiveAggressiveRe-
gressor (Crammer et al., 2006), ExtraTreesRegressor
(Geurts et al., 2006), DecisionTreeRegressor (Loh,
2011), GradientBoostingRegressor (Friedman, 2001).
Instead, in correlation-based feature selection, fea-
tures with a correlation coefficient exceeding 0.90
were discarded. We considered and combined all pos-
sible pre-processing options for the two steps (au-
tomatic feature selection and correlation-based fea-
ture selection) with the machine learning techniques
chosen for testing. This resulted in testing 208 con-
figurations (8 for automatic feature selection × 2
for correlation-based feature selection × 13 machine
learning techniques). To prevent overfitting and en-
sure that the model did not learn from data already ob-
served for the specific patient on which it was tested,
we employed a Leave-1-Person Out (L1PO) cross-
validation. This approach partitioned the data into
folds, with one fold assigned to each patient. Sub-
sequently, we used these folds one by one as the test
set, while the union of the remaining folds served as
the training set. This method ensured that an individ-
ual patient’s data contributed to the training dataset
n-1 times and to the test dataset once.

To answer our research question, we initiated our
analysis by evaluating the goodness of fit for our mod-
els. To accomplish this, we employed the R2 metric,
which falls within the range of 0 to 1. A higher R2

value indicates a better fit of the model to the data.
Furthermore, we utilized two error metrics for as-
sessing accuracy, namely MAE (Mean Absolute Er-
ror) and MSE (Mean Squared Error). MSE penalizes
larger errors, offering a more precise estimate of the
cost of errors, while MAE provides a realistic assess-
ment of the error range in our approach for DGI as-
sessment. Lower values in both metrics correspond
to better performance. Lastly, we employed the ex-
plained variance metric, which indicates the extent to
which the variance in the response variable can be ac-
counted for by the features in our model. A higher
explained variance value reflects a greater ability to
explain data variation and implies a higher level of
predictive quality.

5 EMPIRICAL STUDY RESULTS

We report the results achieved by the top four config-
urations in terms of the goodness of fit (R2) in Table 2.
Subsequently, we detail their respective performance

Figure 1: MAE and MSE values for the first configuration.

Table 2: The four best machine learning configurations.

Conf. Algo. Auto. Sel. Corr. Sel.

#1 tree gbc False
#2 tree tree False
#3 log gbc False
#4 tree adaboost False

outcomes in Table 3.
The DecisionTreeRegressor model exhibited the

highest R2 and explained variance values. Notably,
the top four configurations employed various auto-
matic selection algorithms, while correlation-based
selection was not utilized in any of these cases.

However, it is evident that the results are some-
what underwhelming in terms of R2. The best model
achieved only a R2 of 0.19, signifying that even the
most effective model cannot adequately fit the data.
This model produced a Mean Absolute Error (MAE)
of 3.11, indicating that the model’s estimates are ex-
pected to deviate by an average of 3 DGI points in
either direction.

Upon analyzing the selected features in the top
four models, we observed that all walking cycle fea-
tures and a subset of demographic features were con-
sistently included. Additionally, all stride-related fea-
tures were retained. In contrast, most features related
to legs and feet were discarded during the feature se-
lection process. To validate this observation and fur-
ther explore feature importance, we tested the best
configuration with each of the four feature categories
isolated. A model based on walking cycle features
achieved the highest R2 (0.19), followed by demo-
graphic features (0.11), stride-related features (0.03),
and legs-and-feet features (0.0). While raw measure-
ments from legs and feet features failed to guide ma-

Table 3: Regression results achieved by the best four ma-
chine learning configurations accoding to R2.

Conf. R2 MSE MAE Explained Variance

#1 0.19 16.04 3.11 0.96
#2 0.15 21.90 3.73 1.00
#3 0.15 17.84 3.33 0.92
#4 0.12 21.47 3.92 0.96
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chine learning in establishing a correlation between
gait and DGI, domain-specific and calculated aggre-
gations, such as walking-related features, provided a
better description of this relationship.

5.1 Discussion

We observed that the overall results of the best model
we trained are slightly underwhelming: we achieve
an R2 of 0.19 and a mean absolute error of 3.11. In
practice, this error might be low enough for some DGI
values (e.g., very high or very low), while it might be
detrimental for in-between values. We compared the
MAE we achieved with the variations observed when
different human experts measure DGI through the
standard state-of-the-art procedure. Such a variation
is also called Minimum Detectable Change (MDC).
Romero et al. (2011) computed the MDC95% for DGI
and reported that it is 2.9 (i.e., in 95% of the cases, the
error in the estimation of DGI is ±2.9). The MAE of
our approach is above such a value. Thus, on average,
the approach makes larger errors than the minimum
detectable change.

We report in Figure 1 the MAE and MSE regis-
tered during the training of the best configuration for
different patients. It can be noticed that the model
is particularly inaccurate on three subjects. We tried
to identify features common to those patients so that
we can characterize them. To do this, we used ag-
glomerative clustering (Murtagh and Legendre, 2014)
on the dataset, considering all the features selected
to train the first configuration. Specifically, we con-
figured the algorithm to identify five clusters using
the Euclidean linkage metric with ward linkage cri-
terion, which minimizes the variance of the clusters
being merged. We found that the smallest cluster
containing outlier patients is composed of 9 subjects.
To understand which features are most responsible
for this cluster aggregation, we used the silhouette
score(Shahapure and Nicholas, 2020), a metric that
provides a measure of how similar a data entry is to its
own cluster compared to other clusters. Specifically,
we first calculated the average silouette score for the
outliers cluster. Then, for each feature, we created
a copy of the dataset replacing the selected feature
with its mean. In this way, we nullify the feature vari-
ance and its clustering power. For each dataset copy
we computed the cluster average silouette score again
and compared each score with the original one. The
worse the new score, the more important the feature
is for clustering.

Through this procedure, we discovered that the
most characterizing feature for this cluster is Right
single support percentage. Besides, we found that this

cluster has a single-support-percentage difference,
defined as the absolute value of the difference be-
tween left and right single support percentages, higher
than the other data points (11.56 percentage points
versus 5.3 percentage points on average for all the
other instances). This analysis led us to conclude that
this cluster contains trials with more impaired gaits
which are assigned with better-ranged DGI values.
In particular, we compared single-support-percentage
differences with the original DGI value assigned to
the trials and noticed higher ratios for cluster data
(0.22) than for the remaining part of the dataset
(0.08), which suggests how the outliers cluster is char-
acterized by a less inverse-proportionality between
gait impairment and DGI values. Then, we performed
an experiment in which we excluded the cluster that
contains the outlier patients to understand what theo-
retical improvements could be achieved. Overall, we
obtained better results (R2 = 0.24, explained variance
= 1.0). The error also significantly decreased (MSE =
13.18, MAE = 2.70). It is also worth noting that this
new experiment allowed the model to achieve a MAE
score below the MDC95% value.

6 CONCLUSION

We developed a machine learning-based approach
for automatically estimating the Dynamic Gait In-
dex (DGI) for post-stroke patients during rehabili-
tation sessions using video recordings. The results
of our study showed that our approach performed
poorly, particularly on patients who walked very
slowly. When we removed these subjects from the
analysis, the overall R2 improved to 0.24, and the
MAE reduced to 2.7, which falls below the minimum
detectable change. In summary, our study demon-
strates the feasibility of using video data for DGI es-
timation in post-stroke patients during rehabilitation.
While challenges in achieving high precision persist,
further research should focus on finding features that
allow for more accurate DGI measurement, especially
for patients who walk at slower speeds.
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