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Abstract: The significant advancements in electroencephalography (EEG)-driven technology have led to its widespread 
use in assessing stroke-related conditions. Over the years, various studies have explored the potential of EEG 
oscillatory patterns in neurological research, with several of them giving limited attention to the signal 
processing techniques employed, precluding a proper understanding of EEG oscillatory patterns under various 
conditions. To resolve this issue, we systematically investigated how artifacts impact EEG oscillatory rhythms 
associated with upper limb movement-related tasks. Thus, the EEG signals of motor tasks were acquired non-
invasively from healthy subjects and processed using automated artifact-attenuation methods. Subsequently, 
the Mu and Beta bands in the brain's motor cortex region were extracted through time-frequency analysis and 
analyzed using relevant metrics. Experimental results revealed that artifacts in EEG would substantially 
influence the brain activation strength and response during motor tasks. Notably, signals preprocessed with 
Reduction of Electroencephalographic Artifacts based on Multi Wiener Filter and Enhanced Wavelet 
Independent Component Analysis (RELAX_MWF_wICA) showed better brain responses and high task 
classification performance compared to other methods and the raw signal across motor tasks. This study's 
findings revealed that the choice of signal processing technique is crucial, as it would influence its analysis 
and interpretation, thus highlighting the need for careful consideration and usage.  

1 INTRODUCTION 

The study of neural oscillations, driven by the 
coordinated activity of numerous neurons and 
assessed through techniques such as functional 
magnetic resonance imaging (fMRI), 
electroencephalography (EEG), and magneto-
encephalography (MEG), among others, has been a 
prominent and extensively explored area in 
neurological research (Ward, 2015; Gui et al., 2010; 
Jee, 2021).  

Notable advances in EEG technology have led to 
its wide usage in assessing stroke-related brain 
function.  EEG is a non-invasive and safe method 
with an excellent temporal resolution that offers 
valuable insights into brain activity through direct 
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measurement of electrical potentials from the 
underlying neural tissue (Wu et al., 2016; Lin et al., 
2017; Asogbon et al., 2021; Anapama et al., 2012). 
EEG signals represent recurring patterns resulting 
from the coordinated activity of neurons firing in 
synchrony, and they can be observed across a range 
of frequencies (including delta, theta, alpha, beta, and 
gamma bands). Brain activities during upper limb 
movements in these bands are affected by stroke 
(Maura et al., 2023; Bartur et al., 2019). Therefore, 
they are considered promising predictors that can 
offer valuable insights into stroke patients’ status, 
helping clinicians identify distinct biological 
subgroups and determine which treatment approach 
might be more appropriate and effective (Cassidy et 
al., 2019).  
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For instance, in contemporary stroke therapeutic 
treatment, EEG oscillations are utilized as predictive 
indicators, incorporated with clinical intervention 
techniques. This integration further enhances 
diagnosis, treatment, and recovery in stroke patients 
with motor impairments (Keser et al., 2022). In 2019, 
Cassidy et al. investigated EEG oscillations as a 
potential predictor of injury and motor function 
recovery in stroke survivors. By experimenting with 
EEG recordings from both healthy controls and stroke 
patients, the study examined the connection between 
EEG oscillations and injury and motor condition, 
utilizing delta and high-beta frequency bands. The 
study's outcome revealed that delta-frequency 
oscillations reflect both injury and motor function 
recovery after a stroke.  

In addition, Thibaut et al. (2017) found, in their 
work, that brain activity in both lesioned and 
unlesioned hemispheres of stroke patients, as 
measured by EEG, provides new insights into the 
relationship between high-frequency rhythms and 
motor impairment. Their findings highlight the role 
of an excess of beta activity in the affected central 
cortical region, contributing to poor motor function 
during stroke recovery. 

A research study conducted by López-Larraz et al. 
(2018) emphasized the significance of employing 
suitable techniques to eliminate artifacts in EEG 
recordings of stroke patients. The study aimed to 
uncover the true neural activity by eliminating 
unwanted interference. The findings revealed that 
during motor tasks, EEG-cortical activation is 
heightened, and the presence of artifacts can 
introduce an overly optimistic bias in the performance 
evaluation of brain-machine interfaces (BMIs). 

Unarguably, several works have conducted 
exploratory investigations using EEG oscillatory 
rhythms to predict motor function recovery in stroke 
patients. Considering that the EEG signal is 
susceptible to contamination from various artifacts, 
these disturbances can significantly influence the 
resulting signal, potentially leading to 
misinterpretation if a robust cleaning method is not 
implemented at the signal processing stage.    

Unfortunately, relatively little attention has been 
directed towards the methodologies employed for 
processing EEG oscillations in relation to upper limb 
motor tasks, representing a fundamental drawback in 
the field. 

In addressing this concern, we systematically 
investigated the influence of artifacts on cortical 
activation and the recognition of motor tasks using 
EEG-based neural oscillations, with a specific focus 
on the Mu (μ) and Beta (β) bands. The study involved 

the analysis of non-invasively collected EEG signals 
from healthy individuals participating in four distinct 
movement execution (ME) tasks.  

These signals were individually processed using 
five automated data-driven methods capable of 
removing either single or multiple artifacts. These 
methods were selected from widely used EEG artifact 
attenuation techniques based on performance criteria 
evident in existing works.  

The ICA decomposition method is applied to the 
processed signal, and an automated independent 
component (IC) classification method was used to 
detect or flag artefactual ICs based on specific 
thresholding parameters. After that, the signal 
segment that is time-locked to a specific event was 
epoched and analysed using time-frequency analysis.   

2 MATERIALS AND METHODS 

2.1 Participants Information 

In this study, 20 healthy subjects volunteered to 
participate in the experiment. Specifically, right hand 
dominated individuals including male and female 
aged between 20 and 35 years were recruited. Prior to 
the experiment, all volunteers were briefed on the 
study objective and the experimental procedure. 
Subsequently, they all agreed and gave written 
consent for the publication of their data. The 
Institutional Review Board of Shenzhen Institutes of 
Advanced Technology, Chinese Academy of 
Sciences, approved the recruitment and experimental 
process.  

2.2 Equipment Setup and Data 
Collection 

The experiment was conducted at the Shenzhen 
Institute of Advanced Technology, Chinese Academy 
of Sciences. The EEG signals were acquired from the 
subjects using a 64-channel gel-based AgCl electrode 
cap combined with a Neuroscan acquisition system. 
The EEG cap was positioned on each of the 
volunteer’s head following international 10–20 
electrode placement configuration. The ground 
electrode was positioned at AFz and referenced to 
CPz during signal recording. All electrode channels 
were sampled at 1000Hz and based on the volunteer’s 
tolerance level, the impedance varies between 5-8kΩ.  

Before commencing the experiment, the subjects 
were trained on the experimental procedure and 
instructed on how to perform the ME tasks. The ME 
tasks, including key grip (KGME), power grip 
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(PGME), wrist extension (WEME), and wrist flexion 
(WFME), shown in Figure 1, were performed by each 
subject.  The subjects were instructed to sit on a 
comfortable high-back chair and watch a visual 
display unit (VDU) placed 1m in front of them. To 
ensure the tasks were performed correctly, pre-
recorded video containing an active (say wrist 
extension) and non-active task (rest) was developed. 
The VDU was used to display the video of each task 
to guide them throughout the experiment. Each active 
task (ME) was performed for a duration of 5s, 
followed by 5s of non-active task (rest) to mitigate 
fatigue. In total, participants completed two 
consecutive sessions, each comprising 10 active tasks 
and 10 non-active tasks. 

 
Figure 1:  A representation of a participant during the motor 
execution tasks which includes key grip , power grip ,wrist 
extension and wrist flexion . 

2.3 Data Processing 

The signal recorded for each participant underwent 
offline processing and analysis utilizing the EEGLAB 
(Delorme and Makeig 2004) and MATLAB (The 
MathWorks Inc. 2019) toolkits. Towards 
understanding the relevance of artifacts on EEG 
oscillatory patterns five popularly used automatic 

data-driven EEG artifact attenuation methods were 
applied to the recorded signals. The procedure for the 
signal processing is described as follows: 
1. Utilizing EEGLAB, each of the ME tasks of the 

recorded signals trials/session were merged. 
Subsequently, the signals were filtered using a 
passband edge frequency of 1Hz and 30Hz. The 
1Hz signifies the upper limit of the lower 
frequency range, and 30Hz represents the lower 
limit of the higher frequency range that can pass 
through the filter. 

2. Afterward, the following automated EEG 
artifacts elimination methods were individually 
applied to the filtered signal: 
(a) Independent Component Analysis (ICA) 

based Extended Information-maximization 
(INFOMAX) (Jutten & Herault, 1991; 
Comon, 1994). 

(b) Artifact Subspace Reconstruction (ASR) 
(Bloniasz, 2022; Chang et al., 2019, blum et 
al., 2019). 

(c) ICA based Automated Artifact Removal 
(CCACCA) (Gómez-Herrero et al., 2006; 
De Clercq et al., 2006). 

(d) Reduction of Electroencephalographic 
Artifacts based on Multi Wiener Filter and 
Enhanced Wavelet ICA 
(RELAX_MWF_wICA) (Bailey et al., 
2022; Somers et al., 2018; Castellanos et al., 
2006). 

(e) Reduction of Electroencephalographic 
Artifacts based on Multi Wiener Filter 
(RELAX_MWF) (Bailey et al., 2022; 
Somers et al., 2018). 

Importantly, the single and multiple automated 
artifact reduction methods were chosen from 
commonly used EEG artifact removal techniques 
based on their superior performance. The detail 
description of each method can found in the provided 
references above.   
3. Next, ICs of the individually processed signals 

were computed using the ICA decomposition 
method. 

4. The IC_Label, an accurate and computationally 
efficient classifier compared to other commonly 
used automated IC component classification 
method (Pion-Tonachini et al., 2019), was 
applied to detect or flag artefactual ICs based on 
thresholding parameters. Thereafter, the flagged 
artefactual ICs were subtracted from the 
processed signals. 

Key Grip Power Grip

Wrist Extension Wrist Flexion
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5. The resulting continuous EEG signals are 
epoched by extracting data epochs that are time-
locked to a specified ME task. 

6. In examining the task-related EEG dynamics of 
the signals, each task was epoched, choosing a 
window from -1s to 5s.  

7. The epoched datasets are saved for time-
frequency analysis and other analyses in 
MATLAB using a custom-built script. 

It is worth stating that the signal processing steps 
presented above were performed on each subject’s 
EEG recording.  

2.4 Feature Extraction and Task 
Decoding 

In gaining insights into how the automated methods 
for reducing artifacts affect brain activation strength, 
the z- The 𝜇 and 𝛽 oscillatory pattern in the brain's 
motor cortex region during ME tasks were 
considered. As demonstrated in existing works, these 
bands were selected based on their modulation 
characteristics during movement. In addition, 
alterations in these bands during ME tasks have been 
found to correspond with motor impairment in stroke 
patients. (Bartur et al., 2019; Leonardi et al., 2022). 

Apply a time-frequency analysis-based approach, 
the 𝜇 and 𝛽 bands in the range of 10-14Hz and 16-
26Hz were extracted from the cleaned/processed 
signal from the 18 electrodes at the motor cortex 
region (excluding the midline electrodes). 

The short-time Fourier transform analysis was 
performed on each processed signal within the 
designated frequency bands (μ and β). Following the 
time-frequency decomposition, the data were z-
scored (eqn. 1). A statistical comparison of the z-
scored power in both frequency bands during rest and 
movement task was conducted across all EEG 
channels using the Wilcoxon rank-sum test, and the 
results were subsequently topographically mapped. In 
cases where no significant difference was observed 
between rest and movement for a channel, the value 
was set to 0.   𝑋^ =  𝑋 − 𝜇𝜎  (1)

where X ̂ is the Z-scored signal, X denotes the 
processed signal, μ and σ is the mean and standard 
deviation of the signal during rest time for each trial. 

For the motor task recognition, the preprocessed 
EEG signals were divided into smaller windows using 
a sliding segmentation approach. Subsequently, a 
feature extraction method based on wavelet analysis 

was employed to extract pertinent features from each 
segment. Each resulting feature matrix was used to 
construct individual machine-learning models, 
including Linear Discriminant Analysis (LDA), k-
nearest Neighbors (kNN), and Random Forest (RF).  

A five-fold cross-validation technique was 
applied to partition the extracted feature matrices into 
training and testing datasets to ensure optimal data 
utilization. The five-fold cross-validation involves 
randomly dividing the entire dataset into five subsets, 
and this process is repeated five times. During each 
iteration, the model is trained on four of the folds, 
while the remaining one is used for testing the model.  

The performances of the models were assessed 
using classification accuracy (CA; eqn. 2), positive 
predictive value (PPV; eqn. 3), negative predictive 
value (NPV; eqn. 4), and false positive rate (FPR; 
eqn. 5). PPV is the percentage chance that a positive 
result is a true positive. NPV is the percentage chance 
that a negative result is a true negative. The FPR 
measures the proportion of negative instances that are 
inaccurately identified as positive instances. 

𝐶𝐴௔௩௘ = ∑ ቀ 𝑇𝑃௜ + 𝑇𝑁௜𝑇𝑃௜ + 𝐹𝑁௜ + 𝐹𝑃௜ + 𝑇𝑁௜ቁே௜ୀଵ 𝑁 (2)

𝑃𝑃𝑉௔௩௘ = ෍ 𝑇𝑃௜𝑇𝑃௜ + 𝐹𝑃௜ே௜ୀଵ  (3)

𝑁𝑃𝑉௔௩௘ = ෍ 𝑇𝑁௜𝑇𝑁௜ + 𝐹𝑁௜ே௜ୀଵ  (4) 

𝐹𝑃𝑅௔௩௘ = ෍ 𝐹𝑃௜𝐹𝑃௜ + 𝑇𝑁௜ே௜ୀଵ  (5)

where N denotes the number of ME classes,  𝑇𝑃௜: true 
positive,  𝐹𝑃௜: false positive, 𝐹𝑁௜: false positive, and  𝑇𝑁௜: true negative. 

The Friedman test was employed to check the 
statistically significant effect between the 
preprocessed signals with the artifact attenuation 
methods and the original EEG signal recordings. 

3 RESULTS 

3.1 Analysis of Cortical Activation via 
Z-Score Power 

Figure 2a-b depicts the average z-score results for the 
μ and β bands during motor execution (ME) across all 
participants. In the figures, each color bar represents 
the raw signal and different artifact reduction 
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methods, with the z-score power varying for all 
methods task by task. 

 

Figure 2: Average z-score power for the (a) μ and (b) β 
frequencies band across all participants. 

Generally, the z-score value is expected to increase 
(more negative) after artifacts are eliminated from the 
signals. A high negative z-score value indicates a 
stronger brain signal or activation and vice-versa. 
Through careful examination, the ASR-based signal 
obtained increased z-score value for all tasks 
compared to the raw data in both bands. 

Similarly, RELAX_MWF_wICA and 
RELAX_MWF methods achieved better z-scores 
than others for all tasks except for KGME. However, 
the CCACCA method recorded the lowest z-score 
value, followed by INFOMAX. The performance of 
INFOMAX and CCACCA methods may be due to 
removing more brain signals during pre-processing. It 
could also be because of their inability to remove 
other artifacts unrelated to ocular or muscular 
artifacts.     Across all tasks and bands, the 
RELAX_MWF_wICA and ASR methods recorded 
consistently higher average z-score values. At the 
same time, some artifact removal methods showed an 
increment in the z-score values; there is no statistical 
significance between the raw data and the artifact 
attenuation methods ( 𝜇  : p = 0.1815 and β: p = 
0.6126). 

3.2 Performance Estimation Using 
FPR, PPV and NPV  

The effectiveness of the classifier's performances 
with respect to the attenuation methods was validated 
using false positive rate (FPR), positive predictive 
value (PPV), and negative predictive value (NPV) 
metrics. The average FPR, PPV, and NPV results for 
the bands across tasks are presented in Figure 3a-b 
using a scatter plot by group graph.  

 

 
Figure 3:  Performance evaluation of the methods for FPR, 
PPV and NPV (a) 𝜇 and (b) 𝛽 bands.  

Each plot consists of average (i) FPR, (ii) PPV, and 
(iii) NPV (partitioned with a black dotted line) for the 
classifiers (including LDA, KNN, and RF). 
Observing the plots for the 𝜇  and 𝛽  bands, the 
effectiveness of the raw data, and the attenuation 
methods based on the RF classifier for the metrics are 
also relatively the same compared to LDA and KNN 
classifiers. 

However, an obvious difference is noticeable 
between the artifact attenuation methods and the raw 
signal for all the metrics, especially PPV. Overall, 
RELAX_MWF_wICA based on the LDA classifier 
achieved the lowest FPR value (μ: 0.0108, β: 0.0026), 

(i)  (ii) (iii) 

RELAX_ 
MWF_wICA 

RELAX_
MWF

(a) 𝝁-band

(i) (ii) (iii) 

RELAX_ 
MWF_wICA 

RELAX_ 
MWF 

(b) 𝜷-band 
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highest PPV (μ: 0.9679, β: 0.9923), and NPV (μ: 
0.9892, β: 0.9974) values compared to other methods. 

3.3 Evaluation of Individual Task 
Decoding Performance  

This section presents the individual ME task 
recognition rate for LDA classifier because of its 
performance in section 3.2. The obtained result in the 
μ and β bands is presented in Figure 4a-b using a bar 
plot graph.  

Figure 4: Class-wise task decoding performance for (a) μ 
(b) and β bands using LDA classifier. 

The error bar on each preprocessing method 
represents the standard deviation across participants.  
From the results, the β band performs better than the 
μ band, and it is clear that all artifact removal methods 
were able to eliminate artifacts from the signals, 
yielding varying classification performance. 

Looking at the performance of each method, the 
RELAX_MWF_wICA (p-value: 0.0022 for μ and β 
bands) yielded the best average accuracies. 
Specifically, μ: 96.98 ± 8.40%, 95.91 ± 6.05%, 96.49 
± 5.00%,  and 97.27 ± 4.70% for KGME, PGME, 
WEME and WFME respectively. For the β band, 
accuracies of KGME: 99.63 ± 1.02%, PGME: 98.77 

± 2.54%, WEME: 98.97 ± 2.75% and WFME: 98.49 
± 3.46%.  

On the other hand, the least performance was 
obtained by the raw signal with mean accuracies of 
78.13 ± 10.68%, 71.62 ± 10.92%, 69.66 ± 10.60%, 
71.79 ± 10.58%, for μ band. The β band recorded 
87.14 ± 7.76%, 80.94 ± 10.79%, 79.30 ± 10.15%, 
81.68 ± 10.29% KGME, PGME, WEME and WFME 
respectively. 

 

4 DISCUSSION AND 
CONCLUSION 

In this study, we demonstrated the impact of artifacts 
on μ and β oscillations detected in the motor cortex 
region of the brain during the execution of upper limb 
motor tasks. Five automated artifact removal 
methods, including single (INFOMAX) and multiple 
artifact removal capabilities (ASR, CCACCA, 
RELAX_MWF_wICA, and RELAX_MWF), were 
individually employed to attenuate the artifacts 
present in both bands. After the Independent 
Component Analysis (ICA) decomposition of the 
processed signal, an automated IC classifier, namely 
IC_LABEL (Pion-Tonachini et al., 2019), was 
utilized to detect and flag artifact-contaminated ICs 
for removal from the processed signal. 

The impact of artifacts were considered on 
cortical activation strength and motor task 
recognition. The brain activation response was 
evaluated using z-score power. From the obtained 
results, the average z-score values across participants 
varied from task to task and between methods. Table 
1 presents the average z-score power values across 
participants and tasks for μ and β frequency bands. 
When comparing the values between the bands, the μ 
band showed better brain activation during the tasks 
for all the methods compared to the β band. The ASR  

Table 1: Average z-score power values all across 
participants and tasks for the 𝜇 and 𝛽 bands. 

Methods 𝝁 Band 𝜷 Band 
RAWDATA -0.0314 -0.0182 
INFOMAX -0.0302 -0.0197 
ASR -0.0421 -0.0238 
CCACCA -0.0244 -0.0157 

RELAX_MWF_wICA -0.0370 -0.0231 

RELAX_MWF -0.0353 -0.0202 
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method exhibited the highest z-score values in both 
bands, followed by RELAX_MWF_wICA. 
CCACCA recorded the least z-score value compared 
to the raw data and other methods in the μ and β 
bands. In other words, these methods, except 
CCACCA, enhanced the brain response through the 
mitigation of artifacts. 

The outcome from the False Discovery Rate 
(FDR) and Positive Predictive Value (PPV) and 
Negative Predictive Value (NPV) validation metrics 
shows that the RELAX_MWF_wICA-based method 
is an accurate and effective model for processing 
EEG signals compared to other methods. Similarly, in 
individual task classification performance, the 
RELAX_MWF_wICA method outperformed other 
methods and the raw data in both bands. 

Examining the performance of CCACCA, though 
it has a low z-score power value compared to the raw 
data, it recorded better decoding performance 
compared to the raw data. One possible reason for this 
could be that a strong brain response during the ME 
task may not necessarily correlate with high 
classification performance. 

Overall, considering the impact of artifacts on 
brain activation response and motor task 
classification, the RELAX_MWF_wICA 
demonstrated better performance, albeit with no 
significant difference when compared with ASR and 
RELAX_MWF methods. It performance could be 
attributed to its status as a hybrid artifact attenuation 
method that incorporates the advantages of MWF and 
wICA. 

The outcome of this work provides valuable 
insights into the significance of using appropriate 
methodology in the EEG signal-processing pipeline 
to obtain precise estimations of motor brain activity, 
thereby avoiding biased signal analyses and 
interpretation. 

It's important to note that this study is preliminary 
and confined to a dataset consisting solely of healthy 
subjects. The analysis utilized Z-score power 
quantifier and statistical metrics. In our forthcoming 
research, we plan to recruit stroke patients and 
acquire EEG signals from them to validate our 
findings. Furthermore, we will employ noteworthy 
quantifiers to thoroughly investigate and analyze 
EEG oscillatory rhythms. 
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