
System-Call-Level Dynamic Analysis for Code Translation Candidate
Selection

Narumi Yoneda, Ryo Hatano and Hiroyuki Nishiyama
Department of Industrial and Systems Engineering, Graduate School of Science and Technology,

Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan

Keywords: Dynamic Analysis, System-Call Sequence, Code Translation, Natural Language Processing.

Abstract: In this study, we propose a methodology that uses dynamic analysis (DA) data to select better code-translation
candidates. For the DA data, we recorded the history of system-call invocations to understand the actions of
the program during execution, providing insights independent of the programming language. We implemented
and publicized a DA system, which enabled a fully automated analysis. In our method, we generated multiple
translation candidates for programming languages using TransCoder. Subsequently, we performed DA on all
the generated candidates and original code. For optimal selection, we compared the DA data of the original
code with the generated data and calculated the similarity. To compare the DA data, we used natural language
processing techniques on DA data to fix the sequence length. We also attempted to directly compare the
variable-length system-call sequences. In this study, we demonstrated that the characteristics of system-call
invocations vary even within the same code. For instance, the order of invocations and the number of times
the same system-calls an invocation differ. We discuss the elimination of these uncertainties when comparing
system-calls.

1 INTRODUCTION

Legacy migration has recently emerged as a global
issue. This is the process of transitioning from old
systems, known as legacy systems, which have been
in place for an extended period and have decreased
scalability and maintainability, to new systems. For
instance, the case study of the Commonwealth Bank
of Australia on legacy migration revealed that it spent
$750 million in five years transitioning its banking
system platform from COBOL to Java. This implies
that legacy migration can be costly in terms of both
financial and temporal resources.

Translating programming languages is an im-
portant task in legacy migration. Meta devel-
oped an artificial intelligence (AI) system called
TransCoder (Roziere et al., 2020; Szafraniec et al.,
2023), a self-supervised neural transcompiler system
that automatically translates functions from one pro-
gramming language to another to reduce the costs as-
sociated with legacy migration. However, various is-
sues are associated with the code generated by these
transcompilers. For example, the generated code may
contain errors and thus cannot be executed. In addi-
tion, even if the code is executable, it may not per-

form the same operations or yield the same execution
results as the original code. To address these issues,
Meta suggested three strategies. First, they defined
“computational accuracy” to evaluate the generated
functions. This metric is defined as the ratio of the
generated function to the reference function returning
the same output when given the same arguments, be-
cause it is significant that the translated code should
work properly. Second, they implemented a helpful
function called “Beam Search Decoding” which gen-
erates multiple translation candidates in TransCoder.
This function was implemented to increase the proba-
bility that the generated code contained no errors and
that the operations and execution results were consis-
tent before and after translation. Finally, they pro-
posed using an intermediate representation (IR) in the
learning process to teach source code semantics. The
IR holds information about the content that the pro-
gram executes and is independent of language and
machine.

When selecting the best candidate(s) generated us-
ing “Beam Search Decoding”, the selection process
must be investigated and improved from several per-
spectives. In this study, in addition to executing unit
tests, we conduct a system-call-level dynamic anal-

576
Yoneda, N., Hatano, R. and Nishiyama, H.
System-Call-Level Dynamic Analysis for Code Translation Candidate Selection.
DOI: 10.5220/0012372900003636
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Agents and Artificial Intelligence (ICAART 2024) - Volume 3, pages 576-583
ISBN: 978-989-758-680-4; ISSN: 2184-433X
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

ysis (DA) on both the original code and generated
translation candidates and use the resultant DA data
to select better code translation candidates. We aimed
to develop and validate a new approach for using DA
data in programming language translation.

The remainder of this paper is organized as fol-
lows: Section 2 introduces relevant studies. The his-
torical development of TransCoder, relevant works,
the differences between their approach and ours are
discussed. Section 3 introduces the concept of
system-call-level DA, presents an overview of the
proposed method, and explains how the methodology
was evaluated using known metrics for sequence-to-
sequence comparisons. Section 4 explains our exper-
imental environment, and Section 5 presents the re-
sults of the experiment with a discussion, including
the characteristics of the DA data and how they should
be used.

2 RELATED WORK

2.1 Translation of Programming
Languages

(Roziere et al., 2020) developed a self-supervised
deep learning method for programming language
translation known as TransCoder. TransCoder can
translate functions between the Python, Java, and
C++ programming languages. As part of TransCoder,
they also implemented Beam Search Decoding, which
generates multiple translation candidates by allowing
small differences in the generated programs, such as
changes in return types or variable types between Java
and C++, or operator modifications in Python. In
addition, they defined a new metric called “compu-
tational accuracy” for evaluating the generated pro-
grams. This metric was proposed to address the prob-
lem of traditional metrics for the machine translation
of natural languages, such as the BLEU score (Pap-
ineni et al., 2002), which does not consider syntactic
accuracy.

(Szafraniec et al., 2023) proposed a method to
enhance code translation using the intermediate rep-
resentation (IR). They employed a low-level virtual
machine intermediate representation (LLVM IR). By
leveraging LLVM IR, the probability of making mis-
takes in variable types and operators decreased.

2.2 Position of Present Work

First, (Roziere et al., 2020; Szafraniec et al., 2023) in-
vestigated models for programming language transla-

tion using the literal text of program datasets as train-
ing data. However, we not only investigated models
for programming language translation but also new
methods for using system-call-level DA data of trans-
lated programs using such models.

Second, (Szafraniec et al., 2023) adopted an ap-
proach similar to ours. The IR represents what
the source code will do when executed, whereas
the system-call sequence (DA data) reflects what the
source code did during execution. Therefore, both
IR and DA data contain information regarding the se-
mantics of the source code. However, an approach in-
volving compiler-level IR, such as LLVM IR , may re-
strict the scope of applicable programming languages;
it can only be applied to programming languages that
use a compiler, such as C++ and Java. Therefore, this
approach cannot handle scripting languages that use
interpreters to execute instructions. Furthermore, be-
cause the generated IR is dependent on the compiler’s
language-specific front end, there might exist some
variations in the generated IR, such as dialects in nat-
ural languages. To overcome this issue, we propose
an approach to use DA data, which is independent of
the programming language or file type and may be
helpful in improving the quality of code translations
for further development.

3 METHODS

Figure 1: Overview of our Method.

Figure 1 shows an overview of the proposed ap-
proach. We used TransCoder to generate multiple
translation candidates from Python to Java and vice
versa. “Beam Search Decoding” was used to generate
100 translation candidates for each test. Next, system-
call-level DA was performed on both the original pro-
gram and generated translation candidates to obtain
the DA data. Subsequently, DA data of the original
program were compared with those of the generated
translation candidates, and their similarities were cal-
culated. Finally, the results were compared, and the
characteristics of the DA data were investigated. In
the following sections, we explain each of these pro-
cesses in detail.

System-Call-Level Dynamic Analysis for Code Translation Candidate Selection

577

3.1 Multiple Translation Candidates
Generation by TransCoder

In this study, we use the “original” TransCoder
(Roziere et al., 2020), instead of the latest version
(Szafraniec et al., 2023), because we want to stick to
the original implementation for simplicity. We ob-
tained a dataset of paired functions with the same
functionality in Java and Python (717 entries for Java
and 702 entries for Python) from the official GitHub
repository of the original implementation provided by
(Roziere et al., 2020). In this study, we used 615 en-
tries from the dataset in which the function names in
Java and Python matched and there were no errors in
the tests.

3.2 System-Call-Level DA

DA is a method for analyzing the behavior of a pro-
gram during its execution. In this study, we employed
DA to capture data with respect to program behav-
ior during execution, which should be independent of
the programming language or file type. We captured
the history (or time-series data) of the system-calls of
a process and its child processes invoked by an exe-
cuted program as DA data. The time-series data of
system-calls invoked by relevant process IDs (PIDs)
were serialized as single time-series DA data instead
of being segmented by PID.

Figure 2: Overview of System-Call.

A system-call is the only application program in-
terface (API) through which programs in the user
space can use the functionalities provided by an op-
erating system (OS) (Figure 2). User space is a
memory region that is not occupied by the core pro-
cesses of an OS. Numerous types of end-user pro-
grams can be executed in user spaces such as office
applications, web browsers, scientific experimental
programs written in Python, and network programs
written in Java. Such programs in the user spaces
execute instructions by leveraging the functionalities
provided by the OS. In this study, we used Debian
Linux, which has 388 system-calls available, such as
“open” to open files and “write” to write files, as listed
in arch/x86/entry/syscalls/syscall 64.tbl in

the kernel source code. Thus, it can be stated that the
history of system-call invocations provides informa-
tion on the OS functionalities of the analysis program
used during its execution.

We employed a Debian Linux OS with a mod-
ified Linux kernel and a Virtual Box-based virtual-
ization environment to capture the history of system-
call invocations. The modified kernel can transmit
system-call IDs and process IDs (PIDs), which ini-
tiate system-calls using UDP communication in the
do syscall 64 and do int80 syscall 32 functions
responsible for handling system-calls. In addition, we
revised the kernel clone function, which generates
processes for sending both the PID and parent PID
information. This modification enables the tracking
of all the PIDs related to the program under analysis
through their parent-child relationships.

Our DA system can capture all initiated system-
calls in real time, regardless of their PID, while main-
taining temporal order. For DA, we executed all target
programs in separate processes, filtering only those
with an exit status of zero, which indicated that the
program had been halted without error for data collec-
tion. Furthermore, we implemented a fully automated
system for DA of multiple files. The system was im-
plemented to perform DA using numerous programs.
In this study, we analyzed more than 500 million files.
Thus, we required a system that could operate the
desired analysis tasks properly for one month, con-
tinuously and automatically. Our system is currently
available at the GitHub repository (Yoneda, 2023).

3.3 Comparison of DA Data

Table 1: Comparison approaches for DA Data. Here, the
“Fix method” is assigned “N/A” if the sequence length is not
fixed and “Doc2Vec (Bow; Bag of Words)” if the sequence
length is fixed by Doc2Vec (Bow).

Fix method Metric Abbreviation
N/A Jaccard Coefficient jaccard
N/A Dice Coefficient dice
N/A Overlap Coefficient overlap
N/A Levenshtein Distance levenshtein

Doc2Vec Cosine Similarity cossim d2v
Doc2Vec Euclidian Distance euclid d2v

BoW Cosine Similarity cossim bow
BoW Euclidian Distance euclid bow

We emphasize that DA data are merely a sequence (or
history) of system-calls and can be compared using
known similarity metrics in natural language process-
ing (NLP). To compare the sequences appropriately,
we used two approaches:

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

578

Table 2: Experimental Conditions: We used Google Colaboratory to generate translation with TransCoder. We used Local PC
for every culculation task including DA. “Python (on Windows)” was used to build a fully automated DA system. It controlled
a virtual environment, recieved UDP packets sent from the kernel, and saved them as a CSV file.

Name Configuration
Google Colaboratory T4GPU w/ High Memory
Local PC Core i9-13900k CPU w/ RTX4090 GPU, Windows 11 Pro
Virtual OS Debian Linux ver. 11.7 w/ modified Kernel ver. 5.10.0-25-amd64
Virtualization software Virtual Box ver. 7.0.10 r158379
Python (on Windows) Python ver. 3.11.5
Python (on Virtual OS) Python ver. 3.9.2
Java (on Virtual OS) Oracle JDK ver. 11.0.20

(1) The variable-length sequences were compared us-
ing designated coefficients or distance metrics
(rows 1–4 in Table 1).

(2) The vector similarity or distance was calculated
using fixed-length vectors converted from DA
data by applying well-studied methods in NLP
(rows 5–8 in Table 1).

The key idea behind using Approach (1) is that we
can regard a system-call as a character in a letter. This
enables us to consider a sequence of system-calls as a
string or an ordered set over the alphabet. Hence, we
can evaluate the distance or coefficient in the DA data.
We also consider treating a system-call as a word in
a sentence, which is the key idea in Approach (2).
From this perspective, NLP techniques can be used
to transform sequences into vectors. We can then use
the similarity between the vectors to compare the DA
data.

In this study, we used Word2Vec to transform the
DA data into vectors. Therefore, a unique Word2Vec
model (scsq2vec) that is trained on sequences of
system-calls (DA data, sentences of system-calls)
must be constructed. We extracted Python and Java
source codes from the CodeNet dataset (Puri et al.,
2021) and performed DA to obtain the DA data. We
then trained the scsq2vec model using the obtained
data.

CodeNet is a large-scale dataset of sample pro-
grams created for teaching programming to AI, ob-
tained from Atcoder or the AIZU online judge. Most
sample programs involve numerical computation and
string manipulation. Using source code from Co-
deNet is suitable for our purposes because the func-
tions used for our experiment also involve numerical
computations and string manipulations.

4 EXPERIMENT

The experimental conditions are listed in Table 2. The
programs used in our experiment are available in the

GitHub repository (Yoneda, 2023).
The outline of our experiment follows the flow il-

lustrated in Figure 1 in Section 3. To perform DA
on a function of a certain program, we must provide
appropriate arguments and invoke that function. In
this study, we used the first element from the list of
arguments (Roziere et al., 2020), which was used to
calculate the computational accuracy of TransCoder.

Furthermore, to conduct the DA experiment, we
additionally followed the following steps:
Python Programs. We added the declaration

import numpy as np to the original and gen-
erated Python source codes. This is because
TransCoder sometimes uses a NumPy module,
instead of a math module for generated functions.

Java Programs. We removed the lines containing
import javafx.* from the original and gener-
ated Java source codes. This is because it failed to
set up a DA environment to use the JavaFX mod-
ule. Fortunately, every testing program for this
experiment was successfully executed without re-
quiring declaration.

5 RESULTS AND DISCUSSION

5.1 Overview of Captured DA Data

Recall that the term “original source codes”
refers to the pre-translation functions input into
TransCoder (Roziere et al., 2020), while “generated
source codes” refers to the translation candidates gen-
erated by TransCoder. In this section, we provide an
overview of the DA data obtained from the execution
of the original source code, generated source code,
and source code from CodeNet. Because TransCoder
translates a source code at a function level, we will
merely refer to the source code of a function as
“source code” in the context of the translation. Here,
we show the number of DA data and the average se-
quence length. DA data are a sequence of system-

System-Call-Level Dynamic Analysis for Code Translation Candidate Selection

579

calls, and the average sequence length is the average
number of system-call invocations for executing each
source code.

Table 3: DA Data of Original Source Codes (Roziere et al.,
2020).

Language # of Obtained Data Average Length
Python 615 4,959.2

Java 615 2,469.5
Total 1,230 3,714.4

Table 4: DA Data of Generated Source Codes.

Language # of Obtained Data Average Length
Python 27,760 4,821.8

Java 20,080 2,457.6
Total 47,840 3,829.4

Table 5: DA Data of Source Codes from CodeNet (Puri
et al., 2021).

Language # of Obtained Data Average Length
Python 1,925,718 685.9

Java 427,832 2,541.4
Total 2,353,550 1,023.2

Tables 3, 4 and 5 show the DA data of the origi-
nal source codes, generated source codes, and source
codes from CodeNet, where “# of Obtained Data”
denotes the total number of source codes that were
successfully executed in our system (in other words,
the number of source codes whose exit status become
zero). “# of Obtained Data” of original source codes
(Table 3), for both Python and Java are marked as
“615”, which means all 615 functions obtained from
official TransCoder repository (Roziere et al., 2020)
were executed successfully. We generated 100 candi-
dates from each of the 615 functions; thus, 61,500
functions were executed in each language. “# of
Obtained Data” of generated source codes (Table 4)
shows the number of functions that were executed
successfully (those with an exit code of zero).

From the tables, we conclude that the average
Java sequence lengths were almost identical among
the three datasets. In addition, the average sequence
lengths in Python were almost identical for both the
original and generated source codes. However, there
were considerable differences between these codes
and the source code from CodeNet. The reason for
this is whether to import a NumPy module into the
Python code. Every original and generated source
code imports it, whereas the source code from Co-
deNet rarely imports it. Although it is just a single

line stating the “import numpy as np”, it executes the
initialization processes for NumPy modules, leading to
the potential for a certain amount of computational
activity (or invocations of system-calls). Therefore,
we split the CodeNet source codes based on whether
they imported NumPy.

Table 6: DA data for Python files in CodeNet, divided by
whether or not importing NumPy.

Import NumPy? # of Obtained Data Average Length
YES 35,590 4151.1
NO 1,890,128 620.7

Total 1,925,718 685.9

Table 6 presents the differences in the DA data for
importing NumPy. The average sequence length of the
execution of the NumPy-imported codes in CodeNet
was over 4,000, which was close to that of the origi-
nal and generated codes (cf. Tables 3 and 4). How-
ever, the average sequence length of the non-imported
code was approximately 620, which is much smaller
than that of the NumPy-imported code. We also per-
formed DA on the Python code with only one line of
import numpy as np 200 times to determine the to-
tal number of system-calls invoked for the NumPy ini-
tialization process. Figure 3 presents a bar graph with
the sequence length on the vertical axis and the order
of the trial counts on the horizontal axis. The aver-
age, maximum, and minimum sequence lengths were
4845.3, 9378, and 742, respectively.

From these results, we obtained the following in-
sights:

1) The DA data of the original and generated source
codes, which appeared similar, showed signifi-
cant differences in the average sequence length of
the Python codes compared with that of CodeNet.
One possible reason for this discrepancy is the im-
portation of NumPy (By Tables3, 4, 5, and 6).

2) The system-calls invoked for the NumPy initializa-
tion process accounted for a large part of the DA
data for both the original and generated Python
codes. According to Table 6, approximately 85%
of the data were related to the initialization pro-
cess of NumPy.

3) We revealed that the DA data for the same code,
such as a code with only one line of import
numpy as np can have a significant variation in
its sequence length. For example, Figure 3 shows
that the maximum length was 9,378, whereas the
minimum was 742, with a difference of more than
8,000. In addition, there is no correlation between
the number of executions and the sequence length;
that is, the length may be shortened or lengthened
almost randomly.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

580

Figure 3: DA Data of import numpy as np in Python, 200 Times.

5.2 Similarity of DA Data

This section presents the results of evaluating the sim-
ilarity among DA data from the executions of Python
and Java source codes, and discusses why we obtained
the results and how we can improve our approach.

Table 7: Average Similarity of DA Data.

Evaluation Metric py2j j2py
jaccard 0.538 0.538

dice 0.696 0.696
overlap 0.760 0.760

levenshtein 4818.8 4687.8
cossim d2v 0.378 0.384
cossim bow 0.083 0.089
euclid d2v 3.851 3.836
euclid bow 2801.9 2671.1

Table 7 presents the similarity between the DA
data of the original code and generated translation
candidates. Here, “py2j” (“j2py”) is the average of the
similarity between the DA data of the original Python
(Java) code and that of the generated Java (Python)
translation candidate codes.

5.2.1 Evaluation of the scsq2vec Model

We created a Doc2Vec model that learns system-call
sequences (scsq2vec) to relax differences in how dif-
ferent program languages invoke system-calls. This
approach addresses the issue that the similarity be-
tween system-call sequences does not reflect the sim-
ilarity between the contents of their original source
codes. We attempted to reduce such differences
by training a Doc2vec model on a large dataset of

system-call sequences created by performing DA on
sample source code from CodeNet. However, as is
evident from the cossim d2v metric, which is cal-
culated by the cosine similarity with vectorized DA
data using scsq2vec, scsq2vec may distinguish be-
tween the DA data of Java and Python. A possi-
ble reason for this is the significant difference in the
sequence length between the DA data from Python
and Java. The scsq2vec model may have learned to
distinguish between Python and Java based on their
sequence lengths, because we input these sequences
without any preprocessing. In addition, most of the
Python DA data were related to NumPy’s initializa-
tion process, as mentioned in the previous section. In
other words, the ratio of system-call sequences that
may be unrelated to NumPy and specific operations in
the Python files is expected to be low. This factor
accounts for the distinction of the scsq2vec model be-
tween Java and Python.

5.2.2 Possible Approach for Further
Improvement

One issue that must be addressed is that the similar-
ity between system-call sequences does not reflect the
similarity between the contents during the execution
of their source codes. A possible approach to resolve
this issue is to preprocess the system-call sequence to
remove unnecessary parts. For example, a system-call
comes with arguments, and returns a value. Obtain-
ing such data provides useful information for prepro-
cessing. A system-call may fail and return an error
code (typically a negative integer) as the return value.
Therefore, we should exclude the failed invocations
from our dataset.

System-Call-Level Dynamic Analysis for Code Translation Candidate Selection

581

Another issue is that the DA data for the same
source code can have significant sequence length vari-
ations, as mentioned in Section 5.1 and as shown in
Figure 3. In the example shown in Figure 3, the
minimum and maximum sequence lengths were 742
and 9,378, respectively. Because we executed the
same source code, it was theoretically possible to rep-
resent a sequence of 9,378 system-calls using a se-
quence consisting of only 742 system-calls. A max-
imum sequence often involves multiple consecutive
invocations of the same system-call, whereas a mini-
mum sequence does not exhibit this behavior. We can
determine whether to compress multiple consecutive
invocations into the same system-call if we have in-
formation about the arguments and return the value.
For example, in a system-call write, the first argu-
ment is file descriptor fd (an abstract handle of a re-
source managed by an operating system, represented
as a positive integer), the second argument is buf
(the starting address of the memory area where the
data are temporarily stored), and the third argument is
count (the number of bytes to write). In other words,
by invoking a write, the data specified by the sec-
ond and third arguments are written to a file descrip-
tor specified by the first argument. Therefore, if the
write is invoked multiple times in succession and
the file descriptor has the same value for each invo-
cation, we can compress them into a single system-
call invocation while maintaining temporal order by
concatenating the writing data (Code 1). In the exam-
ple code, the second argument is written as a Python
string, which is a combined representation of buf and
count. In this manner, we can compress a sequence
of system-calls that are invoked multiple times.

Code 1: How we can compress write.

1 # current invocation
2 write(1,"I have a pen.")
3 write(1,"I have an apple.")
4

5 # possible compressing
6 write(1,"I have a pen.
7 I have an apple.")

Furthermore, we can consider the relationship be-
tween a single line of code and its associated system-
call subsequences. For example, Python has a built-in
open function. This provides the capability to open
files. The system-calls that enabled this functionality
were open (#2) and openat (#257). In other words,
when executing open(’a.txt’, ’w’) in Python, the
interpreter invokes either system-call 2 or 257 from
the user space to perform the file-opening process.

To confirm this, we performed DA on both files ev-
ery 200 times: on a file containing only the line
open(’a.txt’, ’w’) and on an empty file. The av-
erage sequence length for invoking the open function
was 617.2, whereas that of the empty one was 587.1.
This implies that approximately 30 system-calls were
invoked to handle the open functions. In other words,
to invoke the most critical system-calls, numbers 2
or 257, 29 other system-calls were invoked. Thus, the
system-call subsequences for one line in the code con-
tain many less-important system-calls. The problems
depend on the implementation of the interpreter and
compiler because they decide what the system-calls
to invoke to execute a given line in the code. Conse-
quently, to accurately compare system-call sequences
obtained through any language, it may be effective to
consider the importance of each system-call and elim-
inate less important ones.

Therefore, we can apply NLP methods to calcu-
late the importance of system-calls because system-
call sequences and natural languages have similar
characteristics; They are both sequences of words or
system-calls arranged in lexical and temporal order.
Elements derive their meaning from the context or
sequence in which they appear; therefore, they have
a context-dependent nature. Furthermore, system-
call sequences have the advantage that the variety of
words in a corpus is significantly smaller than in nat-
ural languages, making it easier to train the relation-
ships between adjacent words. In this study, we used
388 types of system-calls, and only 126 system-calls
were collected for the original source codes, gener-
ated source codes, and source codes from CodeNet,
which are significantly smaller than the variety of
words that exist in natural language. This suggests
the possibility of constructing a powerful machine-
learning model by extending our approach.

6 CONCLUSION

This study introduced a novel approach for using
system-call-level DA data in programming language
translations. We introduced multiple comparison
methods for DA data. To relax the differences in
how different program languages invoke system-calls,
we developed the scsq2vec model, a Doc2Vec model
adopted to handle system-call sequences. This ap-
proach addresses the issue that the similarity between
system-call sequences does not reflect the similarity
between the contents of their source code. The key
insights obtained from our results are as follows:

1) We revealed that the DA data for the same code
can exhibit a large variation in sequence length.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

582

2) We revealed that the initialization process for
modules, which might not be essential for their
source code, can potentially dominate the DA
data.

3) Preprocessing of the system-call sequence to re-
move unnecessary parts should be implemented.
For example, we should exclude failed invo-
cations or compress the sequence of the same
system-call invocation multiple times. Further-
more, obtaining information about the arguments
and return values of the system-calls provides use-
ful information for implementing preprocessing.

4) The system-call subsequences for one line in the
source code contain many less important system-
calls. This observation should be reflected in de-
veloping the preprocessing.
In future work, we will discuss the use of DA data

to select better codes, assuming that there are multi-
ple proper translation candidates; that is, TransCoder
generates multiple 100% computer accuracy func-
tions. For instance, the smaller the time and space
complexities, the better the candidate. Our current
DA system cannot compute or predict the approxi-
mate empirical computational efficiency (the time re-
quired to execute the code) or memory consumption
(the amount of memory allocated by the process).
Hence, by obtaining the arguments of the system-
calls, it may be feasible to improve our system to cal-
culate the approximate space and time complexities.

Code 2 shows the generated and reference source
codes for test ADD 1 TO A GIVEN NUMBER (Roziere
et al., 2020). In the reference source code, the con-
dition part for the while statement performs a bit-
wise AND operation between x and m. However, the
generated source code performs the same operation,
an integer typecasting operation, and verifies whether
the result is one or greater. Therefore, the gener-
ated source code performs additional operations and
is more time consuming in terms of empirical compu-
tational efficiency, which should be captured by the
improved DA approach.

Code 2: Differences in conditional statements.

1 # generated translation
2 while int(x & m) >= 1:
3

4 # reference source code
5 while x & m:

Another issue is the choice between simple and
advanced modules during library selection. For
example, when we use mathematical operations in
Python, we can select math and NumPy modules.

Code 3 shows the reference source code (“f gold,” us-
ing the math module) and the generated source code
(“f filled,” using the NumPy module) for a test called
PROGRAM FOR SURFACE AREA OF OCTAHEDRON. The
math module has minimal implementation, whereas
the NumPy module implements advanced parallel
processing. Therefore, although NumPy is effective
for large datasets, the parallel processing overhead
is relatively large for small datasets. DA data can
address these issues as they influence the manner in
which the interpreter or compiler triggers system-
calls. Our DA system can capture a sequence of
system-calls while maintaining their temporal order,
regardless of the PID or threads. Therefore, we must
use the DA data gathered by our system for better
code selection.

Code 3: Differences Between math and NumPy.

1 def f_gold(side):
2 return 2 * (math.sqrt(3))
3 * (side * side)
4

5 def f_filled(side):
6 return 2 * (np.sqrt(3))
7 * (side * side)

REFERENCES

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
BLEU: a method for automatic evaluation of machine
translation. In Proceedings of the 40th annual meeting
on association for computational linguistics, pages
311–318. Association for Computational Linguistics.

Puri, R., Kung, D. S., Janssen, G., Zhang, W., Domeniconi,
G., Zolotov, V., Dolby, J., Chen, J., Choudhury, M.,
Decker, L., Thost, V., Buratti, L., Pujar, S., Ramji, S.,
Finkler, U., Malaika, S., and Reiss, F. (2021). Co-
deNet: A large-scale ai for code dataset for learning a
diversity of coding tasks.

Roziere, B., Lachaux, M.-A., Chanussot, L., and Lample,
G. (2020). Unsupervised translation of programming
languages. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., and Lin, H., editors, Advances in Neu-
ral Information Processing Systems, volume 33, pages
20601–20611. Curran Associates, Inc.

Szafraniec, M., Roziere, B., Leather, H. J., Labatut, P.,
Charton, F., and Synnaeve, G. (2023). Code transla-
tion with compiler representations. In The Eleventh
International Conference on Learning Representa-
tions.

Yoneda, N. (2023). langMorphDA. https://github.com/nar
u-99/langMorphDA.git.

System-Call-Level Dynamic Analysis for Code Translation Candidate Selection

583

