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Abstract: Conditional entropy is an important concept that naturally arises in fields such as finance, sociology, and
intelligent decision making when solving problems involving statistical inferences. Formally speaking, given
two random variables X and Y , one is interested in the amount and direction of information flow between X
and Y . It helps to draw conclusions about Y while only observing X . Conditional entropy H(Y |X) quantifies
the amount of information flow from X to Y . In practice, calculating H(Y |X) exactly is infeasible. Current
estimation methods are complex and suffer from estimation bias issues. In this paper, we present a simple
Machine Learning based estimation method. Our method can be used to estimate H(Y |X) for discrete X and
bi-valued Y. Given X and Y observations, we first construct a natural binary classification training dataset. We
then train a supervised learning algorithm on this dataset, and use its prediction accuracy to estimate H(Y |X).
We also present a simple condition on the prediction accuracy to determine if there is information flow from X
to Y. We support our ideas using formal arguments and through an experiment involving a gender-bias study
using a part of the employee database of Karlstad University, Sweden.

1 INTRODUCTION

Conditional entropy is an information theoretic term
that quantifies the amount of information required to
describe one random variable, given that the value of
another random variable is known. It naturally arises
in many scenarios and calculating its value is often
very useful. Consider the following – given the global
financial trend, e.g., Dow Jones Industrial Average or
S&P 500 index, it is interesting to predict trends in a
specific Company, say company C . Such an analysis
would indicate if C is a market sensitive or a mar-
ket leading company. Also, the degree and direction
of information transfer between various stock market
indices is important (Dimpfl and Peter, 2013) (Dar-
bellay and Wuertz, 2000). This is often studied us-
ing a quantity related to conditional entropy called the
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transfer entropy.
Let us suppose that random variable X represents

the evolution of the global stock market, and that ran-
dom variable Y represents the evolution of company
C . The conditional entropy under question is

H(Y |X) =− ∑
x∈X

px ∑
y∈Y

py|x log py|x, (1)

where px = P(X = x), py|x = P(Y = y|X = x), X and
Y are the supports of random variables X and Y , re-
spectively. For the sake of simplicity we have as-
sumed that X and Y are discrete valued (and even
countable). Suppose, they are continuous then the
summations in (1) are replaced by integrals. H(Y |X)
quantifies the amount of information needed to de-
scribe Y , given that X is known. It can be shown that
0 ≤ H(Y |X) ≤ H(Y ), where H(Y ) = − ∑

y∈Y
py log py

is the entropy of Y, the amount of uncertainty in Y.
If H(Y |X) = 0, then Y can be fully determined by
X , e.g., when Y = X2. X and Y are independent iff
H(Y |X) = H(Y ) (MacKay et al., 2003). Finally, note
that conditional entropy is an asymmetric quantity –
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H(Y |X) only considers the information flow from X
to Y . Let us circle back to the stock market scenario.
If H(Y |X) = 0, then company C follows the global
trend to the highest degree. The value of H(Y |X) is
inversely proportional to the degree of dependency of
C on the global trend.

In practice, calculating the conditional entropy is
infeasible as it requires complete knowledge of the
joint and marginal probability distributions of X and
Y . Hence, it is often estimated using X and Y observa-
tions (Pham, 2004). Such data-driven estimators are
often sophisticated, while suffering from significant
estimation biases (Beirlant et al., 1997).

In the field of computer security, a side channel
attack is an attack that is based on extra information
that can be gathered owing to the fundamental way in
which a computer algorithm is implemented (Golder
et al., 2019). In order to prevent side-channel attacks,
security analysts must ascertain the amount of data,
which when collected, can be used to compromise a
computer. Let us define X to be the random variable
associated with the gathered data – the “side-channel
information”. Let us also define the two valued ran-
dom variable Y as equalling 1 if the security is com-
promised, and 0 otherwise. Then H(Y |X) quantifies
how much of X must be observed in order to accu-
rately determine Y . Again, calculating H(Y |X) ex-
actly is infeasible. Machine Learning was recently
used to skirt around this (Drees et al., 2021) (Gupta
et al., 2022). However, these works are preliminary
and empirical without formal backing. In any case
they do not attempt to estimate conditional entropy or
draw information theoretic conclusions.
Our Contributions. We present a Machine Learning
based easy-to-implement method to estimate the con-
ditional entropy H(Y |X), where Y is a bi-variate ran-
dom variable and X is discrete valued. This estimate
is used to measure the degree of dependency of Y on
X . Given observations of X and Y , we discuss how to
transform the problem of estimating the conditional
entropy to a supervised learning problem. We then
use the prediction accuracy of the supervised learn-
ing algorithm to estimate the conditional entropy. We
present sufficient conditions on the accuracy of the
learning algorithm for guaranteed information flow
from X to Y. We support our ideas through formal ar-
guments and experiments on real datasets.

1.1 Conditional Entropy in Sociology:
A Data-Driven Approach

Companies and organizations aim to ensure their male
and female employees are equally represented, that
their policies are not skewed towards one gender.

Conditional entropy plays an essential role when ana-
lyzing the current state of affairs with respect to gen-
der equality in these organizations. Here, we present
an ML-based approach for such an analysis. First,
the employee database is used to create a supervised
learning (classification) dataset. There is one input in-
stance corresponding to each employee. It only con-
tains gender neutral information such as date of birth,
salary, position, etc. Gender revealing information
such as names, gender, etc., are excluded. The input
instances are labeled using their gender – 0 for female
and 1 for male. We are therefore in the setting of bi-
nary classification. We use X to represent the random
variable associated with the input, and Y to represent
the class random variable.

If the gender does not play a role in hiring and
subsequent career development, then one cannot re-
liably predict the gender Y merely using the gender
neutral information X , such as the title and salaray. In
the parlance of information theory, H(Y |X) = H(Y ).
On the other hand, suppose there is gender bias, then
H(Y |X)< H(Y ). In this paper, we call a dataset gen-
der biased when the genders are unequally repre-
sented (gender plays a role in hiring, career devel-
opment, etc.) when H(Y |X) < H(Y ). As explained
earlier, we present a supervised learning approach to
estimating H(Y |X), and checking if H(Y |X)< H(Y ).

The gender inequality problem is very well stud-
ied in literature, see, e.g., (Heiberger, 2022). Also,
ML tools have been been previously used to em-
pirically study problems in sociology, e.g., (Zajko,
2022) (Molina and Garip, 2019). To the best of our
knowledge, this is the first time in literature, wherein
ML is used within the framework of statistical infer-
ence to answer a sociological question, in particu-
lar a gender-bias question. Further, the framework is
backed by formal theory.

Here is another scenario where our methodology
is useful. Let us suppose that a vast region is flooded.
After emergency relief operations, the responsible
government committee must formulate a plan to allo-
cate resources and funds for the long-term rebuilding
process. For the sake of simplicity, let us suppose that
the region can be divided into neighborhoods – each
consisting of groups of houses, one or more commu-
nity centers, commercial buildings, schools and hos-
pitals. The committee must allocate resources at the
“neighborhood level”. Resource allocation must be
done in a fair and equitable manner, proportional to
the losses incurred by the neighborhood. Further, the
associated timelines, e.g., to release funds, must fa-
cilitate immediate and equitable relief. The plan must
not be influenced by the political orientation, racial
identity or affluence of any given neighborhood.
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Given a proposal, how does one go about check-
ing if the plan satisfies the above mentioned equity
constraints? Traditionally, a human expert evaluates
the plan, the draft is then amended based on the feed-
back and sent for reevaluation, this process is re-
peated a few times. The framework presented in
this paper can hasten the feedback loop through the
introduction of an automated bias checking routine.
For plan evaluation, we first create a dataset contain-
ing datapoints with the following information on the
neighborhoods: general information about a neigh-
borhood (e.g., number of houses, schools, average
household income, etc.), information on flood dam-
age (e.g., fraction of the neighborhood affected, loss
to critical services, etc.), and information on flood
relief (e.g., allocated resources and funds, timeline,
etc.). The data should not include information that
must be disregarded during planning – neighborhood-
racial-identity, affluence, etc. There is one datapoint
corresponding to every neighborhood in the flooded
region.

A Machine Learning (ML) algorithm is then
trained on the dataset to predict, e.g., the majority po-
litical orientation of neighborhoods. If the prediction
accuracy is high enough, then our analysis shows that
the draft is biased. Put simply, the predictor should
not perform better than guessing, when predicting the
neighborhood-political-orientation for a draft to be
deemed unbiased. From an information theoretic per-
spective, a high accuracy indicates that there is some
information regarding political orientation present in
the data. Note that the bias may be positive or neg-
ative. On the other hand, suppose the prediction ac-
curacy is low (accuracy corresponding to guessing),
then the draft is probably fair. Although the ML based
bias predictor can provide as assessment within a mat-
ter of hours, if not minutes, it does not have the ca-
pacity to assess the cause for the bias. The draft may
be passed to an expert for feedback only if the ML
predictor detects a bias, thus saving valuable time and
effort.

2 FORMAL PROBLEM SETUP
AND OUR APPROACH

Today, enormous data on individuals, anonymized
and otherwise, is readily available in the public do-
main. Decision making bodies utilize this data, ana-
lyze them, and base important decisions on conclu-
sions based on these analyses. Social biases, e.g.,
gender and race, intrinsic to the data, affect the deci-
sion making process. Information theoretic quantities
like conditional entropy play a pertinent role in quan-

tifying the biases in the aforementioned databases.
However, these quantities are hard to estimate. In
this paper, we propose a supervised learning based
framework to solve the problem of estimating the
conditional entropy of information extracted from
databases. We propose a novel framework based on
ML and Statistics. We stick to the parlance of gender
bias to illustrate our ideas. It must however be noted
that they can be readily extended to study other types
of biases and information flows.

Machine Learning (ML) is the study of algorithms
that self-improve at performing tasks only through
data (Bishop and Nasrabadi, 2006) (Goodfellow et al.,
2016) (Hastie et al., 2009). Supervised learning is an
important ML paradigm where the algorithm learns
to perform tasks by emulating examples. Mathemat-
ically speaking, a supervised learning algorithm tries
to learn an unknown map Y : X → Y , where X and
Y are the input and output spaces respectively, us-
ing example data called training data, represented by
the set D = {(xn,Y (xn)) | xn ∈ X }1≤n≤N for some
1 ≤ N < ∞. A supervised learning algorithm A learns
a map Y A , using D , that approximates the unknown
map Y. Specifically, it finds Y A that minimizes pre-
diction errors on D.

We are given X and Y observations
{(xn,yn)}1≤n≤N<∞, where X is discrete-valued and Y
is bi-valued. This observation set naturally translates
to the training dataset for a binary classification
algorithm A . Training A yields a proxy map Y A(X)
and an associated prediction accuracy. It is then
used to (a) estimate the required conditional entropy
H(Y |X), and (b) assert whether H(Y |X) < H(Y ) in
order to comment on the dependency of Y on X .

In the context of a gender bias study, X represents
all perceived gender neutral information and Y the
gender information, 0 for female and 1 for male. The
observation data/training data is typically obtained
from a database - the starting point for our analysis.
The prediction accuracy is used to decide if there is
gender information contained in X , if the database
is gender biased. Intuitively speaking, we draw this
conclusion based on whether the prediction accuracy
is significantly better than guessing. If so, then A is
able to exploit a possibly hidden pattern in the data
with respect to gender. A human expert may now be
summoned to carefully check the data in order to find
the source of the perceived gender bias. Finally, we
also comment on the degree of bias by estimating the
required conditional entropy. It must be noted that
the exact classification algorithm used in the analysis
depends on the nature of the data X . Typically, one
works with an ensemble of algorithms.
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Our Approach. Let us suppose that we are given a
database containing datapoints on people. Addition-
ally, we are given the gender information for each dat-
apoint. From this we construct a classification dataset
D = {(xn,yn) | 1 ≤ n < ∞}, where xn is the supposed
gender neutral information regarding the nth individ-
ual, extracted from the database, and yn is the corre-
sponding gender. We let yn = 0 for female and yn = 1
for male. Let X be the random variable associated
with the perceived gender neutral information, and Y
be the gender random variable. Define,

p :=
# of males in the database∨# of females in the database

|D|
,

(2)
where ∨ denotes the max operator. We train an en-

semble E of binary classification algorithms using D .
Let us suppose that there is at least one algorithm
A ∈ E with an accuracy that is strictly greater than
p. Then, we argue that D is gender biased. In partic-
ular, we show that the conditional entropy H(Y | X)<
H(Y ). Recall that H(Y | X) represents the amount
of information required to describe the outcome of
Y given that the value of X is known. It is known
that H(Y | X) is at most H(Y ), i.e., H(Y | X)≤ H(Y ).
Suppose X does not contain any information about
Y , X and Y are independent random variables, then
H(Y | X) = H(Y ). Hence, H(Y | X)< H(X) indicates
that X contains gender information, it can describe the
outcome of Y .

On the other hand, suppose that none of the clas-
sifiers in the ensemble have an accuracy better than p,
then it is very likely that H(Y | X) = H(Y ). From a
theoretical standpoint, the Baye’s classifier is the op-
timal classification algorithm, in that it has the high-
est accuracy. We may replace our ensemble with the
Baye’s classifier in order to be sure. The only issue
is that the Baye’s classifier is computationally infea-
sible for most classification problems. To summarize
our approach, we create a classification dataset from
the database entries and solve the gender classifica-
tion problem. We show that high accuracy, specifi-
cally better than guessing, is indicative of a gender
bias in the dataset.

3 INFORMATION THEORETIC
BACKING FOR GENDER BIAS
DETECTION USING
CLASSIFICATION

In the parlance of machine learning, X is called the
feature random vector and Y is called the class ran-
dom variable. In order to detect gender bias in D , one

typically estimates the mutual information I(X ,Y ),
which is related to conditional entropy through the
following formula:

I(X ,Y ) = H(Y )−H(Y | X) = H(X)−H(X | Y ) (3)

where H(X) and H(Y ) are the entropies of X and Y re-
spectively, H(X | Y ) and H(Y | X) are the conditional
entropies of X given Y and Y given X , respectively.
The mutual information I(X ,Y ) quantifies the infer-
ence that can be drawn regarding one random vari-
able by observing the other. Mutual information is
symmetric – I(X ,Y ) = I(Y,X) – and always positive
– I(X ,Y )≥ 0.

When I(X ,Y ) = 0, no information can be drawn
regarding Y by observing X . Due to the symmetric na-
ture of mutual information a similar statement can be
made by swapping X and Y in the previous sentence.
We are, however, only interested in the former and
we will stick to it. From (3) it therefore follows that
H(Y ) = H(Y | X). Simply put, observing X does not
reduce the uncertainty in Y . On the other hand, when
I(X ,Y ) > 0, information regarding Y can be inferred
by observing X . The higher the value, the better the
inference. Again from (3), we get the equivalent con-
dition that H(Y ) > H(Y | X). Colloquially speaking,
observing X has reduced the uncertainty in Y . Sup-
pose H(Y | X) = 0, then I(X ,Y ) takes the maximum
possible value of H(Y ), and Y is fully determined by
observing X .

Let us circle back to the problem at hand. We
are interested in quantifying the gender inference
(describing Y ) through only observing X (the per-
ceived gender neutral information regarding an in-
dividual extracted from the database). If we show
that I(X ,Y ) = 0, or equivalently that H(Y | X) =
H(Y ), then gender inference is not possible, and the
database is not gender biased. If, on the other hand,
we show that I(X ,Y ) > 0, or equivalently that H(Y |
X) < H(Y ), then the gender can be fully or partially
inferred, and the database is gender biased. Hence,
the first order of business is to estimate these entropy
quantifiers.

Instead of using complex biased entropy estima-
tors from literature, we propose solving an associ-
ated classification problem. We propose predicting
the gender of individuals Y solely using X . This yields
a natural binary classification problem, and a natural
training dataset D . We show that using D to effec-
tively train a classifier (Machine Learning model) to
predict the gender with high accuracy for any individ-
ual from the database is an indicator of gender bias.

Our Contribution. We show H(Y | X)< H(Y ) when
a binary classifier, trained on D , has an accuracy that
is strictly greater than p (recall the definition of p
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from (2)). In effect, showing that an accuracy strictly
greater than p implies that the database is gender bi-
ased. We also analyze the scenario when the classifier
used is optimal – Bayes classifier. In the course of this
analysis, we estimate H(Y | X) and H(Y ).

Baye’s classifier is the theoretical optimal, in
that, it has the highest accuracy among all classifiers
trained on D . However, it requires full knowledge of
the underlying population distribution that generated
the data in the database, and consequently D itself.
As there is no access to the population distribution,
we resort to other feasible albeit suboptimal classi-
fiers that only require D . The dataset D is assumed
to be generated from the joint unknown distribution
on (X ,Y ) - also known as the population distribution
- through repeated and independent sampling.

3.1 Entropy of a Gender Guessing
Algorithm

First, we define the following notations: px := P(X =
x), py := P(Y = y) and py|x := P(Y = y | X = x).
These together, define the required population distri-
bution. Without loss of generality, we assume that
the database contains at least as many male represen-
tatives as female ones. Since we assumed that D is
generated by the underlying population distribution,
provided it is also large, we have P(Y = 1) ≈ p and
P(Y = 0) ≈ 1− p, where p is defined in (2). Now,
consider a randomized classifier G (gender guess-
ing algorithm) that predicts with probability p that a
given query instance x belongs to class-1, and pre-
dicts class-0 with probability 1− p. In effect, G does
not truly consider x when predicting gender. If we
associate the random variable Y G (x) with the predic-
tion of G , then Y G (x) = 1 with probability p and
Y G (x) = 0 with probability 1− p. Note that x is an
instance/realization of X .

Let pG
y|x := P(Y G (x) = y | X = x). Then, the con-

ditional entropy,

H(Y G (X)|X) =− ∑
x∈X

px ∑
y∈Y

pG
y|x log pG

y|x,

where X is the support of X – the set of all possible
values of X – and Y = {0,1}. Since G does not truly
consider X during prediction, we have that pG

y|x = py

for all x ∈ X and y ∈ Y , and the above equation be-
comes

H(Y G (X)|X) =− ∑
x∈X

px ∑
y∈Y

py log py = H(Y ).

This is not surprising since G has not used X for pre-
diction. Suppose D is not gender biased, then G is the

optimal predictor. In other words, where one cannot
do better than guessing, and X is useless in predicting
the gender.

3.2 Baye’s Classifier B when D Is not
Gender Biased

One sufficient condition for D to be gender unbiased
is when X and Y are uncorrelated, when py = py|x for
x ∈ X and y ∈ Y . The Baye’s classifier is given by the
following deterministic mapping from X onto Y :

x 7→ argmin
y∈Y

ℓ(0,y)p0|x + ℓ(1,y)p1|x, (4)

where ℓ(y1,y2) = 1 when y1 ̸= y2 and 0 otherwise,
y1,y2 ∈ Y . ℓ is called the 0-1 loss function, it penal-
izes a wrong prediction by 1. Baye’s predictor is a
mapping that minimizes the average loss, where the
average is taken with respect to the population distri-
bution. When using the 0-1 loss function, minimiz-
ing the average loss is equivalent to maximizing the
average accuracy, again the average is taken with re-
spect to the population distribution. One can use (4) to
show that the Baye’s classifier B predicts 0 at x when
p1|x < p0|x, and 1 otherwise. Hence, (4) is equivalent
to

x 7→ argmax
y∈Y

py|x.

Since we assumed that X and Y are uncorrelated, B
reduces to the constant map

x 7→ argmax
y∈Y

py.

We assumed without loss of generality that p1 ≥ p0,
hence B predicts that every query instance x belongs
to class-1. The Bayes classifier B becomes the
majority classifier, it classifies every query instance
as the majority class – class-1 in our case. B has an
accuracy of p (= p1), since it is correct only on query
instances that are male. The associated prediction
random variable Y B(x) = 1 with probability 1 for all
x ∈ X . Further, P(Y B(x) is the correct label for x) =
p. Define a random variable Z(X) =

1(Y B(X) is the correct label for X), then EZ(X) = p.
Note that 1 is the indicator random variable whose
outcome is always 0 or 1. It is 1 only when
Y B(x) is the correct label for x and 0 otherwise. Z(X)
is fully determined by X , Z(X) = 1 when X belongs
to class-1 (male) and Z(X) = 0 otherwise. Therefore,
Z(X) is 1 with probability p (= p1) and 0 with
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probability 1− p (= p0). Its entropy is given by

H(Z(X)) =− ∑
z∈{0,1}

P(Z(X) = z) logP(Z(X) = z)

=−(p log p+(1− p) log(1− p))
=−(p1 log p1 + p0 log p0) = H(Y ).

(5)

The uncertainty associated with predicting the gender
correctly is equal to the uncertainty in the gender it-
self. Since Z(X) is fully determined by X , it is clear
that the knowledge of X has not reduced the uncer-
tainty in gender prediction. Therefore, we can con-
clude that B has not extracted any gender information
from X , spurious or otherwise.

3.3 Entropy of a Classification
Algorithm A

Intuitively speaking, the database is gender biased
if the gender of an individual can be determined
with high accuracy, using only the perceived gender
neutral information that can be extracted from the
database. The higher the bias, the better the gender
determination, the easier the gender prediction. Let
us suppose that we have a classification algorithm
A that is trained on D to predict the gender variable
Y . Let Y A(X) be the prediction random variable
obtained by training A on D . It is the best approxi-
mation of Y found by A using D . Define p(A ,x)) :=
P(Y A(X) predicts the class of X correctly|X = x).
Suppose the accuracy is > p, then p(A ,x))> p. Note
that the accuracy of a classifier is approximately the
probability that a given query instance is classified
correctly.

The binary entropy function Hb(p) =−[p log p+
(1− p) log(1− p)] for 0 ≤ p ≤ 1. It monotonically
increases with p for 0 ≤ p ≤ 1/2, and it monotoni-
cally decreases as p increases from 1/2 to 1. Since
p(A ,x)) > p ≥ 1/2, Hb(p) > Hb(p(A ,x))). Let
Y t(X) represent the true label of X and Y f (X) its false
label. We are now ready to calculate the conditional
entropy:

H(Y A(X)|X)

=− ∑
x∈X

px ∑
y∈Y

P(Y A(X) = y|X = x)

logP(Y A(X) = y|X = x),

=− ∑
x∈X

px ∑
j∈{t, f}

P(Y A(X) = Y j(X)|X = x)

logP(Y A(X) = Y j(X)|X = x),

= ∑
x∈X

pxHb(p(A ,x))).

(6)

Since Y A(X) is really a proxy for the gender vari-
able Y , (6) is an estimate for H(Y ). We have pre-
viously discussed that Hb(p(A ,x))) < H(Y ) for all
x ∈ X . Using this in (6), we get that

H(Y A(X)|X)< H(Y ). (7)

Suppose the trained accuracy of classifier A is strictly
greater than p, then we have shown that the condi-
tional entropy of the associated gender prediction ran-
dom variable Y A(X) is strictly less than the intrinsic
entropy of the gender random variable Y . This indi-
cates that A was able to exploit some gender infor-
mation that is present inside X . Hence, the database
is gender biased and we were wrong in expecting X to
be gender neutral.

Being optimal, the Baye’s classifier B has
a better accuracy than A . As stated earlier, the
only issue is that it is incomputable in practi-
cal scenarios. We may nevertheless talk about
the conditional entropy H(Y B(X)|X), where
Y B(X) is the prediction random variable asso-
ciated with B. Similar to A , define p(B,x)) :=
P(Y B(X) predicts the class of X correctly|X = x).
Then, p(B,x)) ≥ p(A ,x)) > p for x ∈ X . As in the
case of A , we can show that H(Y B(X)|X) < H(Y ).
Further, since H(Y ) = H(Y G (X)|X), we have that

H(Y B(X)|X)< H(Y G (X)|X). (8)

When the accuracy of the Baye’s predictor is > p, the
associated conditional entropy is strictly less than the
“guessing entropy”. The Baye’s predictor is able to
perform better than guessing, as it is able to exploit,
possibly hidden, gender information that is present in
X .

3.4 Bayes Predictor Has Accuracy of p

We previously discussed that the majority classifier –
which classifies every query instance as belonging to
class-1 – has an accuracy of p, see (2) for the defini-
tion of p. This is because a majority classifier is cor-
rect only on male query instances and the fraction of
males is p, see Section 3.2 for details. Since we have
the freedom to choose A its accuracy can never be
< p. If it has a lower accuracy then we can choose the
majority classifier as A . In the previous section, we
analyzed the case where the accuracy of A is strictly
greater than p. In this section, we analyze the only
non-trivial case left – when the accuracy of A equals
p.

Since the accuracy of A depends on the chosen al-
gorithm, for the sake of analysis, let us suppose that
A is chosen to be the Baye’s classifier B . Therefore,
we are in the scenario where B has an accuracy of p.
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Define Y B
(X) := 1(Y B(X) is the correct class of X),

the random variable associated with the correct pre-
diction of the Baye’s classifier.

H(Y B
(X)|X) =− ∑

x∈X
px ∑

z∈{0,1}
P
(

Y B
(X) = z|X = x

)
logP

(
Y B

(X) = z|X = x
)
.

(9)

Since P
(

Y B
(X) = z|X = x

)
= p for x ∈ X , the RHS

of (9) equals ∑
x∈X

pxH(Y ), which in turn equals H(Y ).

Now that we have shown H(Y B
(X)|X) = H(Y ), we

see that the uncertainty associated with a correct pre-
diction by B is equal to the intrinsic uncertainty in
gender. The Bayes classifier B , that tries to find gen-
der patterns in X , is only as good as the majority clas-
sifier that does not consider X when predicting gen-
der. Since B is the optimal classifier, we can conclude
that that there is no gender information in X , at least
none that is useful.

3.5 Degree of Bias

In the supervised learning paradigm of Machine
Learning, one attempts to learn an unknown map
from the given input space X to the output space
Y . To do this, training data – {(x,Y (x)) | x ∈
X , Y (x) is the label of x} – is used. Y is the said un-
known map or the unknown output random variable.
A uses training data to learn Y A – an approximation
of Y . Let us suppose that Y is a random map that is
independent of X , Y does not truly consider X when
labelling it. From an information theoretic perspec-
tive this means that I(X ,Y ) = 0. Further, since Y A is
a proxy for Y , we expect I(X ,Y A)≈ 0.

I(X ,Y ) = H(Y )−H(Y | X) and ≈ H(Y )−H(Y A |
X) (as Y A is a proxy for Y ). When I(X ,Y )= 0 we may
conclude that X and Y are independent. They are de-
pendent when I(X ,Y ) > 0, with the mutual informa-
tion value quantifying the degree of dependency. In
the parlance of information theory, there is informa-
tion about Y in X , and vice versa, knowing X allows
one to predict Y to a degree that is proportional to the
aforementioned value. In Section 3.3, we discussed
conditions under which H(Y )> H(Y A | X), and since
I(X ,Y )≈ H(Y )−H(Y A | X), we get that I(X ,Y )> 0.
Further, H(Y )−H(Y A | X) is a good approximation
of how well one can predict the gender Y using only
X .

Suppose that we are given two different learning
problems with training data D1 and D2. (X1,Y1) is the
input-output random variables pair for the first prob-
lem and (X2,Y2) is the one for the second learning

problem. Say that A is trained on D1 and D2, yield-
ing approximations Y A(X1) and Y A(X2), respectively.
For the sake of argument, say H(Y1)− H(Y A(X1) |
X1)< H(Y2)−H(Y A(X2) | X2). We can conclude that
A has discovered a stronger dependency between X2
and Y2, as compared to the dependency between X1
and Y1.

4 EXPERIMENTAL STUDIES

In this section, we use our framework to conduct a
“gender bias analysis” on an employee database of
Karlstad University The database contains employee
records of the teaching and research staff at the Uni-
versity, from a few departments. There are 294 en-
tries, each containing 9 attributes (features) includ-
ing name, gender, teaching and research activities, de-
partment, and salary. Out of the 294 entries, 211 are
males and 83 are females. Using the definition of p in
(2), for the University database p = 211

294 ≈ 0.72.

4.1 Dataset Preparation

We need to first prepare the dataset corresponding to
the associated classification task, then train a clas-
sification algorithm using it. Each data entry is di-
vided into two components – X and Y . Y corre-
sponds to the gender attribute, Y = 0 when the en-
try is female and Y = 1 otherwise. The remaining
attributes constitute the X component. The names
are replaced by unique random strings in order to
remove gender information. All categorical fea-
tures, e.g., department code, are converted into vec-
tors using one-hot-encoding. All real-valued fea-
tures, e.g., salary are standardized. We thus need to
solve a binary classification problem and we have the
following dataset for training: D := {(X ,Y ) | Y ∈
{0,1}, X is the attributes vector, excluding gender}.
Given a feature vector X , our ML algorithm needs to
classify it as belonging to one of two classes – class-0
or class-1.

4.2 Choosing a Classifier and Empirical
Results

As X is a combination of real and categorial fea-
tures, we choose to use the Random Forest Classi-
fier (RF) for our task. Another reason for choosing
RF is due to the small size of the dataset – 294 dat-
apoints. For this configuration of training data, RF
is considered empirically superior to most other clas-
sification algorithms. We used the following set of
hyper-parameters for our experiments:
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Figure 1: Performance of Random Forest Classifier in terms
of accuracy.

1. 100 trees in the forest.

2. The gain impurity measure to divide the split from
the root node and for subsequent splits.

3. 2 samples to split an internal node.

The dataset D is divided into training and test data
– 80% of D is used to train RF and the remaining
20% is used as test data, also referred to as the “hold
out test data”. Let us represent the training data using
Dtrain and the hold out test data using Dtest . The train-
ing progress of RF is illustrated in Fig. 1. The x-axis
represents the number of training datapoints and the
model accuracy is plotted along y-axis. The blue bold
line represents the accuracy of RF within the train-
ing data Dtrain. The green dashed line represents the
accuracy of RF on the hold out test data Dtest . We
observed that the training accuracy is very close to
1 after training with just 25 datapoints from Dtrain.
The accuracy on the test data Dtest , however, is low
at the beginning. As RF is trained on more data, the
test accuracy increases to 0.87. Hence, the accuracy
of RF is strictly better than p (= 0.72). Let Y RF(X)
represent the map found by RF after training using
Dtrain. It follows from the discussion in Section 3.3
that H

(
Y RF(X)|X

)
< H(Y ), that there is information

about Y in X , and that the knowledge of X reduces
the uncertainty in Y . RF is able to exploit some “gen-
der pattern” in X in order to predict the gender Y at a
rate that is better than guessing (completely disregard
X when predicting Y ). Put another way, suppose there
is no gender information in X , then the RF predictions
can only be as good as guessing.

Remark 1. The RF worked admirably well for our
purpose – to illustrate our idea. It may not be the
optimal choice for another use-case, involving a dif-
ferent dataset. One workaround involves training an
ensemble of classifiers, instead of a single one. We
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Random Forest Feature Importance

Figure 2: Feature Ranking.

then compare the accuracy of the ensemble to p for
diagnostics. The accuracy of the ensemble equals the
maximum of the classifier accuracies.

4.3 Feature Importance Analysis

The feature importance score measures the contribu-
tion of a particular feature to the prediction accuracy,
higher scores indicate greater contributions. The top
scoring features are more likely to have more Y in-
formation (gender information), as compared to low
scoring features. As illustrated in Fig. 2, the date of
birth is the highest ranked feature in our experiment.
Out of all the features, it is likely to have the most
gender information. This would be accounted for in
cases such as Karlstad University, where the more ju-
nior individuals in these departments are women. The
second highest ranked feature is salary, and again, this
contains gendered information, given that women in
Karlstad University, as elsewhere, are more likely to
be in more junior positions and have lower salaries.
Having said that, it must be noted that the highest
salary is earned by a female Professor in our database.
However, the corresponding datapoint is treated as an
outlier by the classification algorithm.

It must be noted that there are several other stud-
ies that look at gender inequality in Technology, see,
e.g., (Jaccheri, 2022). In particular, (Jaccheri, 2022)
considers the under-representation of women in the
field of Computer Science. Best practices are also
presented for attracting, retaining, encouraging, and
inspiring women in the future. The point of de-
parture of our work, as compared to these studies,
is that we present an automated way of detecting
gender-bias, by estimating a suitable conditional en-
tropy using ML. We therefore provide a simple and
automated way of diagnosing possible gender biases
within organizations. If a gender bias is detected by
our framework, then the solutions highlighted in (Jac-
cheri, 2022) can be employed to improve the situa-
tion.
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5 CONCLUSIONS

Given observations of random variables X and Y , we
presented a ML based framework to estimate the con-
ditional entropy H(Y |X). Our framework is applica-
ble for discrete-valued X and bi-valued Y . We trained
a classification algorithm A to predict Y , given X . The
training dataset was constructed using the X and Y ob-
servations. Algorithm A yielded Y A , an approxima-
tion of Y. Then, we used the prediction accuracy to
calculate H(Y A(X)|X), an approximation of H(Y |X).
We formally showed that H(Y |X) < H(Y ) when the
prediction accuracy is strictly greater than p, where p
is defined in equation (2). We thus obtained a sim-
ple sufficient condition on the accuracy to check the
bias of the given dataset. We illustrated our method-
ology by analyzing the employee database from Karl-
stad University. We also discussed how ML tools such
as feature importance scores can be used to obtain
deeper insights.
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