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Abstract: Hands and objects severely occlude each other, making it extremely challenging to estimate the hand-object
pose during human-robot interactions. In this work, we propose a framework that jointly estimates 3D hand
mesh and 6D object pose in real-time. The framework shares the features of a single network with both the
hand pose estimation network and the object pose estimation network. Hand pose estimation is a parametric
model that regresses the shape and pose parameters of the hand. The object pose estimation network is a
cross-model variational autoencoder network for the direct reconstruction of an object’s 6D pose. Our method
shows substantial improvement in object pose estimation on two large-scale open-source datasets.

1 INTRODUCTION

Hands are the primary tools that interpret the ac-
tions of humans and interact with the real environ-
ment. To understand human action and behavior in
human-robot interaction environments, the poses of
the hand and the poses of the interacting objects are
necessary. With advancements in computer vision
and deep learning, both hand pose estimation (Zim-
mermann and Brox, 2017; Spurr et al., 2018; Mueller
et al., 2018; Ge et al., 2019; Hasson et al., 2019; Park
et al., 2022; Mueller et al., 2017; Garcia-Hernando
et al., 2018; Yuan et al., 2018; Moon et al., 2018;
Zhou et al., 2020) and object pose estimation (Kehl
et al., 2017; Xiang et al., 2018; Rad and Lepetit,
2017; Tekin et al., 2018; Peng et al., 2019; Hu et al.,
2019) have made significant progress independently.
3D hand and object pose estimation is a central part of
applications like human-robot interaction (Yang et al.,
2021; Ortenzi et al., 2021), virtual reality (Höll et al.,
2018), and augmented reality (Piumsomboon et al.,
2013). To avoid implausible mesh representations,
the strict relationship between the hand and the ob-
ject must be understood. Although joint hand-object
pose estimation has gained interest in recent studies,
it requires further attention.

Combined hand-object pose estimation is quite
challenging because of the self and mutual occlusions
of hands and objects. 3D hand-object pose estimation
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Figure 1: The basic structural process of the cross-model
conditional variational autoencoder. Each autoencoder con-
sists of an encoder, a low dimensional latent distribution,
and a decoder. The latent space is shared between the mod-
els and paths are switched depending on the decoder.

research falls into two categories: optimization- based
and learning-based. The optimization requires refine-
ment where the process is repeated multiple times to
achieve convergence, unlike the end-to-end learnable
models. Because convergence takes a considerable
amount of time for optimization methods, real-time
applicability is out of the question. Similarly, in this
study, we focus on a learning-based approach with
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a user-friendly scenario in which hand pose and ob-
ject pose reconstruction are performed using a sin-
gle RGB image. Learning-based approaches can be
broadly categorized as those that rely on implicit rep-
resentations and parametric mesh models. The well-
known parametric hand model is MANO (Romero
et al., 2017). With prior shape knowledge and actual
3D human hand scans, MANO produces anthropo-
morphically valid hand meshes. Although paramet-
ric meshes have limited resolution, it is difficult to
recover intricate interactions from them. In addition
reconstructing 3D objects in hands is quite challeng-
ing. The complexity further increases during interac-
tion with the objects. Recent research (Tekin et al.,
2019; Doosti et al., 2020; Hasson et al., 2019; Tse
et al., 2022; Liu et al., 2021) has been successful
in addressing the challenges of estimating or recon-
structing hand-object pose estimation from a single
RGB image. Recently, there have been encouraging
findings regarding object reconstruction using neural
implicit representations (Karunratanakul et al., 2020).
In their work, the authors demonstrate how to model
hand-object interactions using the joint representation
of unified signed distance fields (SDFs). The net-
work does not consider any explicit prior details about
hands and objects that cause unrealistic meshes.

In this work, we propose reconstructing an ob-
ject’s 6D pose from a deep generative model known as
a conditional variational autoencoder (CVAE) (Sohn
et al., 2015) with cross-modality. Autoencoders usu-
ally generate n number of output samples for a given
input. In our case, we need one input and one out-
put from the generative model; therefore, we consider
cross-model CVAE. The basic cross-model CVAE ar-
chitecture is illustrated in Figure 1. We also exploit
the idea of using an attention module from the trans-
former (Vaswani et al., 2017) to enhance the encoder
and decoder features of CVAE.

To summarize, the core contributions of these
work areas are as follows:
[1] We propose a joint hand-object reconstruction
model from a single RGB image.
[2] We designed a novel framework for object pose
reconstruction using autoencoder models.
[3] We evaluate the framework on ObMan (Hasson
et al., 2019) and DexYCB (Chao et al., 2021) large-
scale open-source datasets and show that our frame-
work outperforms the state-of-the-art methods on ob-
ject mesh reconstruction.

2 RELATED WORK

Our research is related to hand pose estimation, ob-
ject pose estimation, joint hand-object pose estima-
tion, and variational autoencoders. Different input in-
formation, such as RGB, depth, and point cloud in-
formation, is used to estimate the hand-object pose.
Recent research work on hand pose estimation com-
pletely focused on regressing 2D and 3D hand poses
from a single RGB image.
Hand Pose Estimation. Zimmerman et al. (Zim-
mermann and Brox, 2017) present a cascaded archi-
tecture with segmentation, pose, and pose-prior net-
works. Initially, the region of the hand is segmented
and forwarded to a pose network for 2D heatmap re-
gression of hand joints. Later, the pose prior network
elevates the 2D keypoints to 3D keypoints. Adrian et
al. (Spurr et al., 2018) propose a cross-model latent
space reconstruction of the hand pose using a vari-
ational autoencoder. A simple regression of 2D or
3D hand pose does not convey the shape of the hand,
Ge et al. (Ge et al., 2019) present a graph convolu-
tional network-based architecture to recover 3D hand
mesh. Model-based approaches rely on a differen-
tiable MANO model (Romero et al., 2017) to obtain
a 3D hand pose and shape with a mesh. Later, the
research works were extended to model-based meth-
ods that regress the pose and shape parameters of a
hand (Boukhayma et al., 2019; Park et al., 2022; Has-
son et al., 2019; Kulon et al., 2020; Zhang et al., 2019)
instead of 3D keypoints.
Object Pose Estimation. The research work suggests
that there are two different methods of 6D object pose
estimation: direct regression and regression of 3D ob-
ject points for recovery of 6D object pose using the
perspective-n-point (PnP) algorithm. Yu et al. (Xiang
et al., 2018) propose a convolutional neural network-
based model for 6D object pose estimation using re-
gression translation and rotation as a quaternion. The
authors also introduce a large-scale 6D object pose
dataset known as the YCB dataset, which is widely
used. Due to the limitation of direct regression, the
works (Peng et al., 2019; Hu et al., 2019) rely on a
two-stage process of detecting 2D keypoints in RGB
images using convolutional neural networks and then
using the known 3D correspondences to obtain 6D
pose using the PnP algorithm. To further improve the
accuracy of 6D object pose, (Labb’e et al., 2020) in-
troduce multi-view multi-object pose estimation.
Unified Hand-Object Pose Estimation. The earli-
est unified hand-object pose estimation (Tekin et al.,
2019) solves four tasks simultaneously, i.e., object
pose estimation, 3D hand pose estimation, object
recognition, and action classification, using a single-
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Figure 2: The basic overview of the proposed architecture. The input image is a closely cropped region of hand manipulating
object. The input image is passed through the ResNet50 architecture to obtain the shared features infromation for the hand
pose estimation and the object pose estimation. The output from the architectuer is a hand mesh from MANO model and 6D
object pose from autoencoder.

shot neural network. To compute the object pose,
the authors abandon the notion of 2D–3D correspon-
dences and instead regress the direct 3D bounding
box coordinates of the object. Doosti et al. (Doosti
et al., 2020) propose Graph UNet architecture to fur-
ther enhance the accuracy of combined 3D hand-
object pose estimation. For hand-object manipula-
tion applications, Hasson et al. (Hasson et al., 2019)
propose an end-to-end model for the regression of
plausible hand-object poses using a shared feature
backbone. Sharing the feature network for the hand-
object pose implicitly encodes contextual informa-
tion. Leveraging the context information of hand and
object, (Liu et al., 2021) introduces semi-supervised
learning for hand-object interactions. The work gen-
erates pseudolabels by considering spatial-temporal
consistencies. The architecture consists of two differ-
ent streams that share a similar FPN architecture with
the ResNet50 backbone. The features of the hand and
object were extracted from the FPN architecture, and
contextual reasoning was performed for object pose
estimation. The features are then forwarded to inde-
pendent decoders to regress the hand mesh and 6D
object pose. The work (Tse et al., 2022), presents col-
laborative learning for hand-object pose reconstruc-
tion using unsupervised associative loss. The hand-
object features are encoded independently at the input
without a shared backbone, and the information from
attention-guided graph convolution is shared with the
object mesh network and the hand mesh network.
The work (Wang et al., 2022) propose a dense mu-
tual attention module to refine the hand and object
meshes estimated in the first stage. The network mod-
els the fine-grained dependencies between hands and
objects using a graph convolution network and at-
tention. AlignSDF (Chen et al., 2022) is one of the
early works to propose a hybrid model that combines
a parametric model with an implicit representation
model known as SDFs. The authors consider pose pri-
ors to the SDFs, unlike the work in (Karunratanakul

et al., 2020) to further enhance the hand-object recon-
struction.
Variational and Conditional Variational Au-
toencoder. Conditional variational autoencoders
(CVAE) (Sohn et al., 2015) are an extension of
the variational autoencoders (VAE) (Kingma and
Welling, 2014; Rezende et al., 2014). VAEs are
deep learning generative models for learning the la-
tent distribution of input samples instead of fixed vec-
tor learning. VAE comprises an encoder, latent dis-
tribution, and a decoder. To convert the input data
samples to a compressed low-dimensional latent rep-
resentation, a probabilistic encoder with a mean and
standard deviation is used. In CVAE, an additional
condition variable is added to the encoder input and
respectively to a decoder. Li et al. (Li et al., 2020)
propose an augmented autoencoder for hand pose es-
timation during object occlusions. The authors used a
variational autoencoder to estimate the 3D hand pose
during object occlusion from a point cloud input. The
work in (Chen et al., 2020) presents an idea of learn-
ing shape using VAE for size estimation, in addition
to pose and shape. The work (Spurr et al., 2018)
introduces cross-model variational autoencoders that
result in a single latent space for input with multiple
modalities, and we draw inspiration from this work
for the cross-model CVAE that we propose.

3 METHODOLOGY

In Figure 2, we introduce our hand-object joint re-
construction network. The network consists of a fea-
ture extraction network in the first stage that takes
an RGB image R3×256×256 of a combined hand-
object region. The feature extraction network is a
well-known ResNet-50 (He et al., 2016) architecture.
The features from the ResNet50 backbone are passed
through a deep neural network layer with an atten-
tion module to obtain the pose and shape parameters

Hand Mesh and Object Pose Reconstruction Using Cross Model Autoencoder

185



Figure 3: The single head attention mechanism used in the
transformer.

for the parametric MANO (Romero et al., 2017) hand
model. The object pose estimation network comprises
a cross-model variational autoencoder to reconstruct
the object pose.

3.1 Attention Mechanism

The attention mechanism introduced in (Vaswani
et al., 2017) works well for many applications such
as natural language processing and computer vi-
sion (Dosovitskiy et al., 2021). The attention mech-
anism takes n features as input and returns n output
features. The basic operation of attention is that it
learns to pay more attention to the necessary features.
The attention mechanism is also known as scaled dot-
product attention and consists of queries (Q), keys
(K), and values (V ) as inputs. The same input fea-
tures are copied to queries, keys, and values, and the
attention is computed as follows:

Attention (Q,K,V ) = softmax
(

QKT
√

dk

)
V (1)

where
√

dk is a scaling factor. The attention mecha-
nism can be used for n dimensional (D) space. The
attention mechanism is illustrated in Figure 3 single
head attention block. The single-head attention mech-
anism is further extended to multi-head attention by
combining multiple heads in parallel. The attention
mechanism works for an n-dimensional input.

3.2 Hand Pose Shape Regression
Network

The hand pose estimation network is a direct shape
and pose parameter regression model with self-
attention combined with residuals as represented in

Figure 4, and a MANO (Romero et al., 2017) model
to obtain hand vertices and 3D hand joints. The pro-
cess of hand mesh extraction is similar to the work in
(Liu et al., 2021). The only difference is the pose and
shape regression network, in which the attention mod-
ules are included to further enhance the features. For
learning supervision, we consider L2 loss between the
groundtruth joints Jgt and the predicted joints Jp from
the MANO model.

LJ3D =
21

∑
j=i

∥Jgt − Jp∥2
2 (2)

The hand pose and shape regression network con-
sists of three residual attention modules with pooling
layers. Each residual layer consists of two convo-
lutional attention layers. As the attention layer has
the same input and output sizes, the pooling layers
are introduced after the residual attention as repre-
sented in the Figure 4. After the residual attention
layers, two fully connected layers are connected with
a batch normalization and ReLU activation unit. The
final layers output a total of R58. The output from
the regression network consists of pose θ ∈ R48 and
shape β ∈R10 parameters for the MANO model. The
MANO model reconstructs the hand vertices and 3D
hand joints from the pose and shape parameters of the
regression network. The L2 loss is computed on the
pose parameters θ, and shape parameters β for further
regularization. The overall loss of the hand branch is
the sum of the 2D heatmap loss, pose-shaped regres-
sion loss, and MANO (Romero et al., 2017) loss. Due
to the limitations of the parametric MANO model,
we include an additional loss known as biomechan-
ical constraint loss LBMC using hand kinematics as
in (Spurr et al., 2020). This loss is also considered
during training to avoid undesirable hand joint kine-
matics.

Lhandloss = λJLJ3D +λθLθ +λβLβ +LBMC (3)

where λJ = 0.5, λθ = 5×10−7, λβ = 5×10−5 to bal-
ance the joint loss and pose-shape parameters.

Figure 4: The hand pose and shape regression network.
The network consists of three residual attention layers with
pooling in between to reduce the feature size. The output
from the attention layers is further passed to the linear lay-
ers to regress hand pose and shape parameters.
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3.3 Object Pose Estimation Network

The object pose estimation network comprises a
cross-model conditional variational autoencoder net-
work for 6D pose reconstruction. The cross-model
CVAE network consists of two VAEs or one CVAE
and one VAE that share the latent space and decoders,
as shown in Figure 5 and Figure 1. There are two
different branches in cross-model CVAE: the object
reconstruction branch and the image reconstruction
branch.

3.4 Cross-Model Conditional
Variational Autoencoder

A CVAE (Sohn et al., 2015) is a deep generative
model with a conditional argument that is widely
used in applications such as robotics (Ivanovic et al.,
2021), image classification (Bao et al., 2017), and ob-
ject detection. Simple CVAE takes object pose x as in-
put, a conditional variable y, and learns to reconstruct
x′, which is similar to the input object pose. CVAE
comprises an encoder network that resembles the la-
tent distribution z, or qφ(z|x,y). The latent distribution
is Gaussian with unit variance. The following section
describes a decoder network that is an approximation
of pθ(x|z,y). The decoder network generates a grasp
pose from the learned distribution pθ(x|z,y) given the
conditional variable y and a sample from the latent
distribution. The loss function for weight learning is
given by Eq. 4.

L(θ,φ) =−Ez∼qφ(z|x,y)[log pθ(x|z,y)]
+βvaeDKL(qφ(z|x,y)||pθ(z|y)) (4)

Eq. 4 consists of a L2 reconstruction loss in the
first term, which represents the disparity between the
real pose x and the reconstructed pose x′ obtained
from the decoder. The Kullback-Leibler divergence
(KLD) between the learned latent distribution and the
unit-variance Gaussian is managed in the second part
of Eq. 4. KL divergence serves as a regularization to
maintain the variational posterior near the prior distri-
bution over latent variables. The parameter βvae bal-
ances the capacity of the latent variables with the re-
construction error (Higgins et al., 2017).

KLD =−0.5(1+ log(σ2)−µ2 −σ
2) (5)

For the first branch, the object pose vector is con-
sidered as the input. The input object pose x is for-
warded to the CVAE encoder layers. The encoder
consists of three fully connected layers with batch
normalization and leaky ReLU, except for the last
layer. The first, second, and third layer output fea-
tures are 128, 256, and 512, respectively. We pass the

fully connected features to a self-attention module as
in Figure 3 and a linear layer to obtain the mean and
variance features for latent distribution z, or qφ(z|x,y).
Similarly, in the decoder, the latent features are for-
warded to two fully connected layers with output sizes
of 512 and 256. Finally, we add another self-attention
layer with a linear module to obtain enhanced features
and obtain the reconstructed 9D object pose vector.
The object pose vector is then transformed into a 6D
object pose.

The second branch is utilized for the reconstruc-
tion of the input hand-object image. The second
branch consists of six convolutional layers with batch
normalization and leaky ReLU activation in the en-
coder. The features are then forwarded to two fully
connected layers and a self-attention module to obtain
the mean and variance of the latent distribution. The
complete process is illustrated in Figure 5. The input
to the second branch or VAE is of size 256×32×32.
Each convolution layer in the encoder consists of a
convolution block, batch normalization, and activa-
tion layer. The first convolution layer outputs 64 fea-
tures with kernel size 1 and zero padding, resulting in
64× 32× 32 features. The kernel size and padding
for the next layer are changed to 3 and 1, respectively,
and the output feature size is 32× 32× 32. The pa-
rameters of the first and second convolutions are re-
peated two more times, resulting in features of size
2× 32× 32. Finally, the features are linearized and
downsampled to 1× 1024. The features were further
reduced to 256 by applying two fully connected lay-
ers, and the features were enhanced via self-attention.
The attended features are used for the latent distribu-
tion z computation. Finally, in the decoder, the pro-
cess is repeated with 2D convolution transpose to ob-
tain an output image of size 256×256×3. The cross-
model autoencoders are trained in a manner similar
to the work in (Spurr et al., 2018). Each sample is
trained in a data-pairs manner so that the model out-
puts a single latent space with multiple modalities. Fi-
nally, we obtain the modality based on the selection
of the decoder. In this work, during inference, we se-
lect the encoder from branch 2 and the decoder from
branch 1 to estimate the single object pose based on
the input image and neglect the other decoder from
branch 2 because it is not necessary for this applica-
tion. The loss function of the overall pose estimation
network is computed individually for both branches,
summed, and updated during training. During experi-
mentation, we added a conditional variable to branch
1 as in Figure 1. The conditional variable is a one-
hot coded vector of the object ID number of known
objects.

Hand Mesh and Object Pose Reconstruction Using Cross Model Autoencoder

187



Figure 5: The basic structural process of the cross-model conditional variational autoencoder. Each autoencoder consists of
an encoder, a low dimensional latent distribution, and a decoder. The latent space is shared between the models and paths are
switched depending on the decoder.

3.5 Object Pose Representation

The input is an object pose with a translation T and
rotation R component. Different representations of
rotation components exist, such as rotation matrices,
quaternions, and Euler angles. Singularities and the
antipodal issue for regression are constraints of Eu-
ler angles and quaternions. Additionally, (Zhou et al.,
2019) has shown that any rotation representation in
3D with fewer than five dimensions is discontinuous
and more difficult to learn. As a result, we use the
Gram-Schmidt process to take advantage of the or-
thogonal features of a rotation matrix and create an
orthonormal basis from two vectors, as shown in Eq.6.
The third column of the rotation matrix component is
unnecessary. The rotation matrix R is reconstructed
by multiplying the first and second column vectors, e1
and e2, respectively. The object pose input for CVAE
is the translation vector T and the first two columns
from the rotation matrix R.

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

=
(
e⃗1 e⃗2 e⃗1 × e⃗2

)
(6)

x =
(
t1 t2 t3 r11 r21 r31 r12 r22 r32

)
(7)

Once the object pose x′ is reconstructed from
CVAE, the 6D rotation representation is converted

to a rotation matrix by applying the abovementioned
process.

The total loss function is a combination of the
hand pose estimation loss and the object pose estima-
tion loss. The hand pose estimation loss is the sum of
the heatmap loss, pose-shaped regression loss, BMC
loss, and MANO loss, as shown in Eq. 3. The object
pose estimation loss is the sum of the two VAE losses,
as shown in Eq. 4. The βcvae in the CVAE loss can
either be fixed or varied.

LTotal = Lhandloss +λbranch1L(θ,φ)branch1

+λbranch2 L(θ,φ)branch2 (8)

where the βcvae parameter is set to 0.01 in the ini-
tial stages and is modified during the experimentation.
The λbranch1 and λbranch2 is the loss scaling factors
for training the proposed end-to-end model, which is
empirically computed. The βcvae parameter is mod-
ified with respect to the epoch number as suggested
in (Higgins et al., 2017). The value of βcvae is set to
0.5 until epoch 10, which changes to 0.1 from epoch
10 to epoch 20. From epochs 20 to 40, the value is set
to 0.01, and the reduction process is repeated every 20
epochs until the βcvae reaches 0.0001.
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Figure 6: The visualization of the results from the proposed architecture. The first image in each row is the input image, the
second image is the output reprojections on 2D images, and the last two images are 3D meshs of hand and object0 from two
different views.

4 EXPERIMENTS

4.1 Implementation Details

The introduced framework is entirely implemented in
PyTorch (Paszke et al., 2019). The complete model
is trained in an end-to-end manner with Adam op-
timizer (Kingma and Ba, 2015). We intiliatize the
ResNet50 (He et al., 2016) architecture with pre-
trained weights and shared input features for the hand
pose estimation and object pose estimation networks.
The model is trained with an initial learning rate of
1e-4 with a decay factor for every 20 epochs until we
reach 100 epochs and a constant rate until 200 epochs
with a batch size of 128. The input images are re-
sized to 256× 256× 3, and we perform simple data
augmentation techniques such as scaling, color jitter,
brightness, and contrast. The input image is a closely

cropped region of hands and objects with bounding
box information provided by the datasets.

4.2 Datasets and Evaluation Metrics

ObMan (Hasson et al., 2019). A large-scale syn-
thetic dataset contains various hand-grasping poses
with high-quality meshes on a variety of imported
ShapeNet objects but for experimentation, we con-

Table 1: The architecture is trained in two different ways.
The hand pose and shape regression is trained individually
and end-to-end with object pose reconstruction on DexYCB
dataset.

Hand
Architecture MJE (mm ↓)

Joint Training 13.1
Independent Hand 12.1
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Figure 7: The qualitative reconstructed outputs of failure scenarios.

Table 2: Comparison of the proposed architecture to the state-of-the-art methods on DexYCB dataset.

Hand Object Interaction
Method MJE(cm↓) MCE(cm↓) PD(mm↓)

(Hasson et al., 2019) 1.76 - -
(Hasson et al., 2021) 1.88 5.25 0.79
(Tse et al., 2022) 1.53 - -
(Wang et al., 2022) 1.27 3.26 0.67
Ours 1.21 3.02 0.60

Table 3: Comparison to the state-of-the-art methods on ObMan dataset.

Hand Object Interaction
Method MJE(mm↓) CD(mm↓) PD(mm↓)

(Hasson et al., 2019) 11.6 637.8 9.2
(Tse et al., 2022) 9.1 385.7 7.4
(Chen et al., 2022) - 338 6.6

Ours 8.7 315.6 6.8

sider 8 different objects. To generate plausible grasps
between synthetic hands and objects, GraspIt soft-
ware was utilized. From this dataset, we consider 80K
samples for training and over 6K samples for testing.
DexYCB (Chao et al., 2021). The DexYCB dataset
is a large-scale real dataset with over 580K RGB-
D images from 10 human subjects manipulating 20
YCB objects. The dataset is captured from 8 Re-
alsense cameras simultaneously at a rate of 30 fps
with a resolution of 640×480. The evaluation setup
consists of different scenarios with unseen subjects,
unseen views, and grasping from which we select the
default setup known as S0. The val/test split does not
share anything except the sequences in the S0 setup.
The dataset consists of videos of subjects grasping the
ycb objects where the distance between hands and ob-
jects is quite large at the beginning and some times not
visible in the scene. For a fair comparison, we follow
a process similar to (Wang et al., 2022) to neglect im-
ages where the distance between hands and objects is
greater than 1cm to assume contact between them.
Evaluation Metrics. The standard evaluation met-
rics of hand pose estimation are mean hand joint er-
ror (MJE). For object pose estimation, we compute
the mean corner error (MCE). To measure the re-
construction quality of joint meshes we also com-
pute the penetration depth (PD) in mm to check for
plausible collisions between hands and objects simi-

lar to (Wang et al., 2022) for a fair comparison of the
DexYCB dataset. Similarly for the ObMan dataset,
we use mean joint error (MJE) for hand pose evalua-
tion, chamfer distance (CD) in mm for object pose es-
timation, and penetration depth (PD) for hand-object
interactions as proposed in (Hasson et al., 2019) for
fair comparison.

4.3 Results

We test the performance of the proposed hand-object
framework on the ObMan and the DexYCB datasets.
Few reconstructed qualitative samples can be ob-
served in Figure 6. The first column consists of in-
put images to the network which is a closely cropped
hand object region. The second column represents
the output reprojections on 2D images. The last two
columns are the output 3D hand and object pose from
two different views. Two scenarios where the pro-
posed architecture achieved low or failed to recon-
struct are shown in Figure 7. From this we can ob-
serve that, the proposed algorithm fails to reconstruct
the right poses when partial hand is visible in the im-
age or when the objects are highly occluded by the
hands.
Hand Only Experiments. Although we propose
the joint learning framework, we evaluate the perfor-
mance of training the hand pose estimation network
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Table 4: Ablation study and the effect of attention layers.

Hand Object
Methods MJE (cm ↓) MCE (cm ↓)

w/out Attention-Hand 1.76 -
With Attention-Hand 1.27 -
With Attention-Hand and BMC Loss 1.21 -
w/out y and w/out Attention-Object - 9.8
with y and w/out Attention-Object - 4.8
with Attention-Object - 3.02

individually. From the experiments, we noticed that
there is a slight performance improvement in the hand
pose estimation when trained independently. The
mean hand joint errors (MJE) for both experiments
are mentioned in Table 1. From the experiments, we
can observe that the hand pose estimation achieves
better outcomes when trained independently.
Comparison with the State-of-the-Art Methods.
The model trained on the DexYCB (Chao et al., 2021)
dataset and the comparison results are shown in Ta-
ble 2. As shown, our method achieved a mean hand
joint error of 12.1 mm. Recent works such as (Chen
et al., 2022; Chen et al., 2023) also achieved bet-
ter results on the DexYCB dataset but the results are
represented in chamfer distance rather than the tradi-
tional MJE and MCE so, we could not compare their
methods. The results on the ObMan (Hasson et al.,
2019) dataset are represented in Table 3. We can ob-
serve that the hand pose estimation achieved a mean
joint error of 8.7mm and object chamfer distance is
315.6mm. Although the chamfer distance achieved
state-of-the-art performance, the interaction parame-
ter is a bit higher than in previous works. To this end,
adding a further refinement stage would improve the
interaction parameter further.

4.4 Ablation Study

The ablation study gives a deeper understanding of
the architecture and the importance of each block in
the proposed network. To study the network, we con-
sider the DexYCB (Chao et al., 2021) dataset. The
significance of each block can be observed in Ta-
ble 4. For hand mesh reconstruction, we first use
just the ResNet block and regress the pose and shape
parameters for the MANO (Romero et al., 2017)
model. From that, we obtain the hand mean joint er-
ror of 1.76cm and after adding the hand pose shape
regression network with attention blocks the error
is reduced to 1.27cm and it is further improved to
1.21cm by using BMC loss during training. Similarly,
conduct these experiments for object reconstruction
block where the conditional variable y and attention
mechanism are modified. At first, we consider train-
ing without the conditional variable y and attention
mechanism and achieve object MCE of 9.8cm which

is quite high. Further, we added variable y and noticed
a huge improvement resulting in 4.8cm object MCE.
Finally, by considering all the parameters and proper
hyperparameter tuning we achieve object MCE of
3.02cm. In adddition to that, we test the real-time
usability of the architecture by estimating the frames
per second. From the experimentation, we achieve
around 19 fps.

5 CONCLUSION

In this work, we propose a joint learning framework
for hand-object pose estimation. The features from a
single backbone are shared between the hand pose es-
timation network and the object pose estimation net-
work. We propose a unique cross-model conditional
variational autoencoder for 6D object pose estimation
via multi-model pair learning. We trained the archi-
tecture on the DexYCB and the ObMan open-source
large-scale dataset and achieved good performance on
hand pose estimation and better than state-of-the-art
performance on object pose estimation. The perfor-
mance of interaction parameter needs further atten-
tion and we are currently aiming to improve it by
adding a refinement stage.
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and Kulić, D. (2021). Object handovers: A review for
robotics. IEEE Transactions on Robotics, 37:1855–
1873.

Park, J., Oh, Y., Moon, G., Choi, H., and Lee, K. M. (2022).
Handoccnet: Occlusion-robust 3d hand mesh estima-
tion network. In Conference on Computer Vision and
Pattern Recognition (CVPR).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Köpf, A., Yang, E., De-
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