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Abstract: Event cameras are a new type of image sensor. The pixels of these sensors operate independently and asyn-
chronously from each other. The sensor output is a variable rate data stream that spatio-temporally encodes
the detection of brightness changes. This type of output and sensor operating paradigm poses processing chal-
lenges for computer vision applications, as frame-based methods are not natively applicable.
We provide the first systematic evaluation of different state-of-the-art deep learning based instance segmenta-
tion approaches in the context of event-based outdoor surveillance. For processing, we consider transforming
the event output stream into representations of different dimensionalities, including point-, voxel-, and frame-
based variants. We introduce a new dataset variant that provides annotations at the level of instances per output
event, as well as a density-based preprocessing to generate regions of interest (RoI). The achieved instance
segmentation results show that the adaptation of existing algorithms for the event-based domain is a promising
approach.

1 INTRODUCTION

Event cameras, also known as Dynamic Vision Sen-
sors (DVS) or silicon retinas, are a new type of im-
age sensor. Unlike conventional frame-based im-
age sensors, they operate completely asynchronously
and independently per pixel. Following the biolog-
ically inspired ideas of neuromorphic engineering,
only changes in brightness per pixel are detected and
directly transmitted. The result is not a classical video
frame captured at a fixed sampling frequency, but an
output stream of variable data rate depending on the
changes in the scene.

Each detected change in brightness above a de-
fined threshold value results in a so-called output
event and is transmitted immediately. For each out-
put event, (a) its spatial (x,y)-position in the sensor
array, (b) a very precise timestamp t of the triggering,
and (c) the polarity p of the change (bright to dark
and vice versa) are encoded. The technical operating
paradigm of these sensors allows recordings with high
temporal resolution and low data redundancy, while
simultaneously offering a very high dynamic range.

a https://orcid.org/0000-0001-5504-8472
b https://orcid.org/0000-0002-4655-6851

These are very important and advantageous factors for
outdoor applications.

However, the sparse, unordered, and asyn-
chronous output of these sensors poses challenges for
processing in terms of classical computer vision ap-
proaches. In this work, we investigate the task of in-
stance segmentation on event-based data in the con-
text of outdoor surveillance recordings in order to
gain deeper insight into the usage of the monitored
areas. Additional challenges arise from unconstrained
real-world factors, small object sizes, and occlusions.
In summary, we contribute the first systematic evalu-
ation of state-of-the-art deep learning approaches for
instance segmentation, including different event en-
codings, to assess their suitability under these condi-
tions.

The rest of this paper is structured as follows. Sec-
tion 1.1 summarizes related work. Event data rep-
resentations and instance segmentation networks are
briefly described in Section 2. The datasets used and
the preprocessing are introduced in Section 3. The
results of the evaluation are discussed in Section 4.
Supplemental material is available for download1.

1http://dnt.kr.hsnr.de/DVS-InstSeg/
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1.1 Related Work

Segmentation is an important part of computer vision
and is needed for a variety of tasks in scene under-
standing. Event-based research in this area is not as
extensive as its frame-based counterpart. This is due
to the novelty of the sensor technology itself.

Frame-Based Processing. The development of
methods for traditional 2D frame-based pro-
cessing is more advanced. Libraries such as
Detectron2 (Wu et al., 2019b) are available,
providing state-of-the-art recognition and seg-
mentation algorithms as well as pre-trained
models. Basically, two different approaches
can be distinguished here. In proposal-based
approaches, objects are first detected using
bounding box techniques and then segmented. A
well-known example of this is Mask R-CNN (He
et al., 2017).
On the other hand, the well-known YOLO fam-
ily (Redmon et al., 2016; Jocher et al., 2023) di-
rectly predicts bounding boxes and class proba-
bilities for objects in a single pass. Along with
the use of pixel-level grouping or clustering tech-
niques to form instances, such as (Xie et al., 2020;
Xie et al., 2022; Wang et al., 2020), this provides
proposal-free methods.

3D-Based Processing. The output stream from event
cameras can also be interpreted as a three-
dimensional (x,y, t) cloud. Therefore, instead of
using (x,y,z) point clouds, 3D-based instance seg-
mentation methods are also of interest in this con-
text. Basically, 3D methods can also be distin-
guished into proposal-based and proposal-free ap-
proaches. The former decompose the segmenta-
tion problem into two sub-challenges: Detecting
objects in 3D and refining the final object masks
(Yang et al., 2019; Engelmann et al., 2020). The
latter typically omit the detection part and try to
obtain instances by clustering after semantic seg-
mentation (e.g., following the assumption that in-
stances should have similar features) (Zhao and
Tao, 2020; Jiang et al., 2020; Chen et al., 2021).
Typically, the processing here is point-based or
voxel-based.

Event-Based Processing. Event clustering can be
used to separate objects in simple scenes that typ-
ically do not include sensor ego-motion due to
the event camera operating principle (Schraml and
Belbachir, 2010; Rodríguez-Gomez et al., 2020).
For more complex and unstructured scenes, clus-
tering approaches also exist (Piątkowska et al.,
2012).

In (Barranco et al., 2015), the scene is decom-
posed based on categorized object contours to
achieve layer segmentation. In contrast, (Stof-
fregen and Kleeman, 2018) segments the scene
into structures that move at the same velocity.
Generally, event-based motion segmentation ap-
proaches can be used to distinguish objects by as-
signing events to objects with independent motion
(Vasco et al., 2017; Mitrokhin et al., 2018; Stof-
fregen et al., 2019; Mitrokhin et al., 2020; Zhou
et al., 2021). However, these approaches have in
common that no semantic class categorization is
performed for the detected objects.
Semantic segmentation fills this shortcoming.
EvNet (Sekikawa et al., 2019) is an asynchronous,
fully event-based approach for this purpose.
(Biswas et al., 2022) exploits features extracted
from the event stream and simultaneously ac-
quired grayscale images, while event-only pro-
cessing is considered as part of the ablation study.
Approaches that rely solely on the event stream
to derive a semantic segmentation are given in
(Bolten et al., 2022; Bolten et al., 2023b). Here,
the processing is done based on point cloud or
voxel grid representations, with well-known net-
work structures like PointNet++ (Qi et al., 2017)
or UNet (Ronneberger et al., 2015). However,
most semantic segmentation approaches convert
the event stream into dense frame representations,
such as (Alonso and Murillo, 2019; Sun et al.,
2022; Wang et al., 2021). Nevertheless, it is im-
possible to differentiate between spatially close or
even occluded objects of the same class that are
moving at nearly the same speed by motion or se-
mantic segmentation. This is particularly relevant
in the context of monitoring applications, such as
a group of people.
The resulting challenge of instance segmenta-
tion has been largely unaddressed for event-based
data. In the context of robotic grasping, there
are first works towards this direction, fusing the
modality of RGB frames with events (Kachole
et al., 2023b), or deriving a panoptic segmenta-
tion by applying graph-based network processing
(Kachole et al., 2023a).

To the best of the authors’ knowledge, there is cur-
rently no prior work that adapts, applies, and evalu-
ates off-the-shelf 2D frame or 3D-based instance seg-
mentation approaches to the event-based vision do-
main. However, this represents a promising way to
achieve instance segmentation in this domain.
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Figure 1: Overview of performed experiments.

2 PROPOSED METHODS

In the following, we introduce different encodings
used for event stream representations in this study. In
addition, we briefly outline the deep learning frame-
works used for instance segmentation.

2.1 Event Data Representations

Commonly, the event data stream from Dynamic Vi-
sion Sensors is converted into alternative representa-
tions for processing. In this work we consider the con-
struction of 3D point clouds, also called space-time
event clouds, their voxelization and conversion into
classical 2D frames for subsequent processing (see
Figure 1a).

Space-Time Event Cloud. A temporal window of
the continuous event stream directly forms an un-
ordered point cloud, where each 3D point repre-
sents an event defined by its (x,y, t) coordinates.
This preserves the sparsity and high temporal res-
olution of the signal and transforms it into a geo-
metric description.

3D Voxel-Grid. The irregularity of the event clouds
can be removed by voxelization and transformed
into a regular 3D grid. The voxels encode the
distribution of events within the spatio-temporal
domain. The sparsity of the signal is lost in this
transformation. The size of the voxel bins must
be chosen application specific.

2D Frame Projection. Classic 2D frames are cre-
ated by projecting events onto the xy plane. This
results in a dense 2D grid of fixed size defined by
the pixel resolution of the sensor. It allows direct
processing using classical computer vision ap-
proaches. Since events are triggered by changes,
the resulting images visually resemble edge im-
ages.

There are a variety of encodings described in the
literature for this projection step. In this study, we
consider the following two variants:

Polarity. Each frame pixel is defined by the po-
larity of the last event that occurred at the cor-
responding (x,y) pixel position. The polarity
is directly encoded in the single color values
red for decrease, green for increase in bright-
ness (see Figure 2a).

Merged-Three-Channel (MTC). This encoding
was proposed by Chen et al. in (Chen et al.,
2019). It incorporates three different single-
channel encodings, each addressing different
attributes of the underlying event stream, to
create an RGB false color image (see Fig-
ure 2b):
Red Channel. Leaky-Integrate-And-Fire neu-

ron model to preserve information about
temporal continuity,

Green Channel. Surface-Of-Active-Events as
a time surface containing information
about the direction and speed of object mo-
tion through its gradient, and

Blue Channel. Triggering Frequency to dis-
tinguish between noise and valid events.

These encodings are selected because they repre-
sent different levels of preserved information.

2.2 Instance Segmentation Networks

2.2.1 Point Cloud-Based Processing Methods
(Figure 1c)

JSNet (Zhao and Tao, 2020) (2020): clustering-
based processing
JSNet consists of four main components: a shared
feature encoder, two parallel branch decoders,
feature fusion modules for each decoder, and a
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(a) Polarity encoding

(b) MTC encoding

Figure 2: Snippets of frame encoded events (best viewed in
color).

joint instance and semantic segmentation (JISS)
module. High-level semantic features are learned
by PointNet++ (Qi et al., 2017) and PointConv
(Wu et al., 2019a) architectures and are further
combined with low-level features for more dis-
criminative values. The JISS module transforms
the semantic features into an instance embedding
space, where instances are formed by applying a
simple mean-shift clustering.

3D-BoNet (Yang et al., 2019) (2019): proposal-
based processing
3D-BoNet is designed for a single-stage, anchor-
free instance segmentation in 3D point clouds. It
uses a PointNet++ (Qi et al., 2017) backbone to
extract local and global features, followed by two
branches: one for instance-level bounding box
prediction and another for point-level mask pre-
diction. The bounding box prediction branch is
a key component, generating unique, unoriented
rectangular bounding boxes without predefined
spatial anchors or region proposals. The subse-
quent point-mask prediction branch uses these
boxes and features to generate point-level binary
masks for valid instances, distinguishing them
from the background.

2.2.2 Voxel-Based Processing Method
(Figure 1d)

SoftGroup (Vu et al., 2022) (2022): clustering and
proposal-based
SoftGroup attempts to combine the strengths
of proposal-based and grouping-based methods
while addressing their limitations. First, a bottom-
up stage uses a pointwise prediction network to
generate high-quality object proposals by group-
ing based on soft semantic scores. This stage in-
volves processing point clouds to generate seman-
tic labels and offset vectors, which are then re-

fined into preliminary instance proposals using a
soft grouping module. Second, the top-down re-
finement stage refines the generated proposals by
extracting corresponding features from the back-
bone. These features are employed to predict fi-
nal results, including classes, instance masks, and
mask scores.

2.2.3 Frame-Based Processing Methods
(Figure 1e)

Mask R-CNN (He et al., 2017) (2017): proposal-
based processing
Proposal-based processing is considered to be
the baseline technique for frame-based instance
segmentation (Sharma et al., 2022). Therefore,
we included Mask R-CNN in our experiments.
Mask R-CNN consists of five key components.
First, a backbone network for feature extraction,
followed by a Region Proposal Network that gen-
erates potential object proposals. The RoIAlign
layer ensures accurate spatial alignment for RoIs.
The RoI head contains two sub-networks: one for
classification and bounding box regression, and
another for instance mask prediction. This ar-
chitecture enables object detection, classification,
bounding box refinement with detailed instance
masks predictions.

YOLO v8 (Jocher et al., 2023) (2023): proposal-
free processing
YOLO v8 is the latest version of the popular
single shot detection method and aims to improve
accuracy and efficiency over previous versions. A
major change is that YOLO v8 is an anchor-free
model, meaning that object centers are predicted
directly instead of the offset from a known anchor
box. This typically results in fewer predictions
and better, faster non-maximum suppression.

3 DATASETS & PREPROCESSING

Compared to the more established domain of image-
based computer vision, the range of event-based
datasets is currently limited. In the following, we de-
scribe the datasets used in our experiments and the
preprocessing steps applied.

3.1 Datasets

Annotations at the level of semantic or even instance
segmentation are only available for a few event-based
datasets. For an example in autonomous driving ap-
plications see (Alonso and Murillo, 2019; Sun et al.,
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Figure 3: DVS-iOUTLAB dataset example scene (a 60 ms
time window with 95,726 events is displayed as a 3D space-
time event cloud and as a projected 2D label frame, with
ground truth classes represented by colors and instances by
bounding boxes).

2022). In the context of the monitoring scenario con-
sidered in this paper, the following datasets are rele-
vant.

DVS-iOUTLAB. Multi-Instance DVS-OUTLAB
(Bolten et al., 2021)
The DVS-OUTLAB dataset contains recordings
from a multi-DVS-based monitoring scenario
of an urban public children’s playground. The
authors provide several thousand semantically
labeled patches of event data, as well as multiple
hours of unlabeled raw material recorded during
the process of creating the dataset. We applied a
semantic segmentation based on PointNet++ (Qi
et al., 2017) and the publicly available pre-trained
weights from (Bolten et al., 2022) to these
unprocessed, complete recordings.
Based on the originally provided labels and fur-
ther semantic segmentation, we manually selected
and checked object instances. Thus, we extracted
52,293 PERSON, 3,649 DOG, 7,024 BICYCLE, and
3,134 SPORTSBALL instances. From this pool, we
randomly selected instances and artificially popu-
lated new challenging scenes that directly contain
instance annotations. We allowed spatially close
objects and prevented real occlusions based on the
convex hull of the objects. In this process, we cre-
ated 10,000 scenes, divided into 8,000 for training
and 1,000 each for test and validation. Each scene
contains a minimum of three objects and a max-
imum of 32 objects with 3-24 persons (average
8.76) and up to 2 dogs, 4 bicycles and 2 sportballs.
A sample scene of the newly created
DVS-iOUTLAB dataset is shown in Fig-
ure 3. This dataset composes challenges from
a multi-class, multi-instance scenario combined
with real sensor noise.

N-MuPeTS. Multi-Person Tracking and Segmenta-
tion (Bolten et al., 2023a)
The N-MuPeTS dataset contains ≈ 85 minutes of
time-continuous labeled event data, recorded for
multi-person tracking and segmentation applica-
tions. The authors provide annotations at the
level of instance segmentation for four recorded
individuals, as well as annotations describing the
overall scene quality (judging included artifacts
or label quality). In addition, the activity (e.g.,
WALKING, RUNNING, or CROSSING, . . .) is labeled
separately for each included individual on a 25 ms
time window basis.
Although the dataset contains only the single ob-
ject class PERSON, the processing is still challeng-
ing due to object occlusions (with infrastructure
and other people), similar body shapes, different
body poses, and different movement/interaction
patterns. Scenes with spatially close objects (such
as intersections) are particularly challenging. In
addition, there is sensor noise in the data. Fig-
ure 4a shows an example of a scene from this
dataset.
Since the dataset’s authors haven’t published a
dataset split, we propose the following: the ba-
sis for training and evaluation are all recordings
of the best quality level, except for time win-
dows in which at least one person was stand-
ing (dataset annotations KNEELING, STOOPED or
STANDING). This leads to the exclusion of ≈ 7.6
minutes of recording and is therefore negligible.
This is necessary for segmentation applications,
as standing persons are indistinguishable from
background noise in the DVS signal. The remain-
ing recordings were divided into consecutive 10
second segments. Based on these segments, the
data was divided into training, validation, and test
sets. This windowing of the data was done in
order to achieve a higher variability between the
splits compared to randomly sampled time win-
dows of a few milliseconds.
By selecting a 60/20/20 % split of these time
blocks, care was also taken to ensure that the re-
maining activity annotations of the dataset were
approximately equally represented in the respec-
tive splits. The supplement to this paper provides
a detailed overview of the resulting distribution of
annotations per split.

The newly derived DVS-iOUTLAB dataset and the
detailed split of N-MuPeTS based on the dataset files
are available for download1.
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3.2 Preprocessing

3.2.1 Spatio-Temporal Filtering

Event cameras, like all image sensors, are subject to
noise. A major form of noise are background activ-
ity (BA) events, which occur when the event camera
triggers an output without a corresponding change in
brightness in the scene. The CeleX-IV sensor (Guo
et al., 2017) used to acquire the selected datasets has
a high level of background activity noise, as can be
seen in Figures 3, 4a. These BA events also prevent
the effective use of simple clustering approaches to
segment objects.

Spatio-temporal filters are often used in prepro-
cessing to improve the signal-to-noise ratio (SNR) of
event data. Following the analysis of different spatio-
temporal filters in (Bolten et al., 2021), we also apply
time-filtering in the first processing stage. Each event
that is not supported by another event at the same
(x,y)-position within the preceding ∆ t ms is removed.

3.2.2 Adaptive Region-of-Interest Extraction
(aRoI)

According to the function paradigm of event cameras,
scene separation into foreground and background for
moving objects and a static sensor is already done at
the sensor level. However, a straightforward selection
of events triggered by object motion is often not pos-
sible due to high noise levels. Therefore, to separate
and select dense regions of events for further process-
ing, we propose the following size-adaptive Region-
of-Interest algorithm:
1. Extended spatio-temporal filtering

First, we apply a spatio-temporal filtering stage
based on the Neighborhood-Filter from (Bolten
et al., 2021). This filter evaluates for each event
a minimum threshold of other supporting events
in the spatial 8-connected neighborhood. We fol-
low the parameterization given and evaluated in
(Bolten et al., 2021) for this filter. Their fil-
ter achieves an almost complete removal of BA
events at the cost of events from instances. This
processing step is shown in Figures 4b → 4c.

2. Hierarchical single-linkage clustering (Müllner,
2013)
The remaining events are hierarchically clustered
into regions based on the Euclidean distance of
the events. Clustering is controlled by a prede-
fined cutoff distance (dcut) that prevents spatially
distant clusters from merging. Resulting clusters
with a number of events less than min#events are
discarded in this step. An example for this step is
displayed in Figure 4d.

(a) Example scene from N-MuPeTS dataset (55,072
events)

(b) Time-filtered, ∆ t=10 ms
(32,414 events)

(c) Neighborhood-filtered
(3,237 events)

(d) Performed clustering
(2 segments resulting)

(e) Extracted aRoIs
(765+3,820 = 4,585 events)

Figure 4: Adaptive ROI selection (given event counts refer
to complete, uncropped scene).

3. Bounding Box expansion and filter reset
In order to account for the events of objects that
may have been filtered (cf. the feet of the red ac-
tor in Figure 4), the bounding box of each cluster
is expanded by bboxoffset pixels. Within each ex-
panded bounding box, the event stream is reset to
the original time-filtered event stream, reactivat-
ing the events removed by the second restrictive
filtering step. Each resulting bounding box forms
a Region-of-Interest. This is shown in Figure 4e.

This processing results in Regions-of-Interest of vari-
able spatial size, where spatially separated objects are
in their own aRoI and groups of objects share a aRoI
without being sliced.

4 EXPERIMENTS

Next, we describe the methodology and results of
our comparative evaluation of the methods presented
in Section 2.2. All event representations are based
on 60 ms sliding time windows of the data. The
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Table 1: Object instance statistics.

annotation max(
dist(NNinst))

avg(
#Pixelinst)

(a) DVS-iOUTLAB

PERSON ≈ 23.09 px 332.28 px
DOG ≈ 16.49 px 360.31 px
BICYCLE ≈ 21.59 px 450.28 px
SPORTSBALL ≈ 5.39 px 116.05 px

(b) N-MuPeTS

PERSON ≈ 22.14 px 511.80 px

configuration for the performed preprocessing is as
follows: spatio-temporal pre-filtering with threshold
∆ t=10 ms, Region-of-Interest generation with dcut =
29.0px, min#events = 50 events, bboxoffset = 10px.

4.1 Network Configurations

Network configurations and hyperparameters have
been left at their default values where possible. The
detailed configurations of the neural networks are
given in the supplemental material in the format of
the corresponding reference implementations (see the
URLs given in the bibliography entries).

4.2 Inputs and Parameters

For point- and voxel-based methods, the temporal
scaling of the input data is of particular interest, as it
has a significant impact on the computation of spatio-
temporal distances and neighborhoods. We represent
the time information scaled in milliseconds.
Point-Based Processing. As mentioned above,

space-time event clouds form naturally from the
(x,y, t) coordinates of the events themselves.
However, while the spatial shape of the input
event cloud can vary, and therefore the generated
aRoI can be used directly as a basis, the deep
learning processing techniques require a fixed
number of events as input for training.
Therefore, the event clouds are sampled to a fixed
number of events by random choice. The sizes
of 1024 and 2048 events per aRoI serve as sam-
pling targets, since these powers of two are closest
to the mean event counts of the generated aRoIs
(more detailed event count statistics are given in
the supplement). For aRoIs with fewer events,
doublets are generated to achieve the desired num-
ber, following the original logic of PointNet++
processing that forms the basis of the point-based
methods under study.
The selected grouping radii and the configuration
of the point abstraction layers of the networks de-

fined by the provided model files are adapted from
(Bolten et al., 2022).

Voxel-Based Processing. The data shape is defined
by the voxel grid size and not by the number of
events. Therefore, there is no subsampling per
aRoI performed. Instead, the time-filtered aRoIs
are used directly as input.
We discretize the data per sensor pixel over a time
interval of 1 ms per voxel, as this setting has al-
ready shown good results for semantic segmenta-
tion (Bolten et al., 2023b).

Frame-Based Processing. The color frame encod-
ings are built using the full spatial sensor reso-
lution of 768× 640 pixels (Guo et al., 2017) and
complete 60 ms window, as the frame-based pro-
cessing requires a fixed input resolution.

4.3 Segmentation Baseline: Semantic
Clustering

As a basic approach for comparison, we propose to
utilize a hierarchical event clustering, extended by ap-
plying a prior semantic segmentation. This is shown
in Figure 1b.

For this semantic segmentation step, we trained
vanilla PointNets++ (Qi et al., 2017) following
(Bolten et al., 2022) using the aRoIs as input. Clus-
tering is applied separately to the events of each se-
mantic class based on the predicted labels to group
the predictions into individual instances.

The clustering cutoff distance dcut in this step
is individually selected per semantic class based on
the maximum Euclidean distance between nearest
neighbor pixels within the ground truth instances (see
dist(NNinst) in Table 1). This selection ensures that
all events of a single instance are grouped together by
this baseline approach.

4.4 Metrics

Some approaches rely on prior semantic segmenta-
tion. Therefore, we also report metrics for the quality
of the semantic segmentation. For this, we report the
F1 score, defined as the harmonic mean of precision
and recall, as a weighted average using the given sup-
port per class on a per DVS event basis.

Regarding the instance segmentation quality, we
report the standard COCO metrics, including mean
average precision mAP0.95

0.5 , which is the precision av-
eraged over the intersection over union (IoU) thresh-
old range from 0.5 to 0.95 with a step size of 0.05, as
well as the mAP0.5 and mAP0.75 at fixed IoU values.
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For reproducibility, we rely on the metric implemen-
tations from (Detlefsen et al., 2022) for all reported
results. IoUs are calculated based on segmentation
masks rather than bounding boxes. For comparabil-
ity between the different methods, these masks are
formed and evaluated in 2D.

The evaluation is based on the events included in
the constructed aRoIs. Since the spatial shape can
vary between the different encoding variations (aRoI
size vs. fixed and full frame resolution), only the ar-
eas covered by the aRoIs are considered for frames
and included in the metric calculation.

4.5 Application Results

The evaluation was performed on datasets that orig-
inate from the application scenario of a DVS-based
monitoring. The scenes considered therefore contain
the typical application-oriented core challenges, such
as occlusions and spatially close objects. The results
focus on these challenges.

Table 3 shows the metric results for the
DVS-iOUTLAB dataset. For the N-MuPeTS dataset,
we report in Table 4 the results on an intentionally
challenging subset of the test data. This test subset
restricts the scenes to a selection in which at least one
actor is occluded or they are spatially very close to
each other. Details on this subset selection, as well as
results on the full test set, are reported in the supple-
ment.

Segmentation Baseline. The segmentation baseline
depends on the quality of the semantic segmen-
tation performed. It achieves very good F1 scores
on both datasets. As expected, it often fails with
merge errors because instances of same classes
that are very close to each other are clustered to-
gether. This is especially true for the selected
challenging test subset of the N-MuPeTS dataset.
It can be clearly seen in the metric difference of
this approach between the two datasets.

Point-Based Processing. Segmentation tends to fail
when an aRoI is significantly larger than average.
These regions occur when many objects are spa-
tially very close to each other, so that they are
clustered into a single input aRoI. The unsam-
pled event count in these regions deviates strongly
from the overall mean, so that the applied ran-
dom event selection changes the spatio-temporal
object densities and event neighborhoods substan-
tially. For these error-prone aRoIs, JSNet-based
processing mostly leads to interpretation as BA
event noise, while 3D-BoNet predicts better se-
mantic values, but often proposes very large and
merged object instance boundaries.

Table 2: Number of network parameters for DVS-
iOUTLAB network configuration.

Network #Parameters
Baseline PointNet++ 441,893
JSNet 8,098,321
3D-BoNet 1,824,582
SoftGroup 30.836.090
Mask R-CNN 44,679,088
YOLO v8 3,264,396

A simple post-processing of the obtained results
seemed useful, since small errors in semantic seg-
mentation often propagate in the form of small
instances. We recommend to make sure that in-
stances consisting of only a few events are re-
moved and ignored before further processing.

Voxel-Based Processing. SoftGroup achieves very
good results on DVS-iOUTLAB dataset which in-
cludes spatially close but not intersecting objects.
Considering scenes containing occlusions of ob-
jects of the same semantic class (as in N-MuPeTS,
which are considered to be particularly difficult),
it can be observed that instances often merge in
these cases.
Looking at the mAP0.5 value, the best overall re-
sult is obtained for DVS-iOUTLAB, while the
value for N-MuPeTS is behind all other high-level
approaches. This indicates a need for further op-
timization of the hyperparameters used, such as
voxel size and grouping radius.

Frame-Based Processing. The IoU thresholding
performed for mAP calculation is more difficult
for frame-based mask predictions. The low spa-
tial resolution of the DVS sensor (the used sensor
provides 768 × 640 px) leads to small object
sizes, as shown in Table 1. The avg(#Pixelinst)
value indicates the average projected object pixel
size per instance in each dataset. Even a few
mismatching pixels in the predicted masks will
significantly lower the IoU score. Comparing the
mAP0.95

0.5 and mAP0.5 (improvements up to ≈40%)
shows that the segmentation works well, but is
limited by the predicted pixel mask accuracy.
When detecting and separating occluded objects
of the same semantic class, the selected Mask R-
CNN tends to predict a mask containing only one
object in these cases. YOLO v8 predicts better
partial masks at the expense of multiple false pre-
dictions.

Figure 5 shows example segmentations in the form of
false-color images for the N-MuPeTS dataset (corre-
sponding examples for DVS-iOUTLAB are given in
the supplement). These images highlight the typical
worst-case errors.
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Table 3: Segmentation results on DVS-iOUTLAB test set (60 ms event time window).

Semantic Quality Instance Quality
Network Configuration weighted F1-score mIoU mAP0.95

0.5 mAP0.5 mAP0.75

(a) Baseline method: PointNet++ with spatial clustering

PointNet++ in
2048 events 0.94 0.80 0.57 0.71 0.62

Clustering in
1024 events 0.93 0.82 0.58 0.71 0.61

(b) Space-Time Event Cloud-based methods

JSNet
4 layers

in 2048 events 0.95 0.89 0.81 0.87 0.86
4 layers

in 1024 events 0.92 0.85 0.70 0.77 0.75

3D-BoNet
4 layers

in 2048 events 0.94 0.84 0.71 0.81 0.78
4 layers

in 1024 events 0.93 0.83 0.70 0.80 0.76

(c) Voxel-based method

SoftGroup
voxel grid

(768×640×60) 0.97 0.86 0.88 0.98 0.96

(d) Frame-based methods

Mask R-CNN
polarity

in (768×640) px 0.92 0.78 0.62 0.96 0.72
MTC

in (768×640) px 0.92 0.78 0.61 0.96 0.71

YOLO v8
polarity

in (768×640) px 0.92 0.79 0.60 0.93 0.66
MTC

in (768×640) px 0.91 0.80 0.58 0.89 0.65

Table 4: Segmentation results on challenging sequences of N-MuPeTS test subset (60 ms event time window).

Semantic Quality
weighted F1-score PERSON Instance Quality

Network Configuration NOISE PERSON mIoU AP0.95
0.5 AP0.5 AP0.75

(a) Baseline method: PointNet++ with spatial clustering

PointNet++ in
2048 events 0.91 0.95 0.74 0.25 0.42 0.25

Clustering in
1024 events 0.91 0.95 0.74 0.25 0.41 0.24

(b) Space-Time Event Cloud-based methods

JSNet
4 layers

in 2048 events 0.92 0.95 0.82 0.54 0.79 0.57
4 layers

in 1024 events 0.91 0.94 0.80 0.46 0.70 0.48

3D-BoNet
4 layers

in 2048 events 0.91 0.95 0.80 0.56 0.77 0.59
4 layers

in 1024 events 0.89 0.93 0.75 0.42 0.62 0.44

(c) Voxel-based method

SoftGroup
voxel grid

(768×640×60) 0.84 0.92 0.83 0.55 0.70 0.57

(d) Frame-based methods

Mask R-CNN
polarity

in (768×640) px 0.80 0.89 0.72 0.41 0.80 0.41
MTC

in (768×640) px 0.80 0.89 0.72 0.42 0.80 0.43

YOLO v8
polarity

in (768×640) px 0.83 0.92 0.70 0.55 0.87 0.61
MTC

in (768×640) px 0.83 0.92 0.70 0.54 0.86 0.60
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(a) Baseline
(merge: spatial close)

(b) JSNet
(merge: spatial expansion)

(c) 3D-BoNet
(merge: spatial expansion)

(d) SoftGroup
(merge: spatial close)

(e) Mask R-CNN
(miss at occlusions)

(f) YOLO v8
(split: object parts)

Figure 5: Typical prediction error cases on N-MuPeTS displayed as false-color aRoI-montage images (best viewed in color
and digital zoomed).

The proposed event representations and corre-
sponding off-the-shelf processing approaches can ef-
fectively be used to derive an instance segmenta-
tion. From a practical point of view, the proposal-
based point and voxel-based approaches require tem-
poral normalization in addition to temporal scaling for
training convergence. Our recommendation is to shift
the continuous event time stamps for each input aRoI
between zero and the selected sliding time window
length.

The point-based approaches are inspired and built
on PointNet++ as a backbone. By sharing the MLPs
per point, relatively small network structures are built
(see Table 2). This feature may be important when
aiming for a sensor-near implementation where hard-
ware resources are limited.

By using a submanifold sparse convolution (Gra-
ham et al., 2018), the voxel-based processing provides
good results and can offer a good trade-off in terms of
processing complexity. For applications where small
compromises in pixel accuracy of segmentation are
acceptable, classical frame-based processing seems to
be a good starting point, while offering a wide range
of well-established frameworks for processing.

5 CONCLUSION

We have performed a systematic evaluation of in-
stance segmentation approaches on data from the do-
main of event-based vision. We included multiple
state-of-the-art instance segmentation approaches that
are based on deep learning, while at the same time
considering event representations with varying de-
grees of dimensionality. Overall, very good results
can be obtained by using these off-the-shelf process-
ing approaches.

While the evaluation is scenario specific, the pro-
posed encoding and processing combinations can eas-

ily be adopted to other applications. Real-world
event-based vision projects are still uncommon. Us-
ing standard processing approaches is an appropriate
way to change this.

One aspect of further work is a detailed study
of the hyperparameters of the networks to fine-tune
the possible results. Examples include non-maximum
suppression for the frame-based approaches, or
grouping radii in point or voxel-based approaches to
improve the processing of very close and occluding
objects. For future practical applications, it is im-
portant to consider environmental effects such as rain.
These exist in the real world beyond the dimensions
contained in the datasets.
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