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Abstract: Inverse problems refer to the task of reconstructing a clean signal from a degraded observation. In imaging,
this pertains to restoration problems like denoising, super-resolution or in-painting. Because inverse problems
are often ill-posed, regularization based on prior information is needed. Plug-and-play (pnp) approaches take
a general approach to regularization and plug a deep denoiser into an iterative solver for inverse problems.
However, considering the inverse problems at hand in training could improve reconstruction performance at
test-time. Deep equilibrium models allow for the training of multi-task priors on the reconstruction error via
an estimate of the iterative method’s fixed-point (FP). This paper investigates the intersection of pnp and DEQ
models for the training of a regularizing gradient (RG) and derives an upper bound for the reconstruction loss
of a gradient-descent (GD) procedure. Based on this upper bound, two procedures for the training of RGs
are proposed and compared: One optimizes the upper bound directly, the other trains a deep equilibrium GD
(DEQGD) procedure and uses the bound for regularization. The resulting regularized RG (RERG) produces
consistently good reconstructions across different inverse problems, while the other RGs tend to have some
inverse problems on which they provide inferior reconstructions.

1 INTRODUCTION

This paper considers image enhancement and restora-
tion through the lens of inverse problems. Inverse
problems refer to a large subset of signal processing
applications, where one attempts to recover a signal
from a flawed or noisy observation. In imaging, this
refers to the reconstruction of degraded images - e.g.
images with missing pixels, or low-resolution images.
Because inverse problems can be ill-posed, some kind
of regularization that imposes prior assumptions on
the search-space is necessary.

One approach to solving the regularization prob-
lem for inverse problems are the pnp methods
(Venkatakrishnan et al., 2013; Pesquet et al., 2021;
Chan et al., 2016; Le Pendu and Guillemot, 2023;
Zhang et al., 2021). These methods use pre-trained
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priors in iterative algorithms like the alternating di-
rection method of multipliers (ADMM) (Chan et al.,
2016), the forward-backward algorithm (FB) (Pes-
quet et al., 2021), or GD. ADMM and FB use a reg-
ularizing proximal operator (PO) that represents the
prior. This PO can be replaced with a deep Gaussian
denoiser (Venkatakrishnan et al., 2013; Chan et al.,
2016), leading to good reconstruction performance.
Apart from methods based on POs, there are other
approaches like regularization by denoising (Romano
et al., 2017), or the pnp Regularizing Gradient (pn-
pReG) (Fermanian et al., 2023), which trains a RG
that is used to regularize a pnp GD procedure. Over-
all, pnp approaches are very general in application,
but because they are not trained on the inverse prob-
lems at hand, performance can be further improved
(Willingham et al., 2023).

To train a full iterative scheme directly on the in-
verse problem at hand, deep equilibrium (DEQ) mod-
els (Gilton et al., 2021; Bai et al., 2019; Fung et al.,
2022; Winston and Kolter, 2020; Ling et al., 2022)
can be used to train an entire iterative method via its
FP. This can be done in a Jacobian-free manner (Fung
et al., 2022), which is effectively one step of back-
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propagation on the iterative method, starting at the FP.
When applied to a range of inverse problems, multi-
task (MT) DEQ models (Willingham et al., 2023) al-
low for the training of MT priors on a large range of
inverse problems by leveraging the reconstruction er-
ror over a range of inverse problems, leading to strong
MT reconstruction performance.

However, DEQ models heavily depend on finding
a good approximation of the FP. This can be quite dif-
ficult, as convergence is not always guaranteed and
even if the algorithm does converge, this can take a
large amount of iterations or lead to bad estimates of
the FP. As a result, this can lead to sub-optimal pa-
rameter updates.

The contributions of this paper are:
• This paper investigates and compares different ap-

proaches of training a RG for a range of inverse
problems.

• We show that the difference between the GD
and the FB reconstruction errors is bounded from
above. This upper bound led us to propose a
method for training the RG using a FB optimiza-
tion method. The resulting RG is called RG1.

• We also propose a procedure that uses the up-
per bound to regularize the training of a multi-
task DEQGD procedure. This regularized RG
(RERG) leads to strong reconstruction perfor-
mance on a range of inverse problems by taking
into account the FB and the GD reconstruction-
errors. In testing, RERG displayed performance
close to whichever was better (RG1 or DEQGD)
on any given inverse problem.

• We compare four different RGs on a range of in-
verse problems and discuss the differences.

2 RELATED WORKS AND
THEORY

2.1 Inverse Problems and Maximum a
Posteriori Estimation

We consider the image formation model

yyy = Ax̂xx+ εεε, (1)

where yyy denotes the degraded observation, x̂xx ∈ Rd is
the ground truth image, A : Rd → Rd′ denotes the
degradation operation and εεε ∈ Rd′ denotes additive
white Gaussian noise (AWGN) with standard devia-
tion σ≥ 0, and d,d′ ∈ N.

In this paper, we consider maximum a posteri-
ori (MAP) estimation (Venkatakrishnan et al., 2013;

Zhang et al., 2021; Le Pendu and Guillemot, 2023;
Fermanian et al., 2023), meaning the search for an
xxx ∈ Rd , that maximizes p(xxx | yyy); i.e. the xxx that is the
most likely to have caused observation yyy. Assuming
uniqueness, this leads to

x̂xxMAP = argmax
xxx

p(xxx | yyy) (2)

= argmin
xxx
− log p(yyy | xxx)− log p(xxx) (3)

= argmin
xxx

1
2
∥Axxx− yyy∥2

2 +σ
2R(xxx), (4)

where we set R(xxx) :=− log p(xxx) and ∥·∥2 denotes the
2-norm. The expression with the norm is called the
data-term. R is called the regularizer and represents
the prior distribution.

The MAP estimation problem can be solved us-
ing iterative algorithms, like the ADMM, FB or GD
algorithm.

2.2 Plug-and-Play Regularizing
Gradient

PnpReG (Fermanian et al., 2023) deals with the regu-
larization problem in equation (4) by linking the gra-
dient of the regularizer with its proximal operator

proxσ2R(zzz) := argmin
xxx

1
2
∥xxx− zzz∥2

2 +σ
2R(xxx). (5)

As shown in (Fermanian et al., 2023), it holds that for
all zzz ∈ Rd and σ≥ 0

σ
2 δR(xxx)

δxxx

∣∣∣
xxx=prox

σ2R(zzz)
= zzz−proxσ2R(zzz). (6)

Thus, the loss

Llink
σ (zzz) = ∥σ2G(Pσ2(zzz))− (zzz−Pσ2(zzz))∥2

2 (7)

is used to train the gradient G of the regularizer corre-
sponding to the PO defined by a Gaussian denoiser.
This uses the approximation Pσ2(xxx) ≈ proxσ2R(zzz),
where Pσ2(xxx) is trained as a deep-denoiser. The over-
all training loss is

LpnpReG = δ∥Pσ2(z̃zz)− x̂xx∥1 +λLlink
σ (z̃zz), (8)

where ∥·∥1 is the L1 norm, λ> 0, z̃zz= x̂xx+εεε, with εεε be-
ing AWGN with standard deviation σ0 > 0. Further-
more, δ is equal to 1 if σ = σ0 and δ is equal to zero,
otherwise. This leads to a RG that is trained jointly
with a denoiser and produces strong reconstruction re-
sults when used as regularization in a GD algorithm.
Pnp approaches, however, do not take the reconstruc-
tion error into account and could potentially be im-
proved by considering the inverse problems at hand.

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

146



2.3 Deep Equilibrium Models

DEQ models (Gilton et al., 2021; Bai et al., 2019;
Fung et al., 2022; Winston and Kolter, 2020; Ling
et al., 2022) allow for the training of a whole iterative
procedure hθ via the corresponding FP xxxh and the re-
sulting reconstruction error. In (Bai et al., 2019), this
is done by considering hθ(xxxh) = xxxh and thus

δxxxh

δθ
=

δhθ(xxx)
δxxx

∣∣∣∣∣
xxx=xxxh

δxxxh

δθ
+

δhθ(xxx)
δθ

∣∣∣∣∣
xxx=xxxh

. (9)

Rearranging this and plugging δxxxh/δθ into the
derivative of loss l : Rd ×Rd → R with respect to θ,
yields

δ l(x̂xx,xxxh)

δθ
=

δ l(x̂xx,xxx)
δxxx

∣∣∣∣∣
xxx=xxxh

δxxxh

δθ
(10)

=
δ l(x̂xx,xxx)

δxxx

∣∣∣∣∣
xxx=xxxh

J−1 δhθ(xxx)
δθ

∣∣∣∣∣
xxx=xxxh

, (11)

where the Jacobian J := id− δhθ(xxx)
δxxx

∣∣∣
xxx=xxxh

exists and is

invertible (Fung et al., 2022). Assuming the inverse
of J to be equal to the identity still yields a direction
of descent (Fung et al., 2022). This is called Jacobian-
free back-propagation and can be likened to a single
step of traditional back-propagation, using the FP xxxh
as input.

The following section will introduce important
definitions that we shall use to expand existing the-
ory and propose different training methods for RGs.

3 DEFINITIONS

As it is our intent to train and compare RGs to be used
in a GD algorithm, we shall first define the necessary
functions and expressions.

We define the two iterative algorithms to solve the
MAP estimation problem in 4. One is the FB algo-
rithm (Pesquet et al., 2021) that was also used for the
multi-task DEQ (MTDEQ) prior (Willingham et al.,
2023), where for each ground truth image x̂xx, we pick
a degradation A : Rd → Rd′ and noise-level σ at ran-
dom, generating noise εεε, leading to a degraded obser-
vation yyy = A(x̂xx)+ εεε. For zzz ∈ Rd . One iteration of the
FB algorithm takes the form

fσ,A,θ(zzz,yyy) := Pθ,ησ2 (zzz−ηD(zzz,yyy)) , (12)

where Pθ,σ2 is a regularizer in form of a DRUNet (as
in (Le Pendu and Guillemot, 2023) and (Zhang et al.,

2021)) with parameters θ used on noise-level σ ≥ 0
with step-size η ∈ R. For zzz ∈ Rd , we define

D(zzz,yyy) :=
δ

1
2∥Axxx− yyy∥2

2

δxxx

∣∣∣
xxx=zzz

(13)

as the derivative of the data-term.
Similarly, for zzz∈Rd , one iteration of the gradient-

descent algorithm is defined as
gσ,A,θ(zzz,yyy) := zzz−η

(
D(zzz,yyy)+σ

2Gθ(zzz,yyy)
)
, (14)

where Gθ is the network representing the gradient of
the regularizer in (4), which we also refer to as RG.
We use the same 3-channel DRU-net architecture that
is used in (Fermanian et al., 2023). xxxg,σ,A,θ(yyy) and
xxx f ,σ,A,θ(yyy) are the FPs of gσ,A,θ(·,yyy) and fσ,A,θ(·,yyy),
respectively. For clarity of notation, the indices σ,A
and θ as well as the argument yyy will be omitted, when
this is allowed by the context.

For ease of notation, we define the reconstruction
errors

LFB
σ,A,θ := ∥ f (xxx f )− x̂xx∥2

2 (15)

LGD
σ,A,θ := ∥g(xxxg)− x̂xx∥2

2 (16)

where LFB denotes the reconstruction error of the FB
algorithm and LGD is the reconstruction error of the
GD algorithm.
Remark 1. Note that it is our intention to find param-
eters θ and thus, RG Gθ, such that LGD is small. This
is the entity that is evaluated when computing peak
signal-to-noise ratio (PSNR) on the reconstruction.
Definition 1 (Lipschitz continuity (Bauschke et al.,
2017)). We call a function h : Rn → Rn, with n ∈ N,
L-Lipschitz continuous with relation to the metric in-
duced by ∥·∥2 and with Lipschitz constant L ≥ 0 if
and only if for all xxx1,xxx2 ∈ Rn it holds that

∥h(xxx1)−h(xxx2)∥2 ≤ L∥xxx1− xxx2∥2. (17)
If there exists an L < 1 that permits this condition, we
call h a contraction.

Using these definitions, the following sections
will introduce an upper bound for the GD reconstruc-
tion error, propose training approaches based on said
upper bound and compare the resulting reconstruction
performance.

4 METHOD

4.1 Derivations

This section leverages the introduced definitions from
section 3 to derive a relationship between the FB re-
construction error and the GD reconstruction error
that leads to a new approach to realizing the goal in
remark 1.
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Theorem 1. If GD procedure g is a contraction with
relation to ∥·∥2 (with Lipschitz constant Lg < 1), then
there exists an x̃xx ∈ Rd , such that

∥xxxg− x̂xx∥2 ≤
1

1−Lg

√
Llink

ησ2(x̃xx)+∥xxx f − x̂xx∥2. (18)

Proof. By plugging x̃xx = xxx f − ηD(xxx f ) into Llink, we
get that for all η > 0 and σ≥ 0, it holds that

Llink
ησ2(x̃xx) = ∥ησ

2G(xxx f )− (xxx f −ηD(xxx f )− xxx f )∥2
2

(19)

= ∥ησ
2G(xxx f )+ηD(xxx f )∥2

2. (20)

This leads to

∥xxx f − xxxg∥2 =∥xxx f −η(D(xxx f )+σ
2G(xxx f )) (21)

+η(D(xxx f )+σ
2G(xxx f ))− xxxg∥2 (22)

≤∥g(xxx f )− xxxg∥2 +
√

Llink
ησ2(x̃xx) (23)

≤Lg∥xxx f − xxxg∥2 +
√

Llink
ησ2(x̃xx), (24)

resulting in the statement via the triangle inequality.

Remark 2. Furthermore, because for all a,b ∈ R, it
holds that a2 +b2 ≥ 2ab, we get

1
2
∥xxxg− x̂xx∥2

2 ≤
1

(1−Lg)2 Llink
ησ2(x̃xx)+∥xxx f − x̂xx∥2

2, (25)

allowing us to limit the GD reconstruction error (i.e.
a RG to be used in a GD algorithm) by using the two
loss-terms on the right as training objectives.

Based on remark 2, we train a GD procedure by
training a PO and RG to minimize the bound in (25).

Remark 3. It immediately follows that for

Lbound :=
2

(1−Lg)2 Llink
ησ2(x̃xx)+2∥xxx f − x̂xx∥2

2, (26)

we also get that ∥xxxg − x̂xx∥2
2 is bounded by a convex

combination of itself and Lbound, or more generally

∥xxxg− x̂xx∥2
2 ≤ λLbound +ζ∥xxxg− x̂xx∥2

2, (27)

for all λ,ζ > 0 and with λ+ζ≥ 1.

This allows us to constrain the hypothesis-space
for the training of a deep equilibrium regularizing gra-
dient, adding regularization for the DEQ training of a
GD algorithm, leading to the RERG, for which the
training objective will be defined in the next section.

Data: Ground truth image set D, k ∈ {1,2,3}, set
of noise-levels Σ and set of degradations A ;

Result: Parameters Θ for a regularizing gradient
and the corresponding proximal operator;

for a number of epochs do
for all x̂xx from D do

(σ,A)← random choice from Σ×A ;
yyy← Ax̂xx+ εεε, εεε∼N (0,σ);
Find FPs xxx f of fσ,A,θ and xxxg of gσ,A,θ ;
Calculate Lk corresponding to the

algorithm trained;
Update parameters θ via loss Lk ;

end
end

Algorithm 1: Training algorithm for the RGs. k = 1 leads
to RG1, k = 2 gives the DEQGD and k = 3 leads to RERG.

4.2 Algorithm

Based on the definitions in section 3 and the deriva-
tions in section 4.1, we introduce the training pipeline
described in algorithm 1. This pipeline is quite simi-
lar to the one used in (Willingham et al., 2023), with
only one inverse problem considered at each iteration
and with different training objectives. We use this al-
gorithm for the training of three different RGs, via the
training objectives

L1 := 0.1Llink
σ2 (xxx f −ηD(xxx f ))+LFB (28)

L2 := LGD (29)

L3 := L1 +0.1LGD (30)

where 0.1 is an experimentally chosen hyper-
parameter, which could likely be further optimized to
improve reconstruction performance at test time. The
weighting in L3 could also be modified to increase the
weight of LGD or L1, respectively.

Note that for the derivative of Llink
σ2 (xxx f −ηD(xxx f ))

used for the update of the parameters in algorithm 1,
we use Jacobian-free back-propagation (Fung et al.,
2022), i.e. the assumption that the approximation

δLlink
σ2 (xxx f −ηD(xxx f ))

δθ
≈

δLlink
σ2 (xxx)

δθ

∣∣∣∣
xxx=xxx f−ηD(xxx f )

(31)

yields a direction of descent.
The use of algorithm 1 with objective L1 is differ-

ent from pnpReG in three ways:

• We replace the denoising-loss (i.e. the first
summand in (8)) with the FB reconstruction
loss, training the PO on the resulting FB
reconstruction-error rather than a Gaussian de-
noising problem.

• The algorithm evaluates Llink at x̃xx from Theorem
1, which depends on the equilibrium point of the
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FB algorithm, instead of evaluating Llink on im-
ages only perturbed by AWGN, as is done in the
pnpReG method of (Fermanian et al., 2023). If we
consider only Llink at x̃xx from Theorem 1, it would
train a PO and RG in a way such that the resulting
FB and GD algorithms have the same FP. Looking
at equation (20), this measures how ”non-fixed”
xxx f is when put into the corresponding GD proce-
dure, since the part with Llink is equal to zero if xxx f
is a FP of the GD procedure.

• We only consider the case where the σ used for
Llink is identical with the standard deviation of the
AWGN.

Similar to (Willingham et al., 2023), we evaluate the
neural nets at images that actually appear when it-
eratively solving the MAP estimation problem from
(4) for a given inverse problem, rather than on an as-
sumed Gaussian perturbation.

Furthermore, we can use the upper bound to regu-
larize the training of a DEQGD procedure by consid-
ering the reconstruction error of the GD procedure as
well as regularizing the RG by tying it to a PO via the
bound given in (25). This constrains the hypothesis-
space by using two loss-terms that can both be used
to approach the training objective outlined in remark
1.

The following sections will highlight how the re-
sulting methods were trained and tested in order to
compare them to pnpReG (Fermanian et al., 2023),
MTDEQ (Willingham et al., 2023) and Gaussian de-
noiser plugged into the pnp ADMM algorithm (results
from (Fermanian et al., 2023)).

5 EXPERIMENTS

Using the theory and algorithm introduced in the pre-
vious sections, this section discusses the details of
training and the experiments made to compare the
trained RGs.

For the experiments we have trained three differ-
ent RGs using the pipeline outlined in algorithm 1:

• RG1, which is the prior that uses loss L1 i.e. di-
rectly attempts to minimize the upper bound,

• A DEQGD, which uses loss L2, and

• RERG, which uses loss L3, combining both RG1
and a DEQGD.

5.1 Step-Sizes and Degradations

We use a step-size of ηGD = 0.05 for the GD proce-
dure, and similar to (Fermanian et al., 2023), we use

the adam optimizer (Kingma and Ba, 2014) to find
the FP of the GD procedure from (14) for training.
The FB procedure uses step-size ηFB = 0.49, which
is taken from (Willingham et al., 2023).

We consider the following degradations in train-
ing:

• Gaussian deblurring with the level of blur σb in
[0,4]

• Super-resolution with factors 1,2 and 4

• Pixel-wise completion where each pixel has a
chance of pdrop ∈ [0,0.99]. Each selection of pdrop
refers to a degradation.

Additionally, we used noise-levels sampled from a
uniform distribution on Σ := [0,50/255]. For each it-
eration, there is a 1/3 chance of choosing deblurring,
super-resolution or pixel-wise completion. After this
choice, the degree of the degradation is sampled via a
uniform distribution on the corresponding set.

5.2 Dataset and Optimizer

The networks are optimized using the adam optimizer
(Kingma and Ba, 2014) on a training-dataset consist-
ing of the data-set from DIV2k (Agustsson and Tim-
ofte, 2017), the training-set from BSD500 (Arbelaez
et al., 2011), flick2k (Lim et al., 2017) and the Wa-
terloo Exploration Database (Ma et al., 2016). Over-
all, this data-set contains 8394 images. Each iteration
takes a batch of 16 images and crops each image at a
random location to the size of 128 by 128 pixels.

For the finding of the FP, the forward iterations of
GD or FB are terminated if one or more of the follow-
ing three conditions hold:

• The forward iteration has gone on for 500 itera-
tions.

• The absolute value of any entry of an estimate is
larger than 100.

• The mean square distance between two consecu-
tive estimates is less than 10−7.

The first condition is necessary because of time con-
straints; the second condition is in place to avoid
the network forgetting what has been trained previ-
ously if the iterative method starts to diverge. This
avoids unreasonably large gradients in failure-cases.
The final condition is the proper convergence condi-
tion. Choosing a smaller margin for convergence or a
higher number of maximum forward iterations tends
to lead to a more accurate FP estimation. As a re-
sult, this can be expected to lead to more accurate, but
slower, training.

In our training, the networks for the RG are ini-
tialized with the pnpReG (Fermanian et al., 2023),
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while the networks representing the PO are initial-
ized with the MTDEQ regularizer (Willingham et al.,
2023). The networks are trained for 150 epochs, start-
ing with a step-size of 10−5. The step-size is reduced
by 75% every 15 epochs.

5.3 Comparisons to Other Methods

We compare our different algorithms to MTDEQ
(Willingham et al., 2023), pnp ADMM with a Gaus-
sian denoiser (called Gauss in the tables) and pn-
pReG. The PSNR values for the two latter methods
are drawn from (Fermanian et al., 2023). The com-
parisons are done on set5 (Bevilacqua et al., 2012).
Hyper-parameters used for the testing of the RGs in a
GD algorithm are taken from (Fermanian et al., 2023)
and were tuned to produce the best results for pn-
pReG, meaning they were not further optimized for
RG1, DEQGD or RERG. Note that the weight of the
regularization is given by the AWGN in the inverse
problem, but for problems with no AWGN, a weight
larger than zero was chosen to allow for regulariza-
tion.

Based on these experiments, the next section will
compare the performance of the different approaches
and discuss the results.

6 RESULTS AND DISCUSSION

To showcase the differences that appear when using
the introduced bound for RG1 and RERG, this sec-
tion will compare the performance of four different
RGs and examine differences in reconstruction per-
formance.

Training a DEQGD is difficult, as convergence of
the forward iterations is elusive and in our training
only about half the iterations converged before reach-
ing 500 iterations. This is why we used adam in for-
ward iteration as well as the stopping condition of any

entry having absolute value over 100. Training RG1
was quite stable and did not lead to any larger issues
in training, as the FB algorithm used tends to be much
more stable and converge faster.

The RG1 prior performs best for completion (see
table 1), while the DEQGD performs better for many
of the other applications (especially the noisy ones).
This is likely the case because the GD procedure di-
rectly uses the (known) noise-level in each iteration.
The FB algorithm, on the other hand, uses a proxi-
mal operator, in which the link between the level of
AWGN given to the proximal operator is processed
by a neural net, necessitating a training of this rela-
tionship. For zero-noise problems with little to no
AWGN, this is a boon, because the regularization
weight in a GD procedure may become too small to
provide meaningful regularization. This is why the
weight for the regularization is chosen to be larger
than zero at test-time, when a noise-less problem is
considered.

On any given task, RERG performs close to
whichever of RG1 and DEQGD performs best, out-
performing DEQGD on most problems. This means
that using the upper bound in addition to LGD in train-
ing can lead to a procedure that leverages the recon-
struction errors of both, a GD and a FB algorithm to
perform well across all the degradations considered.
If one looks at the visual examples in figure 1, it ap-
pears as if the RERG avoids some of the artifacts that
appear in RG1 and DEQGD, like the blurring of the
butterfly’s pattern on the bottom right in figure 1 (b),
or the artifacts produced by RG1 in (a). While RG1
or the DEQGD both perform well for some problems
and worse for others, RERG appears to perform more
consistently across the different degradations consid-
ered.

Figure 2 shows that for inverse problems where
convergence is slow (necessitating a higher step-size)
DEQGD and RERG may converge faster, because
they are trained with a larger step-size and a limited
amount of iterations. The problem highlighted in fig-

Table 1: This table compares methods on noise-less pixel-wise completion with 80 and 90 % of the pixels missing, respec-
tively. It also displays deblurring results for σnoise = 0.01 and Gaussian kernels with two different levels of blur σb. Results
are reported as PSNR (dB) | SSIM (Structural Similarity Index Measure (Wang et al., 2004)). Both metrics are computed on
the red green blue color channels.

Methods Completion Deblurring

80% 90% σb = 1.6 σb = 2.0

Gauss 30.20 | 0.893 26.20 | 0.821 32.06 | 0.884 30.88 | 0.866
MTDEQ 30.72 | 0.897 27.09 | 0.837 32.82 | 0.898 31.83 | 0.881
pnpReG 30.36 | 0.894 26.94 | 0.830 32.51 | 0.898 31.19 | 0.884
RG1 30.58 | 0.899 27.18 | 0.837 32.31 | 0.884 31.67 | 0.877
DEQGD 29.59 | 0.892 24.34 | 0.811 32.80 | 0.901 32.03 | 0.888
RERG 30.29 | 0.894 26.86 | 0.830 32.90 | 0.902 32.17 | 0.890
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Table 2: Results for super-resolution on images that were down-sampled using a Gaussian kernel with σb = 0.5 and a bicubic
kernel, respectively. This is done on a factor of 2 and 3, as well as two different noise-levels. Results are reported in the form
PSNR | SSIM.

Methods
Bicubic Gaussian
w/ σnoise w/ σnoise

0.00 0.01 0.00 0.01

2x
SR

Gauss 35.20 | 0.940 33.80 | 0.917 35.14 | 0.938 32.74 | 0.900
MTDEQ 35.61 | 0.942 34.43 | 0.917 35.42 | 0.939 33.45 | 0.901
pnpReG 35.34 | 0.943 34.29 | 0.922 35.30 | 0.942 33.41 | 0.906
RG1 35.66 | 0.944 33.86 | 0.908 35.57 | 0.943 32.51 | 0.876
DEQGD 35.50 | 0.941 34.40 | 0.924 35.40 | 0.940 33.66 | 0.911
RERG 35.61 | 0.943 34.42 | 0.922 35.52 | 0.941 33.69 | 0.911

3x
SR

Gauss 31.49 | 0.892 30.39 | 0.861 31.45 | 0.890 29.17 | 0.819
MTDEQ 32.10 | 0.900 31.15 | 0.865 31.94 | 0.896 30.17 | 0.842
pnpReG 31.75 | 0.896 31.13 | 0.877 31.60 | 0.896 30.39 | 0.858
RG1 31.73 | 0.899 31.21 | 0.871 31.06 | 0.892 30.33 | 0.847
DEQGD 32.07 | 0.899 31.31 | 0.881 31.74 | 0.898 30.61 | 0.867
RERG 32.09 | 0.901 31.38 | 0.881 31.67 | 0.899 30.74 | 0.867

(a) Image results for noisy 3x Gaussian super-resolution.

(b) Image results for noise-less completion with 90% of pixels missing

(c) Deblurring image results for σb = 2.0 from table 1

Figure 1: Image results for the GD based methods with corresponding PSNR in dB.
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Figure 2: Average PSNR on set5 across the GD iterations
for the solution of a noise-less completion problem with
90% of the pixels missing (see table 1).

ure 2 is reconstructed with a step-size of 0.025, which
is the largest step-size used in testing, while most of
the other problems use much smaller step-sizes and
do not exhibit the same phenomenon.

One big issue with any GD-based scheme so far
is that they are quite slow to test (and to train, if one
uses a DEQGD approach). The test we performed had
1500 forward iterations, as do the tests in (Fermanian
et al., 2023), meaning this is much slower than the
pnp ADMM used for the MTDEQ (hyper-parameters
for the pnp ADMM algorithm used can also be found
in (Fermanian et al., 2023)).

Further investigation of different hyper-
parameters for the training of a RERG could
provide even better performance on the tasks con-
sidered and improve convergence speed at testing.
There are procedures that can be used to speed up FP
calculations, like the method from (Bai et al., 2021)
or the correction terms from (Bai et al., 2022), that
could be incorporated to speed up inference and FP
estimation in training.

7 CONCLUSION

In this paper, we introduced an upper bound that can
be used for the training of a GD procedure as both a
training objective and a regularization. We compared
four different types of RGs on a range of different in-
verse problems and discussed some of the differences,
showing that the use of an upper bound for regulariza-
tion to create a RERG can mitigate some of the disad-
vantages of the DEQGD and the RG1.

So far, few investigations have been done on RGs
and we extended the theoretical framework intro-
duced in (Fermanian et al., 2023) while proposing
two novel ways of training RGs. We compared the
resulting RGs and demonstrated that the RERG that
combines both the upper bound and a DEQGD pro-

duces strong reconstruction results across all the in-
verse problems considered.
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