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Abstract: In this study, a multi-modal sensing approach was employed to enhance human activity recognition (HAR). 
The approach integrated data from a wearable wristband and a Real-Time Location System (RTLS) to perform 
physical posture classification (PPC) and indoor localization (IL). The performance of conventional machine 
learning techniques such as Logistic Regression (LR) and Long Short-Term Memory (LSTM) models were 
compared. The results demonstrated that LSTM models have superior performance in terms of accuracy and 
robustness. The LSTM's efficacy stems from its ability to capture temporal dependencies inherent in human 
activity data, making it suited for HAR tasks. Our findings underscored the benefits of employing a multi-
modal, LSTM-based approach for enhancing HAR. The proposed approach increased the comprehensiveness 
of the HAR system. The proposed system holds potential for various in-home activity monitoring scenarios, 
suggesting promising implications for improving the quality of remote patient monitoring. 

1 INTRODUCTION 

Recognizing the escalating significance of in-home 
health monitoring systems is crucial in the 
contemporary era, particularly in the aftermath of the 
COVID-19 pandemic. In-home physical activity 
monitoring systems, specifically, not only elevate 
patient care quality but also provide an economical 
solution for the healthcare industry (Schneider et al., 
2020). Potential advancements in these 
telemonitoring systems could significantly transform 
patient care and healthcare delivery, benefiting a 
broad range of demographics (Teriö et al., 2022). 

Over the past two decades, the landscape of 
wearable technologies has undergone a dramatic 
transformation. More recent developments have seen 
a substantial increase in the quality and precision of 
wearable devices while achieving reductions in size, 
weight, battery consumption, and cost. Such 
improvements have solidified the position of 
wearable technology as the preferred choice for 
telemonitoring applications (Huhn et al., 2022).  

Wearable devices such as smartwatches, fitness 
trackers, and actigraphy activity monitors, which 
utilize MEMS accelerometers and gyroscopes, are 

commonly used for in-home physical activity 
monitoring. In addition, wireless ambient sensors, 
such as those used for indoor localization (IL) (Cerón 
& López, 2018) and passive infrared motion sensors 
(Schütz et al., 2021), contribute to a comprehensive 
understanding of activity patterns within the 
household. The integration of these two modalities, 
wearables, and wireless ambient sensors, enables a 
detailed analysis of physical activity monitoring for 
in-home human activity recognition (HAR) (Ann & 
Theng, 2014). Uddin and Soylu developed a sensory-
based eldercare system specifically for HAR, aiming 
to accurately classify twelve physical activities, 
including standing still, sitting, lying down, climbing 
stairs, bending, and more (Uddin & Soylu, 2021). On 
the other hand, IL offers a means to track individuals' 
locations, allowing for the monitoring of movement 
patterns and gaining valuable insights into the 
lifestyle and human behaviors (Shum et al., 2022). 

There have been numerous studies on wearable or 
IR-based HAR, but few have combined the two 
modalities to create a more robust physical activity 
recognition system. Hence, in this study, we present 
a novel approach for HAR that combines data from 
(i) a wearable wristband for physical posture 
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classification (PPC) of standing, sitting, and lying; 
and (ii) a Real-Time Location System (RTLS) for IL. 
To enhance the performance of the proposed system, 
a Long Short-Term Memory (LSTM) model 
(Sherstinsky, 2020) was employed. This integration 
of wearable sensors and RTLS data offers promising 
results for advancing HAR methodologies. The 
potential benefits of this approach include improving 
in-home activity monitoring systems and exploring 
tailored applications, such as facilitating aging-in-
place technologies for elderlies in the future. 

2 MATERIALS AND METHODS 

In this study, PPC and IL were employed to develop 
our framework for improving the accuracy of HAR. 
The selected activities for this study included routine 
daily life tasks such as cooking, eating, sleeping, etc. 
(see Table 1). 

 These activities provide a diverse dataset for our 
analyses and were chosen due to their varying degrees 
of movement patterns and complexity. Our approach 
consists of several stages: initial preprocessing of the 
data, feature selection, and the implementation of a 
sequential model for classification. Each stage 
contributes to the overall accuracy of our HAR 
model. 

2.1 Data Collection 

The data used in this study were collected in a real 
home setting in Vancouver, British Columbia, 
Canada. All participants performed a set of 
predefined tasks for approximately one hour. The ten 
predefined activities listed in Table 1 were executed 
by 10 healthy young adults (n = 10; 6 males and 4 
females; mean body mass = 74.2 ± 18.4 kg; height 
172.0 ± 10.3 cm, age = 24.0 ± 2.8 years) wearing an 
actigraphy wristband for physical activity data 
collection. Each participant completed all of the listed 
activities once, ensuring that the dataset reflects a 
complete set of single instances of each activity, 
without repetitions. The activities were assigned in a 
random order to each participant, ensuring 
independence of each task and preventing any 
sequence bias. This method mirrors the 
unpredictability of daily activities, allowing for the 
capture of a wide range of movements and postures. 

In our dataset, we specifically focused on the 
activities outlined in Table 1, and data from 
transitional stages, such as transition between tasks 
was excluded in the training of our LSTM model. 
These transitional activities, such as moving from 

cooking to eating a meal, were not considered as 
distinct data points for training, ensuring a clear focus 
on the primary activities of interest.  

All participants signed an informed consent form, 
and the experimental protocol was approved by the 
Research Ethics Board of Simon Fraser University 
(no. 30001370) 

Table 1: Ten pre-defined physical activities performed by 
participants during the experiment. 

Human Activity Description 

Entering the house 
(A1) 

Opening the door and 
entering the house 

Cooking 
(A2) Standing in front of the stove 

Eating at the dining table 
(A3) 

Sitting at the dining table 
area 

Washing hands 
(A4) 

Standing in front of the 
bathroom sink to wash hands 

Watching TV 
(A5) 

Sitting on the sofa to watch 
TV 

Using the toilet 
(A6) Sitting on the toilet 

Using the washing machine 
(A7) 

Standing in front of the 
washing machine 

Using the dishwasher 
(A8) 

Standing in front of the 
dishwasher 

Working 
(A9) Sitting in working area 

Sleeping 
(A10) Lying on the bed 

2.2 Instrumentation 

The data for this study were gathered from wearable 
actigraphy using the ActiGraph GT9X Link 
(ActiGraph LLC, Pensacola, FL) wristband, which 
records high-resolution acceleration data from an 
inertial measurement unit (IMU), and an ultra-
wideband (UWB) tag of an RTLS. The employed 
RTLS was the Eliko indoor positioning system (Eliko 
Tehnoloogia, Estonia), utilizing UWB technology to 
track participants' locations within the home setting. 
A total of six anchors were installed throughout the 
house to cover its entire floor map (see Fig. 2). As 
shown in Fig. 1, the RTLS’s tag was mounted on the 
GT9X Link wristband, which was worn on the non-
dominant wrist, to make it easier for the participants 
to perform the tasks.  
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In addition, the AltumView Sentinare 2 camera 
system (AltumView Ltd., Vancouver, BC) was 
implemented for validation purposes. Instead of 
capturing actual videos, it records stick figures of 
participants for preserving their privacy (see Fig. 3). 
This system was utilized for ground-truth data 
labeling and validation.  

In our data analysis process, we merged data from 
the RTLS and ActiGraph Link, each having different 
sampling rates (10 Hz for RTLS, 1 Hz for the Link, 
and 100 Hz for the Link’s IMU). To synchronize 
these datasets, we employed the Previous Value 
Imputation method (Nakai & Ke, 2011), a technique 
chosen to maintain the integrity of the original data 
without introducing artificial patterns that 
upsampling might cause. This approach was not to 
address missing data but rather to align the datasets 
with varying sampling rates. 

 
Figure 1: The RTLS tag mounted on the GT9X Link 
wristband worn by a participant. 

 
Figure 2: Floor plan of the house where the dataset was 
collected, showing RTLS’ anchors as rectangles and 
Sentinare 2 cameras as circles. The red anchors and cameras 
are wall-mounted, and the blue ones are ceiling-mounted. 
The numbers represent the specific position: 1) bed, 2) 
working desk, 3) sofa, 4) kitchen sink, 5) stove, 6) 
dishwasher, 7) dining table, 8) washing machine, 9) 
bathroom sink, 10) toilet. 

2.3 Data Preparation and Feature 
Selection 

The collected dataset from the ten participants 
consisted of 117,593 samples with 18 features, 
including the tri-axial location and acceleration of the 
tag; tri-axial acceleration, tri-axial angular velocity, 
and tri-axial magnetic field strength of the Link’s 
IMU as well as their Euclidean norms, represent the 
magnitude of the vectors, calculated as the square root 
of the sum of the squares of their components, from 
the Gt9X Link. 

In the development of a HAR model, we initially 
standardized the features using the StandardScaler 
from the preprocessing module of the Scikit-Learn 
library (Pedregosa et al., 2011), ensuring all features 
were on the same scale for precise predictions. We 
then leveraged the Recursive Feature Elimination 
with Cross-Validation (RFECV) from the Scikit-
Learn library’s feature selection module (Pedregosa 
et al., 2011) for feature selection. This method, 
utilizing a Random Forest Classifier (Geron, 2019), 
ranks and methodically eliminates the least important 
features until the optimal subset is found, thereby 
maximizing the cross-validation score. With 5-fold 
cross-validation and accuracy as the scoring metric, 
RFECV was applied to the standardized training data, 
identifying the eight most significant features for our 
HAR model: tri-axial location data, X- and Z-axis 
acceleration data, Y-axis angular velocity data, IMU 
tri-axial acceleration magnitude data, and IMU tri-
axial magnetic field strength magnitude. This 
approach mitigates the risk of overfitting by focusing 
on the most informative features. During this feature 
selection, each sample was treated as independent, 
with the method focusing on the intrinsic 
characteristics of the data without considering the 
temporal relationships between samples. 

 

Figure 3: A sample picture showing the output of the 
Sentinare 2 camera system. 

Furthermore, we favoured RFECV over 
commonly used embedded methods like LASSO or 
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SelectFromModel module from the Scikit-Learn 
library (Pedregosa et al., 2011) due to its superior 
consideration of feature correlations. RFECV’s 
combination of feature ranking, recursive 
elimination, and cross-validation yields a robust 
model. 

2.4 Implementing LSTM Model 

Our study involved a sequence of sensor readings, 
chronologically capturing human activity. This 
sequential data requires a machine learning (ML) 
model skilled in handling time-series inputs, leading 
us to use the LSTM model. The LSTM's strength lies 
in its memory function, which can reference not just 
immediate past data but also distant information, 
offering a potent advantage in predicting human 
activities  (Weng et al., 2021). Unlike conventional 
algorithms, LSTM's capacity for managing time 
dependencies makes it especially suited to human 
daily activities. 

The LSTM architecture was selected through a 
rigorous grid search optimization process that 
considered its performance across multiple 
classification tasks, including general position, 
specific position, PPC, and HAR, as detailed in Table 
2. This uniform architecture was not an a priori 
decision but the result of empirical testing, which 
indicated that the two-layer, 64-unit configuration 
consistently yielded superior results for all categories 
of activity classification. It was observed that this 
architecture effectively captured the essential 
temporal features relevant to each classification 
problem without overfitting, thereby providing a 
standardized approach for the various ML methods 
that were employed in our study. These LSTM layers 
were followed by two dense layers for further 
processing and decision-making. The first dense layer 
consisted of 32 units using the ReLU activation 
function, and the second dense layer used a softmax 
activation function to yield probability distributions 
across the different activity classes. 

The choice of activation functions was also a 
result of empirical evaluation. The ReLU function 
was selected for the intermediate dense layer due to 
its ability to speed up training convergence and 
overcome issues related to the vanishing gradient 
problem, which is particularly crucial in deep 
sequential models like LSTMs. For the output layer, 
the softmax function was chosen because it is well-
suited for multi-class classification tasks. It translates 
the model's outputs into a probability distribution 
over the predicted classes, making the results more 
interpretable. 

 
Figure 4: The distribution of activities on the combined 
dataset. 

The model compilation utilized the Adam 
optimizer (Wang et al., 2019) and sparse categorical 
cross-entropy as the loss function. The performance 
metric used during the training was 'accuracy'. The 
final LSTM model was trained over 100 epochs with 
a batch size of 32, ensuring an optimal balance 
between computational efficiency and the quality of 
learning. 

2.5 Creating True Labels 

A manual annotation process was employed to label 
the stick figure video footage captured by the camera 
system to accurately identify the participant's general 
location, specific position, and physical posture state. 
General locations were determined by the room the 
participant was in, such as the kitchen or bedroom. 
Specific positions referred to areas within these 
rooms, such as the bed in the bedroom or the stove 
area in the kitchen. The procedure was executed by 
inspecting the video recordings and manually noting 
the pertinent activities at the corresponding 
timestamps. The annotated data was synchronized 
with dataset according to the time of recording, 
ensuring a comprehensive and accurately labelled 
dataset for the subsequent stages of our study.  

3 RESULTS AND DISCUSSION 

This section presents detailed analysis, highlighting 
how LSTM surpasses traditional methods in 
accurately classifying human activities. It reveals the 
efficacy of our multi-modal LSTM-based model to 
illuminate the complex relationships between 
different components of HAR, such as general 
location, specific position, and PPC. 

Although the primary objective of our study is the 
classification of HAR, as outlined in our 
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methodology, the accurate detection of the general 
location, specific position, and PPC serves as 
foundational elements in our framework. 
Understanding the system's precision in determining 
the location and basic postures is instrumental in 
gauging the overall efficacy of our HAR framework. 
These components are integral building blocks that 
contribute significantly to the nuanced recognition of 
human activities. Therefore, while our focus remains 
on HAR, the analysis of general location and PPC 
offers valuable insights into the comprehensiveness 
and accuracy of our HAR framework. 

An in-depth analysis was performed to evaluate the 
performance of the proposed machine learning 
framework for HAR. The evaluation utilized a leave-
one-subject-out cross-validation procedure (Kohavi, 
1995), chosen for its ability to realistically assess the 
model's generalization to unseen individuals, which is 
crucial in real-world HAR applications. The 
developed model's performance was assessed for IL, 
PPC, and HAR tasks. To evaluate the performance of 
the proposed model, accuracy was used as the 
evaluation metric. However, given its limitations, 
particularly in cases of class imbalance where it may 
not reflect the model's performance accurately across 
all classes, the F1 score was also utilized for a more 
comprehensive assessment. This metric, balancing 
precision and recall, is often used with unbalanced 
datasets (Powers, 2020), as in this study (see Fig. 4).    

The performance of the proposed LSTM model, 
designed for handling sequential data with memory 
cells, was compared with a variety of conventional 
machine learning algorithms, including Random 
Forest, Logistic Regression (LR), Gradient Boosting 
(GB), Extreme Gradient Boosting (XGB), AdaBoost, 
Support Vector Machine (SVM), K-Nearest 
Neighbours (KNN), Gaussian Naive Bayes (GNB), 
and Decision Tree (DT) (Chen & Guestrin, 2016 and 
Geron, 2019). Each of these models was fine-tuned 
using a grid search for hyperparameter optimization 
to minimize cross-validation loss (Bergstra & 
Bengio, 2012). Among the conventional machine 
learning models, the LR model demonstrated the best 
performance (see Fig. 5). For the LR model, a grid 
search was performed to fine-tune hyperparameters 
such as the regularization strength C (ranging from 
0.01 to 100) and the penalty type (‘l1’ or ‘l2’), with 
the optimal values identified as C=0.1 and 'l2' penalty 
based on the minimization of cross-validation loss. 
When comparing the results of the LR model with the 
LSTM model, the LSTM model consistently 
outperformed across all categories, as shown in  
Table 2.  

Table 2: Performance comparison between LSTM-based 
and ML-based models for 10 Folds. 

LSTM Model LR Based Model  
Category Accuracy F1 Score Accuracy F1 Score 

General 
Location 

97.25±0.01 97.75±0.03 96.72±0.06 96.93±0.05 

Specific 
Position 

92.89±0.03 91.92±0.04 91.05±0.06 90.48±0.06 

PPC 86.24±0.09 87.69±0.09 78.49±0.11 85.07±0.10 

HAR 86.91±0.11 87.33±0.09 68.51±0.19 69.32±0.21 

Table 3: Performance of the LSTM-based model with Non-
Integrated Data from Individual Sensors. 

LSTM Model with Non-Integrated Data 
Categories Accuracy F1 Score 

PPC (IMU) 48.24±0.21 49.69±0.24 
HAR (IL) 31.32±0.32 33.69±0.29 
HAR (IMU) 37.21±0.30 38.22±0.28 

The LSTM-based model displayed robust 
performance across all categories. For the general 
location, the LSTM model achieved an accuracy of 
97.25% and an F1 score of 97.75%, which indicates a 
high level of precision and recall. In detecting specific 
positions, the model yielded an accuracy of 92.89% 
and an F1 score of 91.92%. Regarding PPC, an 
accuracy of 86.24% and an F1 score of 87.69% were 
achieved. Finally, in the context of HAR, the model 
achieved an accuracy of 86.91% and an F1 score of 
87.33%. 

Several factors may contribute to the superior 
performance of the LSTM model. Firstly, LSTM 
networks are adept at capturing temporal 
dependencies, which are integral to the understanding 
and classification of sequential data in HAR. 
Consequently, these features lead to more accurate 
and reliable HAR predictions. 

Furthermore, the findings emphasize that 
integrating IL with posture classification leads to a 
significant improvement in the performance of HAR 
and PPC, as indicated in Table 3. When considering 
either IMU sensor data or RTLS features alone for 
HAR or PPC, lower accuracy and F1 scores were 
observed compared to the combined use of these 
modalities. For instance, as shown in Table 3, when 
utilizing only the IMU sensor's features, PPC 
achieved an accuracy of 48.24% and an F1 score of 
49.69%. Similarly, HAR exhibited an accuracy of 
31.32% and an F1 score of 33.69% when solely using 
IL features. On the other hand, employing solely IMU 
sensor data for HAR resulted in an accuracy of 
37.21% and an F1 score of 38.22%. These findings  
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Figure 5: Accuracy and F1 score of each ML algorithm for 
HAR. 

showed the advantage of a multi-modal sensing 
approach in improving HAR and PPC performances. 

For the analysis with non-integrated data, we 
ensured that the entire pipeline of analysis, including 
standardization and feature selection, was 
meticulously applied separately to the data from each 
sensor before training the LSTM model. By applying 
these steps independently to each sensor's data, we 
aimed to assess the LSTM model's performance in 
scenarios where data from only one sensor type was 
available, thereby highlighting the benefits of our 
multi-modal approach when all sensor data types are 
integrated. 

The superior performance of the multi-modal 
sensing approach, as evidenced by our findings, 
underscores a pivotal aspect of HAR – the necessity 
of capturing a comprehensive dataset that accounts 
for both spatial and temporal dynamics of human 
movements. The contrast in performance metrics 
between single-mode and integrated data analysis 
highlights the limitation of relying on isolated sensor 
inputs. It demonstrates that individual sensor 
modalities, while informative in their own right, may 
not fully capture the complexity of human activities. 
The integration of IL and IMU sensor data 
complements the limitations of each modality. This 
integrative approach mirrors the multifaceted nature 
of human movements and provides a more accurate 
representation of real-world scenarios. 

4 CONCLUSIONS 

In this paper, the feasibility of accurate HAR through 
the integration of data taken from a wearable 
actigraphy wristband and an RTLS was investigated. 
The results affirm the efficacy of integrating location 
features with posture features, resulting in enhanced 

performance for both PPC and HAR. It was shown 
that the proposed LSTM-based model outperformed 
conventional machine learning methods, with higher 
accuracies across all categories. Its superiority stems 
from its ability to capture temporal dependencies in 
HAR data. To improve the performance of the 
proposed system, future work will aim to refine the 
LSTM model and explore the effectiveness of our 
approach for specific demographics, such as in senior 
care, where accurate HAR can be particularly 
beneficial. 
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