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Abstract: With the increasing digitization of human activities, the risk of cyberattacks has increased. The resulting
potential for extensive harm underscores the need for robust detection mechanisms. Neural network-based
solutions deployed on FPGAs provide robust and fast solutions to this challenge by scrutinizing network
traffic patterns to identify malicious behaviours. This paper introduces a novel loss function tailored for use
on the UNSW-NB15 dataset. This loss function allows a small, binarized neural network deployed on FPGAs
to function at high speed with competitive accuracy. This paper further introduces a model trained using this
method which has a maximum operating frequency of 1.028 GHz and LUT and flip-flop usage of 135 and
148 respectively, with an accuracy of 90.91% and an F1 score of 91.81%. The high operating frequency
and low LUT footprint provide avenues for further research, even though the accuracy and F1 score are not
groundbreaking.

1 INTRODUCTION

The rapid growth of the digital world provides in-
creased opportunities for attackers to prey upon indi-
vidual users and critical infrastructure (Ardagna et al.,
2022). Furthermore, the rapid increase in network
traffic has led to the use of high-speed network in-
frastructure. Multiple avenues of attack detection are
being developed to provide security to the increas-
ingly high-speed network infrastructure. One such
avenue is that of a network intrusion detection system
(NIDS) which detects attacks in local traffic. Cur-
rently, NIDS focus on attack detection through pat-
tern matching and statistical analysis. However, such
methods are slow and computationally intensive. As
such, current research focuses on the development
of machine learning (ML) based systems to achieve
the same effect. These include convolutional neural
networks (CNNs) (Azizjon et al., 2020; Jeune et al.,
2022; Wang et al., 2017), recurrent neural networks
(RNN’s) (Yin et al., 2017), and support-vector ma-
chines (SVNs) (Yang et al., 2021) for anomaly detec-
tion and attack classification.

a https://orcid.org/0009-0009-8138-8118

A common challenge across these methods is
dealing with imbalanced datasets where network at-
tacks are infrequent, leading to reduced detection ac-
curacy. Strategies to address this issue include over-
sampling (Zheng et al., 2015), undersampling (Tahir
et al., 2012), Synthetic Minority Oversampling Tech-
nique (SMOTE)(Wang and Huang, 2018), the use of
generative adversarial networks (GANs) to generate
additional minority samples (Andresini et al., 2021),
and Difficult Set Sampling Technique (DSSTE) to
both reduce the data points of the majority class and
increase the number of minority samples (Liu et al.,
2021). Recent advancements propose loss functions
like the attack-sharing loss to handle class imbalance
effectively, especially in the realm of network intru-
sion detection (Dong et al., 2021; Ehmer et al., 2022).

The UNSW-NB15 is a popular choice for
hardware-deployed binary neural networks, and it is
discussed in depth in 4. An important point to note
is that it has a class imbalance, with more total attack
class samples as compared to normal samples in the
training data.

Another point to note is that most of the currently
explored strategies are prohibitively slow, with higher
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Table 1: Previous Work on BNN Based Network Intrusion Detection Systems Trained on UNSW-NB15.

Model Acc.(%) Latency(ns) No. of LUTs fmax(MHz)
MPCBNN (Murovič and Trost, 2019) 90.74 19.6 51353 -
MPBNN (Murovič and Trost, 2021) 92.04 19 26879 -
BNN (Vreča et al., 2021) 82.1 91 26556 142.85
NID-S (Umuroglu et al., 2020) 83.88 3.70 3586 811
NID-M (Umuroglu et al., 2020) 91.3 10.5 15949 471
NID-S (Umoroglu et al., 2023) 90.5 3.96 650 758.15
NID-M (Umoroglu et al., 2023) 92.6 3.57 1649 839.63
NID-L (Umoroglu et al., 2023) 92.9 10.0 8106 498.26

accuracies in intrusion detection corresponding with
slower systems. One approach to solving the speed
challenge is to deploy and accelerate NIDS on field
programmable gate arrays (FPGAs). While many ac-
celeration frameworks are in development (such as
Vitis AI by Xilinx (2023), hls4ml by Duarte et al.
(2018), and FINN by Umuroglu et al. (2017) and Blott
et al. (2018)), only LogicNets (Umuroglu et al., 2020)
is designed to cater towards the acceleration of mod-
els in scenarios where speed is of the highest priority.

In this paper, we introduce a loss function based
on a novel regularisation term. We further train a bi-
narized neural network on the UNSW-NB15 dataset
using the LogicNets framework and this new loss
function. Synthesis is performed for FPGA deploy-
ment and the results are discussed and compared with
other state-of-the-art solutions.

The rest of the paper is organised as follows. In
Section 2 we introduce related work, after which we
introduce the LogicNets framework in Section 3. Af-
ter detailing the specifics of the UNSW-NB15 in Sec-
tion 4, we present our experiment in Section 5 and the
results and appropriate discussion in Section 6. We
conclude our paper in Section 7 with a summary of
the results and possible directions for future work.

2 RELATED WORK

While network intrusion detection systems are not a
new concept, there has been a large research effort to
use machine learning to detect attacks (Buczak and
Guven, 2016). Most of these efforts are designed for
deployment on CPUs or GPUs. Such approaches can
not handle the high speeds of current network traffic,
which can exceed 100 GBPS.

FPGAs provide an alternative platform for the
deployment of such models since they allow for
hardware implementation. Among FPGA-based im-
plementations of ML-based NIDSs, neural-network-
based architectures are popular. Ngo et al. ex-
plored various iterations of a neural network deployed
on an FPGA for the NSL-KDD dataset and IoT-23

dataset (Ngo et al., 2019, 2021). Murovič et al. pro-
posed and iterated upon a fully combinational Bi-
nary Neural Network (FCBNN) that is evaluated on
the UNSW-NB15 dataset (Murovič and Trost, 2019,
2020, 2021). Similarly, Umuroglu et al. proposed
LogicNets as a technique to deploy BNNs on FPGAs,
and demonstrated its potential by accelerating a NIDS
for UNSW-NB15 and further iterating on the design
(Umuroglu et al., 2020; Umoroglu et al., 2023). Vreča
et al. (2021) also developed a BNN for the UNSW-
NB15 dataset.

We observe that BNNs are the fastest hardware ar-
chitectures when considering latency or throughput,
and have the smallest LUT footprints. These neural
networks are very small and feature a reduced com-
plexity. More complex architectures tend to intro-
duce a significant cost in terms of hardware resources
and speed. We compare some state-of-the-art models
from past work in Table 1.

3 LOGICNETS FRAMEWORK

LogicNets is an approach developed by Umuroglu
et al. (2020) that specializes in crafting and deploy-
ing sparse, quantized neural networks using hardware
building blocks, delivering impressive levels of speed
and efficiency on FPGAs. At its core, LogicNets is
based on the concept of equating artificial neurons to
truth tables with quantized inputs and outputs. Take,
for example, an artificial neuron with Cin inputs, each
spanning β-bits, and producing a single β-bit out-
put. Regardless of the neuron’s internal intricacies, its
function can always be represented by an X-input, Y-
output truth table, achieved by exhaustively enumer-
ating all possible 2X inputs and recording their respec-
tive outputs.

In the LogicNets framework, the Verilog imple-
mentation of these X : Y truth tables are referred to
as Hardware Building Blocks (HBBs), while trained
artificial neurons that can be converted into HBBs are
termed Neuron Equivalents (NEQs). The beauty of
NEQs lies in their flexibility, allowing the addition
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of components to simplify the DNN training process.
NEQs and HBBs are the cornerstones of LogicNets in
PyTorch and Verilog, respectively.

The design flow begins with identifying X : Y val-
ues that yield HBBs with reasonable LUT cost and
defining corresponding NEQs in PyTorch that comply
with sparsity and activation quantization constraints.
These NEQs can map to specific FPGA configura-
tions or generic X:Y truth tables for synthesis. Us-
ing these NEQs, a deep neural network topology is
constructed, followed by training in PyTorch, em-
ploying standard DNN optimization techniques. Post-
training, the network transforms into a Verilog netlist
of HBB instances and their sparse connections, al-
lowing for further optimization. Ultimately, this ap-
proach focuses on single-FPGA implementations for
high-throughput applications and concludes the pro-
cess with the generation of an FPGA bit file through
synthesis and place-and-route algorithms.

4 DATASET

The dataset used for training is UNSW-NB15, an up-
dated and enhanced version of the former KDD Cup
dataset. The KDD Cup dataset, which has become
obsolete, had numerous anomalies.

The UNSW-NB15 is relatively smaller in size
compared to other datasets, it stands out due to re-
duced redundancy, providing sufficient data for train-
ing a reasonably accurate model. This dataset com-
prises ten distinct target classes, including one denot-
ing normal activity or benign behaviour, and nine rep-
resenting various forms of attacks.

The dataset consists of a total of 45 features, each
of significant importance in accurately classifying the
aforementioned targets. Out of this dataset, 175,341
samples are used for training and 82,332 for test-
ing. The data distribution of the training and testing
dataset are displayed in Table 2.

We utilized the binarized version of UNSW-
NB15. In this version, all original features, includ-
ing data types like strings, categorical values, and
floating-point values have been systematically trans-
formed into a binary bit string consisting of 593 bits.
Each value within these features is discretized into
either ’0’ or ’1’ and stored as a uint8 value. These
uint8 values are conveniently represented as numpy
arrays and are distributed separately for both the train-
ing and test datasets, maintaining the same partition-
ing as the original dataset. The conclusive binary
value within each sample serves as an indicative rep-
resentation of the expected output. This binarized
dataset was used by both Murovič and Trost (2019)

Table 2: Data Set Record Distribution By Yang et al. (2019).

Category Training Testing
Dataset Dataset

Normal 56,000 37,000
Generic 40,000 18,871
Exploits 33,393 11,132
Fuzzers 18,184 6062
DoS 12,264 4089
Reconnaissance 10,491 3496
Analysis 2000 677
Backdoor 1746 583
Shellcode 1133 378
Worms 130 44
Total 175,341 82,332

and Umuroglu et al. (2020), and can be found online
(Umuroglu, 2021). Note the class imbalance between
the normal data packets and total attack packets in the
training and test distributions.

Our primary goal was to develop an accurate
model for binary classification on this dataset. To ad-
dress the class imbalance issue and avoid losing the
variety of attacks in the dataset, we opted for a loss-
function-based approach.

5 PROPOSED SOLUTION

5.1 Loss Function

To address the pronounced data imbalance within our
dataset, we must first examine the high contrast be-
tween the quantities of normal and attack samples
presented in Table 2. Specifically, we observe a to-
tal of 56,000 normal samples in contrast to a signifi-
cantly higher count of 119,341 attack samples. This
notable disparity underscores the presence of a class
imbalance, which warrants our consideration regard-
ing its impact on our model’s performance.

It is imperative to recognize that such a substan-
tial class imbalance could impart a substantial bias to
our model’s predictions. This inherent skew in the
data distribution could result in a propensity for the
model to favour predictions in favour of the attack
class, due to the disproportionately higher number of
training samples allocated to this category, as com-
pared to the normal class. Consequently, this class
imbalance may lead the model to produce erroneous
predictions, particularly in the form of false positives
within the attack class.

To mitigate this issue, our work explores the uti-
lization of modified loss functions as a strategic ap-
proach. The focus of our study became the work of
Dong et al. Dong et al. (2021) and Ehmer et al. Ehmer
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et al. (2022). The method suggested by Ehmer et al.,
shown in Equation 1 is as follows:

Loss = JCE − 1
N

[
N

∑
i=1

(
α · I(y(i),1) log(p(i)1 )

+
c

∑
j=2

s j · I(y(i), j) log(1− p(i)1 )

)]
(1)

Where:

I(a,b) =
{

1 if a = b
0 Otherwise

s j = β ·
(

1−
n j

Nmc

)
And:

• JCE is the binary cross-entropy loss,

• N is the number of samples in the batch,

• p(i)1 is the predicted probability of the majority
class for the i-th sample,

• y(i) is the prediction for the i-th sample,

• α is a scaling factor,

• β is a scaling factor,

• n j is the number of samples of the j-th minority
class in the batch,

• Nmc is the total number of minority samples in the
batch

This method does not adapt to binary classifica-
tion, because the term for the scaling factor for the
minority class simplifies to 0.

The method suggested by Dong et al. is as fol-
lows:

Loss = JCE − 1
N

[
N

∑
i=1

λ

(
I(y(i),1) log(p(i)1 )

+
c

∑
j=2

I(y(i), j) log(1− p(i)1 )

)]
(2)

Where λ is a scaling factor. This method failed to
yield acceptable results using our small quantized
neural network architecture.
Drawing inspiration from the works of Dong et al.
and Ehmer et al., we created a loss function which
worked well for our small architecture. The goal in
mind was to penalize unconfident predictions for the
minority class. The loss function we created is de-
tailed in Equation 3. In line with the specifics of

the UNSW-NB15 dataset discussed in Section 4, 0 is
the label for the minority class and 1 is the label for
the majority class. During our experiments, we set
λ = 0.5.

Loss = JCE − 1
N

[
N

∑
i=1

(
λ · I(y(i),1) log(p(i)1 )

+ I(y(i),0) log(1− log(1− p(i)1 ))

)]
(3)

Where:

I(a,b) =
{

1 if a = b
0 Otherwise

• JCE is the binary cross-entropy loss, computed us-
ing nn.BCEWithLogitsLoss(),

• N is the number of samples in the dataset,

• p(i)1 is the predicted probability of the majority
class for the i-th sample,

• y(i) is the binary prediction for the i-th sample (1
for attack, 0 for benign)

5.2 Our Network Topology

The artificial neural network employs a structured
three-layer configuration, with a single hidden layer.
Keeping in line with the strategy maintained by
Umoroglu et al. Umuroglu et al. (2020), we ex-
clude the softmax layer at the output to tailor each
layer to specific computational needs. The founda-
tional layer consists of 49 neurons, each with 7 input
channels, akin to synapses in biological neural net-
works. These neurons output 2-bit data for nuanced
responses. In the second layer, featuring 7 neurons,
the input bit width expands to 7 for more complex
processing, while maintaining a 2-bit output. The top
layer, a single neuron, aggregates data from 7 inputs
and also provides a 2-bit output.

Figure 1 illustrates the overview of the artificial
neural network architecture used and also an exploded
view of the perceptron.

5.3 Training

We trained the model for 100 epochs with a learning
rate 10−1 and batch size of 1023. The training was
performed on Intel(R) Core(TM) i7-10750H with 16
GB of RAM in Ubuntu 20.04. Results are discussed
in Section 6.
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Figure 1: Network Topology.

5.4 Synthesis

Out-of-context synthesis was performed for an AMD
Xilinx Alveo U280 (part number xcu280-fsvh2892-
2L-e) on an Intel(R) Core(TM) i7-10750H with 16
GB of RAM in Ubuntu 20.04 using Vivado 2019.2.
The results of the synthesis are discussed in Section
6.

6 RESULTS

We have rigorously evaluated our system to assess its
suitability for network intrusion detection, focusing
on both computational resource usage and classifica-
tion accuracy.

6.1 System Performance Metrics

To begin, we examine the system’s performance in
terms of its maximum operating frequency and re-
source utilization. These metrics serve as essential
indicators of the system’s efficiency and practicality
for real-world deployment. Our system achieved an
impressive maximum operating frequency of 1.028
GHz, demonstrating its ability to process data rapidly
and efficiently. Additionally, the resource utilization
metrics reveal that the design is resource-efficient,
with a consumption of 135 Look-Up Tables (LUTs)
and 148 Flip-Flops. A comparison of our synthesis re-
sults with past works is displayed graphically in Fig-
ure 2.

6.2 Classification Performance
Evaluation

Our evaluation extends to the classification perfor-
mance of the system, a critical aspect for applications
such as pattern recognition and anomaly detection.
We employed a binary confusion matrix to rigorously
analyze the system’s ability to correctly classify in-
stances.

As shown in Table 3, our proposed neural network
provides competitive accuracy with a near negligi-
ble LUT footprint at a maximum operating frequency
which crosses 1 GHz.

From the confusion matrix in Figure 3, we derived
the following essential performance metrics:

• True Positive (TP): The number of correct positive
classifications made by the system

• False Positive (FP): The number of incorrect pos-
itive classifications made by the system

• False Negative (FN): The number of incorrect
negative classifications made by the system

• True Negative (TN): The number of correct nega-
tive classifications made by the system

6.3 Accuracy and F1 Score

With these performance metrics in hand, we assess
the overall effectiveness of our classification sys-
tem. Our results indicate an impressive accuracy of
90.91%, signifying the system’s ability to make ac-
curate predictions. Additionally, we achieved an F1
score of 91.82%, highlighting the system’s capability
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Figure 2: LUT Count vs. Operating Frequency.
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Table 3: Comparison of Our Work With Select Previous Works.

Model Acc. (%) Latency LUT f (MHz)
MPBNN (Murovič and Trost, 2021) 92.04 19 ns 26879 -
NID-S (Umuroglu et al., 2020) 83.88 3.70 ns 3586 811
NID-S (Umoroglu et al., 2023) 90.5 3.96 ns 650 758.15
NID-M (Umoroglu et al., 2023) 92.6 3.57 ns 1649 839.63
Our Work 90.91 2.92 ns 135 1027.75

Figure 3: Confusion Matrix.

to balance precision and recall effectively. These out-
comes underscore the system’s robustness and its po-
tential to excel in a wide range of classification tasks,
making it a valuable asset for applications that require
reliable decision-making.

To evaluate the classification performance, we cal-
culate the accuracy and F1 score using the following
formulas:

Accuracy =
T P+T N

T P+T N +FP+FN
(4)

F1 =
2 ·T P

2 ·T P+FP+FN
(5)

So, using the values enumerated in Fig.3, the calcu-
lated values are as follows:

• Accuracy: 0.909137 (or 90.91%)

• F1 Score: 0.918195 (or 91.82%)

7 CONCLUSION AND FUTURE
WORK

We firmly advocate the need for further efforts in
devising innovative architectures and exploring logic
optimization techniques, particularly for parallel bi-
nary neural networks, which are essential in the high-
speed domain of network intrusion detection. Addi-
tionally, we stress the importance of studying the in-
teraction between algorithmic changes and the Logic-
Nets framework, as it can significantly impact model

performance and logic reduction. This comprehen-
sive analysis will contribute to the continued advance-
ment of hardware-based machine learning in the field
of network intrusion detection.
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