
A Framework for E2E Audit Trails in System Architectures of
Different Enterprise Classes

Luca Patzelt1, Georg Neugebauer1, Meik Döll2, Sacha Hack1, Tim Höner1 and Marko Schuba1
1Department of Electrical Engineering and Computer Science, FH Aachen University of Applied Sciences,

Eupener Str. 70, 52066 Aachen, Germany
2SOPTIM AG, Im Süsterfeld 5-7, 52072 Aachen, Germany

Keywords: Auditing, Auditing Framework, Audit Trail, End-to-End Audit Trail, E2E Audit Trail, Pseudonymisation.

Abstract: In today's world, there are more and more IT systems that are interconnected to provide services to a wide
variety of business classes. Since their services are usually inevitably linked to financial and political interests,
the number of attacks aimed at disrupting or profiting from these and the associated systems in various ways
is constantly increasing. In this paper we design and implement a framework for the comprehensive auditing
of IT systems in system architectures of different enterprise classes. For our solution, we evaluate formal
requirements regarding audit trails, provide concepts for the pseudonymisation of audit data, develop software
components for E2E audit trails and finally present a secure system architecture based on Kubernetes and
Istio in conjunction with the storage components ArangoDB and HashiCorp Vault to achieve an efficient
framework for creating E2E audit trails.

1 INTRODUCTION

The constant desire of companies to automate and
optimise work processes through the introduction of
IT systems and software processes is creating an
increasingly digital world. As a result of these digital
and partly complex processes in companies, the risk
of cyber-attacks on the IT infrastructure and systems
continues to rise.

The complete logging and tracking of events in IT
systems, also called auditing, is a related and
recurring demand of companies. The aim of these
audits is to make both malicious activities by hostile
actors such as unintentional changes by legitimate
and authorised actors transparent and to support
subsequent actions.

In doing so, events should not only be considered
on one system, but linked across many different
systems. On the one hand, this would ease the tracing
of events and their origins, and on the other hand, it
would enable the possibility to detect attacks that
might remain undetected by simple audit trails. The
audit trail required for this is therefore defined as an
"E2E audit trail".

Due to the many ways in which IT systems can be
linked together, as well as the different requirements of

companies, it makes sense to look at them in terms of
auditing by company class. Here, the focus is primarily
on the three company classes "universities", "KRITIS
service providers" and "SaaS service providers".

The accumulation and processing of audit data
across various systems as an E2E audit trail therefore
has great potential to improve the security of an IT
infrastructure and the systems it contains. In this
paper we present an implementation of a framework
for E2E audit trails that enables a company to
establish such a process in its own system architecture
using the developed framework.

For our solution, we evaluate formal requirements
regarding audit trails (Section 2), provide concepts
for the pseudonymisation of audit data (Section 3),
discuss attack scenarios and suitable rule sets (Section
4), develop software components for E2E audit trails
within a secure system architecture (Section 5),
present an evaluation with an example of E2E
violation graphs (Section 6) and finally conclude our
paper in Section 7.

2 AUDIT TRAILS

The term "audit trail" is a combination of the two

750
Patzelt, L., Neugebauer, G., Döll, M., Hack, S., Höner, T. and Schuba, M.
A Framework for E2E Audit Trails in System Architectures of Different Enterprise Classes.
DOI: 10.5220/0012367000003648
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 10th International Conference on Information Systems Security and Privacy (ICISSP 2024), pages 750-757
ISBN: 978-989-758-683-5; ISSN: 2184-4356
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

words audit (from the Latin audire: to hear - in this
case an examination of processes, activities or results)
and the English word trail, and thus describes a
process which enables the tracking and named
examination of "actual or attempted actions
monitored and documented or recorded electronically
or manually or on paper during a certain period of
time" (Dr. Siller et. al, 2018).

Primarily, events and the associated meta-
information are stored in the form of audit entries as
a continuous record, often called a "log". These logs
are then usually stored centrally in a system to allow
easy tracking of results in this system. The focus is
generally on documenting changes and deletions, as
these are particularly critical events regarding IT
security attacks.

2.1 E2E Audit Trails

An "E2E audit trail" can document or track an event
across several systems and thus allows the detection
of possible anomalies between individual audit trails.
For this purpose, regular audit trails as well as other
(independent) audit messages and master data from
different systems are collected to create logical links
between them and thus correlate previously
independent results with each other.

The primary goal is to log an event from the first
instance in which a suspected malicious actor triggers
an action, e.g., an interaction with a client application
on a local end device, to the last instance, e.g., the
modification or deletion of a value or entry in a data
record of a database. At best, the complete chain of
events or all interactions between all IT systems
involved (from the user device to the database) is
recorded so that it can be analysed without gaps. This
makes it possible to detect a malicious act, e.g., by a
hostile actor, even if each individual event appears
inconspicuous by itself. Figure 1 below shows an
application example.

3 PSEUDONYMISATION

The core task of an E2E audit trail, or audit trails in
general, deals centrally with the logging or, more
generally, the processing of data. Since this often
involves sensitive or personal data, this project is
often subject to local and overarching regulations.

An essential factor in the processing of sensitive
or personal data, specifically here in Europe, is
compliance with the European Data Protection
Regulation, also known as the "GDPR". In relation to
audit trails, the anonymisation and pseudonymisation

of the data to be processed, with the aim of protecting
the personal rights of the persons concerned, is an
important part of the initial data processing. The audit
information is collected, processed and stored.

Figure 1: Difference E2E-/Audit Trail.

The fundamental difference between
"anonymisation" and "pseudonymisation" is that
personal data is irreversibly changed or removed in
anonymisation so that a person can no longer be
directly or indirectly identified. In contrast, in the
case of pseudonymisation, data are changed in such a
way that they can no longer be directly attributed to a
person and additional information is required to
assign them to a person again.

Since the possibility of linking independent
events via common identifiers is indispensable for the
evaluation of E2E audit trails, the following focuses
primarily on the pseudonymisation of audit
information, since anonymisation would make
subsequent reidentification (e.g., in the case of a
concrete security incident) impossible and thus defeat
the purpose of an audit trail.

To support the implementation of GDPR-
compliant pseudonymisation, the European Union
Agency for Cyber Security (ENISA) publishes
reports on, among others, "Techniques, Use Cases
and Best Practices" (ENISA Best Practices, 2019
ENISA Advanced Techniques, 2022) in data
pseudonymisation which we use as a guideline for
data pseudonymisation within our framework.

3.1 Hierarchical Pseudonymisation
Procedure

Regarding E2E audit trails, we have a challenging
situation with respect to pseudonymisation, as on the
one hand there is a great risk of re-identification due
to speculation, but on the other hand the ability to link

A Framework for E2E Audit Trails in System Architectures of Different Enterprise Classes

751

audit entries and identify real persons or entities in
case of concrete suspicion must be maintained.

Since these requirements cannot be met by any of
the three mutually exclusive pseudonymisation
guidelines (see ENISA references) alone, a
hierarchical or multi-level pseudonymisation
procedure is recommended for the implementation of
E2E audit trails, in which the identifiers are not purely
"deterministic", "document-randomised" or "fully
randomised", but with a combination of a
"deterministic" and a "fully randomised"
pseudonymisation. The concept of a multi-stage
pseudonymisation procedure is not new and was
described, among other things, in a white paper
revised in 2019 by Rolf Schwartmann and Steffen
Weiß, together with the Federal Ministry of the
Interior, for Construction and Home Affairs, in 2018
(Schwartmann et al., 2019).

The aim of the implementation of such a multi-
level pseudonymisation procedure developed here, is
that the data records are both persisted logically
separated from each other by many different
pseudonyms per identifier and can be linked to each
other via additional protected knowledge. When
designing such a procedure, it should also be noted
that none of the entities need to be completely
depseudonymised during processing. This should
only be necessary in cases of concrete suspicion, in
which, for example, the interest of uncovering a
concrete crime outweighs the personal rights of the
person concerned.

Finally, it is advisable to implement the
pseudonymisation procedure in such a way that it
allows distributed calculation or pseudonymisation
across several instances. This ensures that the
required computational resources can be scaled
across cluster-based environments used within our
framework.

Regarding the tooling to be used, a multi-stage
pseudonymisation procedure will be implemented
using our storage concept defined in Section 5.2.
Through its use, a complete logical separation
between an identifier and a subpseudonym is carried
out primarily with the help of the master pseudonym.
In short, the subpseudonym is chosen with the help of
a cryptographically secure pseudo-random generator,
so that any kind of cryptanalysis with the aim of
obtaining information about the identifier from the
subpseudonym is useless. By choosing the smallest
possible change interval of the subpseudonym and its
resulting constant rotation, the amount of information
per subpseudonym can be reduced to a minimum
(Schwartmann et al.). This simultaneously reduces
the ability of an attacker to carry out a speculative

attack or the use of insider and background
information to depseudonymise pseudonyms within
our system.

As protection against brute force and dictionary
attacks or the dictionary search, the use of secure key-
dependent cryptographic hash functions or key
derivation functions is recommended.

Finally, it is very important that secure data stores
are used for the persistence of the ID master mapping,
the master subsets and the audit record entries.

4 RULE SETS FOR ATTACK
SCENARIOS

With the aim of an E2E audit trail to detect attacks as
quickly as possible, or to reconstruct the sequence of
events, the first step is to analyse which attack
scenarios are common and where they are likely to
leave traces. Rule modules can be created for the
creation of rule sets, which can later be combined by
an E2E audit trail.

Figure 2: Arbitrary rule module.

A rule module, as shown in Figure 2, primarily
consists of an entry method (here
"arbitraryRuleModule") that takes as parameters any
data needed for the decisions to be made in the
module. Within this method, further required data
may be retrieved with the help of data bank queries
(here "arbitrary_query") to incorporate them into the
decision-making process. If a rule violation is
detected, this can be "reported" (here with
"reportViolation"), whereby a relationship between
the current entry and an evidence object, in
combination with a remark and a risk assessment, is
marked for persistence in the data storage. After all
entries have been processed, all flagged relationships
are saved as part of a transaction.

4.1 Attack Scenarios

In the following, a series of attack scenarios are listed,
as they could be encountered in all three company
classes. In addition, possible rules or pseudo code for
their use are named, with which this attack can be

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

752

recognised and, if necessary, further steps of an
attacker can be identified and thus probably
prevented.

Misuse of Authorisations by Internal Employees
According to KPMG, the role of employees in
relation to IT security in a company should not be
neglected: "The perception of misuse of a privileged
account by an internal employee ranks fifth among
cybersecurity vectors at 23% (Mihaela, L. C., 2020).
With the help of suitable auditing procedures, it is
possible to identify future security risks at an early
stage and prevent further misuse. Although the use of
an E2E audit trail does not bring any great added
value compared to a regular audit trail, it does make
it possible to cover the not directly recognisable case
of several employees joining forces intentionally or
unintentionally and carrying out undesirable actions
in a system together with their authorisations.

Development Chain Attack
A development chain attack, or DCA, is like a supply
chain attack which is characterised by the fact that an
attacker does not attempt to directly attack or
manipulate a resource, but instead directs his attack at
the "supply chain" of the resource. Here, a sub-
resource, such as an embedded dependency or a
useful resource used in the development of the
resource, such as a server, images, programmes, etc.,
are changed. This leads to the resource now using or
interacting with the manipulated sub-resource and the
attacker can thus change the behaviour of the actual
resource without having to change it directly. An
example of an attack on the development chain is
shown in Figure 3.

Here Alice is developing a very important
application that uses the hash function h(x). To ensure
that the functionality is preserved, she compares the
source code of her development environment with
that of the version management and checks the
artefact against several known inputs and outputs
after the build process.

Mallory then injects a malicious build image into
the build process, altering the internal implementation
of the hash function and allowing, for example, the
easy creation of collisions. Mallory was, of course,
clever enough to make her changes in such a way that
they could not be detected by the tests Alice
performed.

The delivery of the application to a customer, e.g.,
an operator of critical infrastructure, without a deep
check at bytecode level, now leads to the fact that the
process in which the application is used has been
compromised without this being apparent.

To detect such an attack, an E2E audit trail can now
audit every component involved in the development
and build process and show whether and when it was
changed by which person. If it is now determined that
changes have been made that were not foreseen, a
possible compromise can be uncovered and, if
necessary, a new, this time clean, build process can
be started. A set of rules for this would have to be
adapted to the components used so that it includes and
verifies all components.

Figure 3: Development chain attack, "Trusting Trust".

5 SECURE SYSTEM
ARCHITECTURE FOR E2E
AUDIT TRAILS, DESIGN AND
IMPLEMENTATION

For a secure implementation of a framework for E2E
audit trails, the first step is the secure design of a
system architecture for such a framework. Therefore,
we highlight the required sub-aspects to design such
a secure system architecture.

5.1 Requirements for a Secure System
Architecture

We start with three major requirements based on the
three enterprise classes described in the introduction.

Multi-client capability is one of the resulting
requirements, which is particularly obligatory for
KRITIS and SaaS service providers and is especially
recommended for shared infrastructures, such as at
universities, and any resulting shared auditing
systems.

On-Premises is a requirement that arises from the
need to run the software on one's own servers or the
hardware used for it in the local infrastructure. One of

A Framework for E2E Audit Trails in System Architectures of Different Enterprise Classes

753

the main reasons for this requirement is the
processing and pseudonymised storage of sensitive
and personal data that is required for later evaluation.
Transparency does not stem directly from a
requirement of a specific business clas, but from the
general need to process sensitive and personal data
within the European Union "lawfully, fairly and in a
manner comprehensible to the data subject"
(DSGVO, 2016).

5.2 Data Storage Concept

One of the main problems in implementing a
framework for E2E audit trails is the choice of the
correct or suitable storage infrastructure regarding the
storage of the collected and pseudonymised audit
entries as well as the associated pseudonym
mappings.

When looking at the expected results of an E2E
audit trail, it is noticeable that they can be represented
as a graph. Each audit entry represents a node of a
graph and the relationship between two audit entries
can therefore be represented as an edge. With this
knowledge it is obvious that a graph-oriented
database, which is based on the functionality of a
document-oriented database, has a very high potential
for storing this kind of data. For this reason, we use
the "ArangoDB" (ArangoDB, 2023) since it is well-
suited for our data storage concept as a graph
database, relatively widespread, and ships with a fully
functional basic version which is available free of
charge and enables cluster operation, which makes it
promising for a scalable implementation.

Secure Key Value Store
In addition to the storage of pure audit record entries,
the persistence of pseudonym mappings plays an
extremely important role, as sensitive and personal
data is processed or stored here in the case of the
mapping between the original value and the master
pseudonym. Therefore, secure storage and protection
is of great importance here in particular.

One of the many software solutions for storing
key-value pairs, which is a REST-based secret data
store, is "Vault" by the company HashiCorp
(HashiCorp). The decision in favour of a secret data
store can be justified from the point of view of
security. Due to its classification as a secret data store,
Vault is designed for a very high security standard
and, in addition to a range of different authentication
methods, also offers the possibility of assigning
clients their own key-value stores and creating
dedicated access policies for them. In addition, Vault
has so-called "audit devices", which can optionally
save each request to the REST interface in a file or

send it to a syslog server or a TCP, UDP or UNIX
socket. This makes it possible to seamlessly trace
every access to the data stored there and ensure that
unauthorised access to sensitive and personal data
cannot be completely ruled out but can at least be
detected with a very high degree of certainty.

As a summary, with the decision to use
ArangoDB as the storage solution for the large
number of audit record entries, as well as the
mappings between the master and subpseudonyms,
and the choice of Vault as the key value storage for
the sensitive mappings between the original values
and the respective associated master pseudonym, a
secure data storage concept is defined.

5.3 Cluster-Based System Architecture

Due to the great heterogeneity of the source systems
and the data they contain, dynamically expandable
and scalable infrastructures and processing units are
needed that can be modularly adapted to the required
systems. As already mentioned in the previous
sections, a virtualised cluster environment is
recommended for the implementation of a secure
system architecture, which allows the most diverse
components to be logically separated from each other
with the help of ACL-like constructs.

Figure 4: Structure of our E2E framework.

One software component that can meet these
requirements is the free and world-leading container
orchestration software "Kubernetes" ("K8s")
(Kubernetes, 2023), which in combination with a so-
called "service mesh", in this case "Istio" (Istio,
2023), enables the construction of a secure cluster
infrastructure. This is specially designed for the
provisioning and administration of containers, i.e.,
applications whose executable files, resources and

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

754

dependencies are accumulated in a memory image
and can be executed very efficiently on a compatible
operating system.

The "service mesh", in this case various Istio
components, establishes a policy-based management
for all managed applications in the cluster and thus
enables the monitoring of all network processes as
well as the management of data traffic between the
applications and their protection. Figure 4 shows a
possible structure of such a data centre and cluster
architecture.

Figure 5 shows how different components that are
required for the processes of an E2E audit trail can be
combined. With the help of Istio, full encryption via
mTLS is possible within the cluster.

Figure 5: Kubernetes cluster with Istio.

Istio also provides various types of guidelines that
make it possible to isolate the components in the
illustration, visible by the arrows, from each other and
to control the data flow between them in a fine-
grained way. The most important types of guidelines
and configurations are:

Gateway Configuration
A gateway is a virtual definition of a load balancer,
which acts at the network edge of the service mesh.
The gateways describe how incoming and outgoing
HTTP/TCP connections are to be handled.

Virtual Service Configuration
The configuration serves as a virtual switch
component between gateways and services (SVC)
and between services themselves and is applied to the
proxies of the individual pods. It primarily specifies
how to route between two components.

Destination Rules
Following the routing decision by the upstream
"Virtual Service Configuration", this rule now
determines how the traffic to the destination is to be
handled in more detail. The topic of load distribution
and its procedures, e.g., round robin, plays an
important role here.

Authorisation Policies
The core competence of this guideline lies in making
authorisation decisions. Primarily, the following W-

questions are asked: "Who" may interact "when" with
"whom" under "which" conditions "how"?

Peer Authentication Policies
Finally, it is essential to define this policy at least per
namespace, a logical grouping of resources, if not for
each group of pods to be defined, as it specifies how
or whether which traffic from which port is to be
secured.

Summary
Figure 5 therefore shows a secure system architecture
that can be used in all three corporate classes
presented in Section 2. The guidelines can be adapted
exactly to the respective requirements.

Regarding the major requirements defined in this
section, all three can be fulfilled. The requirement of
multi-client capability results from the data storage
and the stateless functioning of the other components,
apart from the cache of the mappings between the
original values and the respective associated master
pseudonym in the cryptographic APIs. Due to the
cluster-based structure of the system architecture,
operation in the cloud as well as on-premises is
possible, which also fulfils this requirement. Finally,
there is the demand for transparency, which shows
through clear guidelines based on Istio at which
points data may flow from one point to another.

6 EVALUATIONS

In the following, we show the evaluation based on
E2E result graphs computed by our framework using
the computation workers described before. By
combining several rule modules and their database
queries a computation worker can relate audit data to
each other (e.g., "A violates B" or "C uses D") via a
processor. The set of these relationships (edges)
together with the entries of the audit data (vertices)

Figure 6: Violation graph for software delivery.

A Framework for E2E Audit Trails in System Architectures of Different Enterprise Classes

755

form a graph. Using attributes of the edges (e.g.,
identifier, colour, weighting, etc.), statements can
now be made about a complex interrelated process.

The ViolationProcessor of our framework
provides so-called "violation graphs", as shown in
Figure 6, which have directed edges from a source
entity to an evidence entity that proves the rule
violation. An example of an evidence entity could be
an entry in an attendance log showing that an
employee was not logged in at the time of an event
(source entity). However, it should always be noted
that a rule violation does not directly equate to a
danger, an attack or an intentional rule violation,
since, for example, forgetting to log in can lead to
false positives regarding an actual risk. Using key
performance indicators, an aggregated risk
assessment can additionally be given via this graph,
which could be an indicator for the urgency of an
investigation.

In the case of the graph in Figure 6, exemplary
violations are shown using a release event in a source
code administration. The first thing to notice is that
the last event in the attendance record (CRC hash:
8f2642b5) is a logoff. This means that the person was
not logged in at that time (01.02.2023 18:36:01).
Secondly, a holiday entry is found that covers exactly
this time period (28.01-02.02.2023). Finally, the
device used (CRC hash: 32f20be4) is compared with
the data of the inventory management (CRC hash:
da07bbd9), whereby it can be determined that the
person used a device that is known but not assigned
to him (CRC hashes of his devices: (9f0c3cf0,
eb5a056f)). The colours of the arrows, in combination
with the "scores", indicate the risk assessment
regarding this relationship.
Risk Score: For our framework, we used a weighted
sum function because it is cubed for large values and
increases faster than for small ones, but the sum
remains comparable for the set of values in the sample
data. Based on the set of relationships and
corresponding values in the resulting graphs, it may
make sense to evaluate the use of another function.

As a second type of result graph, the E2E
processor of our framework provides "E2EGraphs",
as can be seen in Figure 7, which show all
relationships of all entities, not only those that violate
rules. This type of graph is therefore particularly
suitable for the end-to-end tracking of events and
makes it possible to quickly and intuitively get an
overview of all the components involved in an event
and their relationships to each other. Through
different colours and weights of the edges of the
graphs, the observer can now directly recognise
which relationships in this graph are positive, neutral

or negative. At the same time, the thickness of an
edge, i.e., it’s the weighting or the risk value, the user
can get a feeling for how critical a certain relationship
is. This can be seen particularly well in Figure 7,
which shows three large red arrows with a high risk
value, two medium-thick yellow arrows with a
medium risk value, and three thin green arrows with
a non-existent risk value.

Figure 7: E2E graph for software delivery.

Based on key indicators, or threshold values of the
key indicators, for the graph types, an evaluation
process can now be carried out, which can constantly
trigger notifications and external actions. The key
figures can also be generated directly from the data
storage by database queries, so that this should also
be possible for many graphs in an acceptable time.

Graphs without weights, i.e., events without
relationships, are filtered out, as no key performance
indicators need to be calculated for them. Finally, the
risk score is calculated by first cubing and dividing all
weights. This query then returns the event identifier,
the highest risk value and the risk score by summing
up the pre-calculated individual values of the
corresponding graph. Downstream actions could
include the creation of a support ticket, the temporary
blocking of a user or their traffic, and the complete
isolation of a system.

7 CONCLUSIONS

In this paper, we presented the design and
implementation of our framework for E2E audit trails
in system architectures of different enterprise classes.
Using our framework as an example, it was possible
to show how audit log data from different systems can

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

756

be imported, processed and prepared in the form of
directed and weighted graphs by combining different
components. These graphs now form the basis for
detecting attacks on IT systems with the help of end-
to-end tracking. Due to the very modular structure of
the framework and the associated plug-ins and rule
modules, it can be adapted to the different
requirements of the enterprise classes and associated
system architectures (see Section 2). By classifying
all source systems to be connected, requirement
profiles can be defined for a group of systems, which
then enable the systems to be connected via a
common or unified ingest process. User-defined rule
modules for different types and patterns of attacks, as
described in Section 3, then enable a meaningful
linking of the data and a fine-grained tracking of rule
violations. The use of intelligent systems or
knowledge databases can have a supporting effect
here.

The entire process uses a multi-level or
hierarchical pseudonymisation procedure (see
Section 3) that protects the personal data of clients,
employees, students or other persons from whom data
is collected. Based on the policies of the enterprise
classes, the data store allows, for example, the simple
deletion of data of a client that is older than x days.
As the graphs are based directly on this data, they can
be deleted together with the data without the risk of a
hanging reference.

By using realistic data formats in the design of the
sample data used, related to the expected formats of
real data and log data of industry-standard Software
based on information and requirements from industry
cooperation’s, it has already been shown that the
result graphs have a high potential to detect real and
sophisticated attacks within industry.

REFERENCES

ArangoDB (2023), ArangoDB Inc. Graphenda
tenbanksoftware. Version 3.9.7. URL: https://
github.com/arangodb/arangodb/tree/3.9.7, visited on
23/10/2023

DSGVO (2016) - VERORDNUNG (EU) 2016/679 DES
EUROPÄISCHEN PARLAMENTS UND DES
RATES (2016) - vom 27.4.2016 (Amtsblatt L 119 vom
4.5.2016, S. 1, ber. Amtsblatt L 314 vom 22.11.2016,
S. 72, Amtsblatt L 127 vom 23.5.2018, S. 2). URL:
https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?
uri=CELEX:32016R0679

ENISA Best Practices (2019), European Union Agency for
Cybersecurity u. a. Pseudonymisation techniques and
best practices: recommendations on shaping technology
according to data protection and privacy provisions.

Hrsg. von I Agrafiotis, A Bourka und P Drogkaris.
Publications Office, 2019. DOI: 10.2824/247711.

ENISA Advanced Techniques (2022), European Union
Agency for Cybersecurity u. a. Data pseudonymisation
: advanced techniques and use cases : technical analysis
of cybersecurity measures in data protection and
privacy. Hrsg. von P Drogkaris und A Bourka.
European Union Agency for Cybersecurity, 2022. DOI:
10.2824/860099.

HashiCorp (2023), HashiCorp. Vault. Geheimnisda
tenspeicher. Version 1.12.2. URL: https://github.com/
hashicorp/vault/tree/v1.12.2, visited on 23/10/2023

Istio (2023), Cloud Native Computing Foundation. Istio.
Kubernetes Service-Mesh. Version 1.16.1. URL:
https://istio.io/latest/news/releases/1.16.x/announcing-
1.16.1/, visited on 23/10/2023

Kubernetes (2023), Cloud Native Computing Foundation.
Container-Orchestrierungssoftware. Version 1.24.6.
URL: https://github.com/kubernetes/kubernetes/tree/
v1.24.6 visited on 23/10/2023

Mihaela, L. C. (2020) „Current security threats in the
national and international context“. In: Journal of
Accounting and Management Information Systems
19.4 (2 2020), S. 351–378. ISSN: 1583-4387. DOI:
10.24818/jamis.2020.02007.

Ping C., Lieven D. and Christophe H. (2014). „A Study on
Advanced Persistent Threats“. In: Communications and
Multimedia Security. Hrsg. von Bart De Decker und
André Zúquete. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, S. 63–72. ISBN: 978-3-662-44885-
4. DOI: 10.1007/978-3-662-44885-4_5.

Schwartmann R. and Weiß S. (2019), Anforderungen an
den datenschutzkonformen Einsatz von
Pseudonymisierungslösungen. Version 1.01. 2019.
URL: https://www.gdd.de/downloads/anforderungen-
an-datenschutzkonforme-pseudonymisierung visited
on 23/10/2023

Dr. Siller Betriebsberatung and Training Prof. (FH) Mag.
Dr. Helmut Siller MSc. (2018), „Audit Trail“. In:
Gabler Wirtschaftslexikon 53401.276494 (2018). URL:
https://wirtschaftslexikon.gabler.de/definition/audit-
trail-53401/version-276494, visited on 23/10/2023

Weir G. et. al (2017) „Cloud accounting systems, the audit
trail, forensics and the EU GDPR: how hard can it be?“
In: British Accounting & Finance Association (BAFA)
Annual Conference 2017.63134/

Wheeler D. A. (2005), „Countering trusting trust through
diverse double-compiling“. In: 21st Annual Computer
Security Applications Conference (ACSAC’05). 2005,
13 pp.–48. DOI: 10.1109/CSAC.2005.17.

A Framework for E2E Audit Trails in System Architectures of Different Enterprise Classes

757

