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Abstract: Patient Ventilator Asynchrony (PVA) occurs where a mechanical ventilator aiding a patient's breathing falls 
out of synchronisation with their breathing pattern. This de-synchronisation may cause patient distress and 
can lead to long-term negative clinical outcomes. Research into the causes and possible mitigations of PVA 
is currently conducted by clinical domain experts using manual methods, such as parsing entire sleep 
hypnograms visually, and identifying and tagging instances of PVA that they find. This process is very labour-
intensive and can be error prone. This project aims to make this analysis more efficient, by using machine-
learning approaches to automatically parse, classify, and suggest instances of PVA for ultimate confirmation 
by domain experts. The solution has been developed based on a retrospective dataset of intervention and 
control patients that were recruited to a non-invasive ventilation study. This achieves a specificity metric of 
over 90%. This paper describes the process of integrating the output of the machine learning into the bedside 
clinical monitoring system for production use in anticipation of a future clinical trial. 

1 INTRODUCTION 

Patient Ventilator Asynchrony (PVA) occurs where a 
mechanical ventilator assisting a patient's breathing 
falls out of synchronisation with their intrinsic 
breathing pattern. This de-synchronisation may result 
in patient discomfort and can lead to long-term 
negative clinical outcomes. Three types of PVA that 
have been demonstrated to impact on a patients 
during non-invasive ventilation (NIV): 1) ineffective 
effort - where the patient tries to take a breath, but this 
effort fails to register with the ventilator, and it does 
not provide the necessary support; 2) autocycle – a 
small period of volatility where the patient takes 
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several breaths in quick succession and the ventilator 
fails to respond to the rapid behaviour; 3) double 
trigger - where the patient has taken two breaths, one 
of which the ventilator fails to register (Hannan et al, 
2019). 

It has been shown that frequent PVA events 
during both invasive- and non-invasive ventilation 
can lead to many adverse consequences for a patient, 
ranging from reduced sleep quality to more serious 
outcomes such as lung injury, and an increased ICU 
and hospital mortality rate (Brochard et al, 2014). It 
is a significant burden on a variety of different patient 
cohorts, such as those with specific conditions like 
motor neuron disease (MND) or obesity 
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hypoventilation syndrome (OHS), but also severely 
affecting those with more general chronic respiratory 
failure. This group forms a significant percentage of 
the global population. 

Current practice to research and understand PVA 
events includes clinical domain experts manually 
assessing entire sleep hypnograms, along with 
electroencephalogram (EEG) and physiological 
output channels. For a single patient stay, this is often 
of the order of several hours of data, with a resolution 
of nanoseconds in some instances. The identification 
of PVA events such as ineffective efforts, requires a 
combination analysis of (for instance) the mask 
pressure output (“pmask”) channel along with signs 
of volatility in the EEG. 

Technology used to tackle such problems at 
present includes integrated tools, which present all 
the information in one visual space that is convenient 
and optimised for clinical use. An example of this is 
the use of the CompuMedics sleep monitoring 
software (Compumedics ProFusion, Abbotsford 
Australia) that directly connects to the output from 
the ventilator. However, despite the presence of this 
integrated solution, given the relative frequency of 
events against the time resolution described, this 
process is highly labour-intensive and prone to error. 
With recent advances in artificial intelligence and 
machine-learning, it is clearly a process that would 
benefit from automated optimisation. Therefore, this 
project aims to integrate a machine-learning 
algorithm that can automate the process of PVA 
detection and provide clinical decision-support in the 
form of suggestions of PVA event labels. These can 
then be confirmed or rejected by the clinical domain 
experts. 

Several challenges in this work exist, which form 
the basis of this paper. They include:  

• integration of all data channels in an open 
format supporting proprietary software such 
as CompuMedics;  

• reliance on hardware-accelerated processors 
to fully exploit machine-learning algorithms;  

• the need for specialist software libraries;  
• the need to maximise memory efficiency when 

choosing the software environment and 
deciding on the system architecture;  

• time-sampling factors such as down-sampling 
of the machine learning output and the unit 
choices of the EDF file specification, and 
finally,  

• the choice of presentation combined with the 
operation of the algorithm to maximise the 
utility for the clinical end-users. 

2 BACKGROUND LITERATURE 

Two interdisciplinary work threads have combined to 
lead to the development of this work: one clinical and 
the other from information and data science. The 
clinical arm of this interdisciplinary group provided 
the basis for this work through a randomised-
controlled trial that they had conducted previously, 
where NIV was titrated with nocturnal 
polysomnography (one of the first ever controlled 
trials of this intervention) (Hannan, et al, 2019). One 
of the primary findings of this study was that 
polysomnography assisted optimization NIV titration 
resulted in increased NIV usage (hours per night), and 
an association was observed between fewer PVA 
events and increased usage. In certain patient cohorts, 
such as those living with motor neurone disease, 
cohort evidence suggests that increased usage 
(adherence to therapy) leads to a significant increase 
in long-term survival (Berlowitz, et al, 2021). 

2.1 PVA and NIV 

Some independent software solutions to the issue of 
detecting and mitigating PVA have been proposed 
(Dres et al, 2021), but there is a general lack of 
validation for these approaches and they still require 
intensive effort to fully implement. Other studies 
have focused on the storage of raw data on a long-
term basis (Janssens et al., 2015; Rabec et al., 2009)   
but without estimations of signals and interpretation, 
the utility of these tools have also yet to be 
determined. This leads to an opportunity to explore 
algorithmically-centered solutions integrated with 
targeted software modules (as presented here). 

Non-invasive ventilation (NIV) is a therapeutic 
method used to provide respiratory support to 
individuals with breathing difficulties without the 
need for invasive procedures such as endotracheal 
intubation. It delivers positive airway pressure to help 
keep the airways open and assist with breathing. It 
typically involves continuous monitoring to assess the 
effectiveness and the patient’s response to treatment. 
There are different techniques used for NIV 
monitoring including capnography, which monitors 
patient's exhaled carbon dioxide (CO2) levels. 

A unique way of monitoring that captures the 
interaction of patient and ventilator during nocturnal 
use is polygraphy or polysomnography (PSG). It is 
used in the context of sleep-related disorders, where 
NIV can be titrated and monitored using 
polysomnography. While ventilators normally only 
provide readings such as mask pressure, PSG can 
record various physiological parameters including 
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airflow, chest and abdominal movement (Gao, et al, 
2021). Such data can help identify and classify PVA 
events including Ineffective Effort (IE), Double 
Trigger (DT) and Autocycle (AC). 

A randomised controlled trial conducted by 
(Hannan et al, 2019) suggested that using PSG to 
titrate NIV therapy can lead to better alignment 
between the patient's breathing patterns and the 
ventilator's settings, but it may not reduce sleep 
disruption. The data collected in this trial comprised 
information from a cohort of 58 participants, 
primarily individuals diagnosed with neuromuscular 
disorders, all of whom were receiving NIV support 
including the use of PSG titration. 

2.2 Machine-Learning Approaches 

A key unique aspect of the clinical work outlined in 
this paper is that it has been performed during non-
invasive ventilation. This is a novel and ground-
breaking approach. Previous attempts at PVA 
detection by other groups have always been 
performed during invasive ventilation, usually in an 
intensive care-unit. Therefore, when comparing 
against other ML approaches to PVA detection, in the 
invasive ventilation situation the available signals are 
easier to detect as the system is closed, not open, and 
thus inherently less noisy. It is in this context that 
other ML approaches should be considered. 

Zhang et al. (2020) proposed a novel method 
using a two-layer neural network to detect the most 
frequent types of PVA, resulting in the detection of 
double triggering (DT) and ineffective inspiratory 
effort (IIE). According to the study, it was shown that 
ML-based approaches based on a robust database 
(159 patients were included) could assist in PVA 
recognition for clinicians.  

Adams et al. (2017) explored the ventMAP 
platform with focus on types of double-trigger and 
breath stacking PVA. The algorithm proposed was 
rule-based, using pressure and airflow signals, 
including both a derivation and a validation cohort. 
They obtained a performance of 92.2-97.7% on the 
validation cohort. The algorithm helped in detecting 
harmful forms of off-target ventilation in critical 
patients.  

The method developed by (Bakkes et al., 2020) 
provided new insights for PVA. The study conducted 
showed that the algorithm could detect and classify 
types of PVA obtaining a precision average of 97.7%. 
However, the study also emphasised the need for 
inclusion of different network architectures to address 
the necessary robustness of detection methods. It 
should be noted that both algorithms (Adams et al., 

2017; Bakkes et al., 2020) faced different challenges 
related to the data collection. Data labelling in the 
(Bakkes et al, 2020) study was made by one expert 
only, which led to an increase in the error margin of 
the results. The platform ventMAP was capable of 
obtaining a robust amount of data, however when 
conducting the development and translation of the 
output data into clinical applications, there were a 
wide range of implementation issues (Adams et al., 
2017).  

Another approach in the PVA field has been the 
use of ensemble machine learning classifiers, e.g.,  
(Rehm et al., 2018). The results suggest that high-
performing ML-based models are capable of 
producing well-specified outputs despite the presence 
of clinical artefacts. Therefore, the methodology used 
serves as a helpful framework to guide classification 
of such events. 

3 METHODOLOGY 

Considering the range of methods in the area, the use 
of a data-driven approach has been embraced. (Wang 
et al., 2022) proposed the use of several similarity and 
randomness measures. This approach underpins this 
paper, and specifically using variants of the matrix 
profile (MP) algorithm. They achieved encouraging 
results for detecting suspected PVA with a high 
percentage test recall (90%+) among the reported 
outputs. As a potential improvement on this 
technique, the extension of similarity-based methods 
to supervised nearest-neighbour search and including 
techniques for ineffective effort detection has also 
been considered here. 

3.1 ML Algorithm 

We extend Wang’s work (Wang et al, 2022) using an 
algorithm that detects contiguous repeating patterns 
in signals even with rhythm changes. This allows for 
detection of abnormal changes, as well as 
segmentation and feature analysis of the signals. 
Follow-up models based on this algorithm have been 
trained on an annotated non-invasive ventilation 
waveform dataset, which gives a specificity and 
sensitivity of over 90% in the context of detecting 
auto-triggering events from noisy waveform data. 

In the first instance, the practical measure of the 
ML metric is simply the scalar number value 
representing how volatile the different input channels 
are (therefore, it is likely that a PVA event occurs near 
a spike in the ML metric). However, a further future 
refinement to this is to analyse the shape of the ML 
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output and classify the type of anomaly based on that 
shape.  

The automated method to flag the anomalous 
output is also based on several channels rather than 
manually aligning and determining a PVA presence 
based on the disjoint evaluation of each, which is 
necessary when conducting the inspection manually. 
The four primary channels used in the work are the 
pressure mask (pmask), abdominal (abdo) and 
thoracic (thor) respiratory inductance bands, and flow 
as output form the NIV device (flow-tx). This multiple 
channel feature is particularly useful in cases such as 
ineffective efforts, which would not necessarily show 
up on a single channel but could still be present. 

3.2 Software Implementation 

To integrate the output for the machine-learning 
algorithm, an open-source format – the European 
Data Format (EDF) specification (www.edfplus.info) 
– has been chosen for data representation and 
manipulation, not only because of the standardised 
structure and well-supported open-source 
community, but also to allow the portability of the 
output across different platforms. This open format 
supports the extraction in a standardised structure – 
of both scored labels and free-text comments, which 
have been added manually into the integrated bedside 
system. It enforces a degree of structure on data 
offering critical contextual data during a monitored 
patient sleep. Such data is usually openly structured 
and difficult to report in a standard way. Both scored 
labels and free text annotations also present a 
heterogeneity challenge in that there is no 
standardized input approach. This effect is amplified 
when there is more than one clinician involved in data 
entry.  

Therefore, the first step in producing the EDF file 
with additional ML-output channel, is to extract the 
original EDF file from the integrated bedside clinical 
monitoring system, in this case CompuMedics, with 
one EDF file per patient per stay. The meta-data 
outlining the annotations accompanying that patient 
stay are captured in the associated XML descriptor 
file. 

Once the original EDF has been extracted, the full 
data integrity of that file is checked and written to 
another newly created EDF file. This new file is 
composed of the original physiological channels 
chosen by the user with the addition of new channels 
containing the ML-generated output. 

This is achieved using the python library pyedflib, 
which is a fork from the library EDFlib 
(www.teuniz.net). These libraries are used to read the 

EDF file’s properties and values including: number of 
signals, channel indexes, sample frequency, and 
number of data records. The physiological channels 
are then read into this library for pre-processing, in 
anticipation of processing by the ML algorithm. For 
ease of persistent data storage, and to ease the burden 
of volatile memory requirements, intermediate files 
are written as part of these pre-processing steps. 
These are stored in the Apache Parquet file format 
(parquet.apache.org) - an open source, column-
oriented data file format, which uses in-built 
compression for efficient data storage and retrieval. 

The output of the parquet files is then fed into the 
ML algorithm. The operation of the algorithm 
involves many dependencies in both software and 
hardware including: 

• A memory-efficient version of the Anaconda 
Python environment, known as MambaForge 
(mamba.readthedocs.io), which provides a 
setting that maximises the available underlying 
memory to run the memory-intensive ML 
algorithm. 

• A library called Signatory that allows the 
calculation of a “signature transform”, an 
operation roughly analogous to a Fourier 
transform that extracts information on the order 
and area of a given data stream. 

• Underlying GPU acceleration at a hardware 
level, requiring the activation of an NVIDIA 
processor (if available). In this project the Azure 
cloud resource provides a VM within the “NC 
series” that provides an NVIDIA GeForce RTX 
3090 chip with 24 GiB 

Using this software stack, once the algorithm is 
fully computed, it is stored in a multi-dimensional 
numpy array type, which the EDF file format and 
libraries use heavily for functional operation. An 
anomaly list is successively generated from the 
numpy array, and this list is iterated over to produce a 
sub-set of values where the ML metric has gone over 
a user-supplied threshold number. This new subset 
array is written to the same output EDF file but in the 
form of point annotations. 

In terms of timing, for each down-sampled 
window, a corresponding value is produced 
(measured in the arbitrary units of “ML-P”), along 
with a corresponding timing value. This timing value 
can be configured to be situated in the window at the 
beginning (value 0), the end (value 1), the middle 
(value 0.5), or any point in between. Due to the down-
sampling of the output by a factor of 16, the ML 
output is rendered at a sample frequency of 2 Hz, 
when combined with the pmask output in the final 
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EDF. This is due to the pmask output having a 
frequency of 32 Hz (so when divided by 16, the final 
frequency is 2 Hz). This output is written to the final 
EDF using a pre-prepared buffer array of double 
values, written to the file at repeat intervals governed 
by that sample frequency. The sample frequency 
itself varies according to channel and this is set at the 
original point of first extraction of that channel from 
the bedside system. 

The EDF file itself is then rendered using open-
source tools that are freely available, again mainly 
supported by the work of Teuniz van Beelen 
(www.teuniz.net). The most popular option is 
EDFBrowser, which provides standard tools to 
operate and manipulate EDF files, such as varying 
timescale, amplitude, window, and video 
playback/recording. EDFBrowser is not entirely 
portable across the main consumer operating 
systems – for instance, installation on MacOS 
requires detailed configuration that is a non-trivial 
task for an average computer user. Therefore, an 
alternative is the Polyman application 
(sites.google.com/view/diegoalvarezestevez/projects
/polyman), which has similar tools but less visual 
depth when rendering. 

4 RESULTS 

The presentation of the ML output was rendered 
using EDFBrowser (figures 1 and 2). 

Figure 1 shows the overall output when compared 
between the machine-learning output (the green line) 
and the entire output of a pmask channel for a 9.5 hour 
patient stay (the yellow line, solid due to the high 
resolution viewed from overall timepoint). 

As can be seen, the highest points in the ML 
output correspond to the largest variations in the 
overall output of the pmask channel. In physical 
terms, this most likely relates to the initial period 
where the mask was not yet fitted to the patient, and 
a period of adjustment that occurred midway through 
the sleep. 

From a clinical perspective, it is often the case that 
the smaller, more subtle, variations in the ML output 
are more useful. These are the “needle in a haystack” 
points that the application is being used to identify, 
rather than the large-scale volatility that can be most 
easily seen on first viewing (though this helps to 
validate that the ML output is in fact correctly 
reflecting a valid physiological output). Therefore, 
Figure 2 shows how the ML output looks when 
compared against individual events in the 

physiological channel, in this case one of the primary 
PVA events: an ineffective effort. 

Figure 2 also shows the annotations that are also 
included in the output EDF file. These include a 
combination of the threshold crossing notes (a 
threshold of 4 was chosen for this exploration), as 
well as the scored labels and free-text comments 
extracted from the original EDF file. The high 
number of these mean that the filtering tools available 
through EDFBrowser needs to be used to 
meaningfully navigate the EDF file and identify 
points of interest in the readout (in EDFBrowser, the 
list on the right of the window interactively 
corresponds to the dashed line markers that span both 
outputs). 

5 DISCUSSION 

There were a variety of issues that were encountered 
when attempting to bring this implementation to a 
production level. Many of those issues were due to 
the interactions between uniquely-specified software 
and hardware requirements that often led to 
unpredictable interactions. 

The Signatory library could only be run reliably 
when executed on the Linux Ubuntu 22.04 operating 
system. Portability across other operating systems 
could not be guaranteed due, for instance, due to the 
incompatibility with the Clang C-compiler, which 
ships as standard on most MacOS versions. 

Similarly, the Conda (Anaconda) Python 
environment was required to set up and run the 
dependency list to support the requirements for the 
machine learning solution. However, due to the 
extensive memory requirements, the larger scale 
MambaForge environment was required. There are a 
variety of flavours of this environment, which again 
constrained the stack upon which the execution could 
be performed. 

The Pytorch library version – required to support 
the complex functions of the Signatory library - 
varied depending on whether the GPU or CPU 
environment was available for execution. This 
variation in itself created conflicting dependency and 
version issues, which would need to be tightly 
controlled before run-time, due to the need to 
understand the particular hardware environment. 

Overall, these issues could be grouped as the 
requirement of pinned software versions along with 
libraries without consolidated community support, 
which is often a necessary feature of leading-edge 
research. 
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Figure 1: Overall monitored patient sleep, covering 9.5 hours. The large periods of volatility in the ML output (green) 
correspond to aspects of the physiological output (yellow) which are highly differentiated from the majority of that output. 

GPU requirements were also extensive, with a 
minimum benchmark of 24 GiB in the “NC series” of 
Azure VMs, required to execute the application on an 
NVIDIA GeForce RTX 3090 processor. This was 
required so that the calculation could be run over a 
feasible timescale. There was a batch_size variable, 
specifying the size of batches of data for processing, 
which acted as an in-code handle and supported the 
calculation accuracy and controlled the execution 
time. But when this went over 10^6 (the minimum 
requirement for sufficient accuracy), the calculation 
time began to run to hours on a regular CPU platform.  

However, again these are considerations that are 
not uncommon in advanced ML approaches and will 
inevitably become less problematic as processor 
powers increase and execution speeds decrease. This 
also has an impact on the cost-effectiveness of the 
solution, e.g., does the cost of using such high-end 
resources outweigh the cost of employing skilled 
workers to manually detect PVA, and at what is the 
trade off in accuracy? Such a cost-benefit exercise 
would be a next logical step in evaluation of this 
technology, repeated at various time intervals as the 
underlying hardware improves. 

Output timings were also a factor that require 
further consideration. Due to the down-sampling of 
output windows, some manipulation of the annotation 
and ML output points was required, with a “stretching 
factor” of 1.97 eventually settled upon. This was also 

reflected in clinician feedback, where the annotation 
indicating threshold crossing did not directly line up 
with the corresponding point in the physiological 
output, but rather it occupied a window, pre-
determined by the down-sampling rate. Though a 
concern, it was noted that time was only one of 
several factors that may have had an impact on the 
system stability. Other factors such as the topography 
of the ML output may influence the readout and allow 
a classification of the type and presence of a given 
instability. This could also help in identifying low-
resolution events, not immediately drawn out when 
considering timing alone. 

Finally, the idea of optimal presentation should be 
considered. To express the output in the open-source 
EDF format was a deliberate choice to promote 
portability and accessibility. When taken to further 
validation and downstream studies, the user-interface 
considerations should be evaluated, and would 
ultimately likely compete in terms of integration with 
the in-situ bedside monitoring systems. If this 
requires direct integration with the software vendor 
solution this could become a block to further 
development unless intellectual property and 
collaborative agreements are negotiated. 
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Figure 2: This shows an example event of interest (an ineffective effort). The ML output corresponds to a higher-than-normal 
spike in volatility, and the broken vertical line indicates that the annotation lining up in time with an effort that failed to 
register and receive the necessary support.
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6 CONCLUSIONS 

In this paper, the implementation details of the 
integration of a machine-learning algorithm to detect 
PVA events, into a production version of a bedside 
clinical environment has been presented. The 
functional operation has been shown demonstrating 
how the automated detection of ineffective efforts, 
autocycles and double triggers can be achieved. We 
also discuss the challenges encountered during the 
work. 
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