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Abstract: In the current era, 2D Human Pose Estimation has emerged as an essential component in advanced Computer
Vision tasks, particularly for understanding human behaviors. While challenges such as occlusion and un-
favorable lighting conditions persist, the advent of deep learning has significantly strengthened the efficacy
of 2D HPE. Yet, traditional 2D heatmap methodologies face quantization errors and demand complex post-
processing. Addressing this, we introduce the EBA-PRNetCC model, an innovative coordinate classification
approach for 2D HPE, emphasizing improved prediction accuracy and optimized model parameters. Our
EBA-PRNetCC model employs a modified ResNet34 framework. A key feature is its head, which includes a
dual-layer Multi-Layer Perceptron augmented by the Mish activation function. This design not only improves
pose estimation precision but also minimizes model parameters. Integrating the Efficient Bridge Attention
Net further enriches feature extraction, granting the model deep contextual insights. By enhancing pixel-level
discretization, joint localization accuracy is improved. Comprehensive evaluations on the COCO dataset vali-
date our model’s superior accuracy and computational efficiency performance compared to prevailing 2D HPE
techniques.

1 INTRODUCTION

Human Pose Estimation (HPE) stands as a signifi-
cant challenge within the Computer Vision (CV) do-
main, with its significance emphasized by a multi-
tude of practical applications. Over time, the ef-
fort for precise HPE has fostered a deep engagement
with Deep Learning (DL) and Convolutional Neural
Networks (CNNs) among the CV community. The
current state-of-the-art methods have indeed achieved
commendable success, delivering impressive qualita-
tive and quantitative results. This progress naturally
sparks interest regarding the potential advancements
in the coming years and the room for further improve-
ment in this domain. However, a practical dispar-
ity exists. Despite the high accuracy achieved by re-
cent models, many applications have yet to reap the
benefits of these advancements fully. The essence
of this limitation hinges on two factors: (a) the as-
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Figure 1: Overall framework of the proposed EBA-
PRNetCC model.

sumption of abundant computational resources such
as GPUs, memory, and power, which often con-
tradicts the reality for many applications, and (b)
the imperative of maintaining accuracy, particularly
in critical domains like autonomous driving where
there is minimal tolerance for error when transitioning
to more compact, memory-efficient methods(Zakir
et al., 2023a). The existing literature presents nu-
merous methods demonstrating superior performance
on rigorous benchmarks such as MPII (Andriluka
et al., 2014), LSP (Johnson and Everingham, 2010),
and Common Objects in Context (COCO) (Lin et al.,
2014). However, a significant gap persists as none
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attain this high accuracy level under memory and
computational power constraints. The primary objec-
tive of our effort is to bridge this gap, proposing ad-
vancements over the current state-of-the-art methods
in these challenging settings. Simultaneously, the on-
going expansion and integration of CV in devices like
smartphones and surveillance systems have led to a
constant flow of image and video data. The informa-
tion extracted regarding human actions and events is
highly valuable. HPE aims to identify and record dif-
ferent joints within the human body, thus estimating a
person’s posture through the spatial positions of body
parts such as arms and head, referred to as keypoints
(Zhang et al., 2023).

Over the past decade, the CV field has exten-
sively explored the automatic understanding of HPE.
2D HPE is a foundation for numerous advanced CV
tasks, including transitioning from 2D to 3D poses,
detecting human actions, and improving Human-
Computer Interaction (HCI). The intricacy of 2D HPE
arises from challenges such as obscured keypoints,
difficult lighting conditions, and the demanding task
of real-time deployment due to the model’s large
number of parameters(Chen et al., 2022). Tradi-
tionally, the initial approaches utilized standard tech-
niques such as probabilistic graphical models, which
were heavily dependent on manually designed fea-
tures, thereby limiting the model’s adaptability and
effectiveness. The emergence of DL addressed these
constraints by enabling automatic feature extraction
from data. Specifically, the advancements made by
CNNs in 2D HPE have inspired a multitude of deep
learning techniques(Cao et al., 2017).

Recently, methods predicated on 2D heatmaps
have emerged as the predominant approach but of-
ten falter due to quantization errors, leading to is-
sues like poor performance at low resolutions, high
computational demands, the need for multiple upsam-
pling layers, and complex post-processing steps such
as non-maximum suppression and heatmap smooth-
ing. These factors significantly contribute to these
methods’ high computational demand and complex
post-processing(Xiao et al., 2018; Yang et al., 2021;
Salman et al., 2023b). Contrary to existing solu-
tions, our research introduces a coordinated classifi-
cation approach for 2D HPE, presenting an alterna-
tive to the conventional 2D heatmap-based method.
This paper’s primary objective is to improve predic-
tion accuracy and optimize the model by reducing the
number of parameters addressing the computational
constraints. This initiative guides the focus toward
enhancing the precision of existing models without
exacerbating the computational demands, providing
a balanced approach to tackling the challenges in 2D

HPE.
We propose the EBA-PRNetCC model, as de-

picted in Figure 1. This model utilizes an efficient
version of ResNet as its foundational backbone for
primary feature extraction(He et al., 2016). In our
adaptation, we have preserved only the convolutional
structures, omitting both the average pooling and
the final fully connected layers. The selection of
ResNet34 is intentional, aiming for a balance between
computational efficiency and model complexity, espe-
cially when compared against more complex variants
like ResNet50, 101, and 152. Recognizing the trade-
off between precision and model size, our approach
employs specific strategies to counter potential reduc-
tions in accuracy. We have integrated the EBANet—a
sophisticated version of Bridge Attention (BA) (Zhao
et al., 2022)—into ResNet34. This integration em-
phasizes BA’s role in the architecture, enhancing com-
munication between layers. By serving as a chan-
nel for feature transference and regulating the promi-
nence of specific features, it refines the network’s
focus on critical patterns in the feature representa-
tion, efficiently addressing potential information bot-
tlenecks. One fundamental refinement resides in the
model’s head: introducing a dual-layer Multi-Layer
Perceptron (MLP) complemented by the Mish activa-
tion function. This enhancement not only pares down
the parameter volume but also boosts pose estimation
accuracy, a feat we attribute to the non-linear prop-
erties of the MLP and the Mish function’s enriched
gradient dynamics. Upon capturing the keypoint rep-
resentations using the backbone, EBA-PRNetCC pro-
cesses the vertical and horizontal coordinates individ-
ually, leading to its final predictions. Our suggested
model partitions every pixel into several bins, reduc-
ing quantization inaccuracies and offering precision
that surpasses single-pixel localization.

The threefold contribution of the proposed model
can be summarized as follows:

• We proposed EBA-PRNetCC as a transition from
the conventional 2D heatmap-based methods.
This approach adopts a coordinated classifica-
tion strategy, utilizing an efficient ResNet34 for
foundational feature extraction. This ensures a
notable balance between keypoint prediction ac-
curacy and computational efficiency, as demon-
strated by a controlled parameter count.

• We integrated the EBANet into ResNet34, en-
hancing the model’s capability in feature recogni-
tion and contextual understanding, which is cru-
cial for human pose estimation. An essential
modification is the redesigned head, comprised
of a two-layer MLP with Mish activation. This
change reduces parameters and improves accu-
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racy. Our pixel segmentation approach also min-
imizes quantization errors, optimizing joint local-
ization precision.

• A comprehensive evaluation on the COCO
dataset affirmed the effectiveness of our proposed
method. Our approach demonstrated superior pre-
cision when assessing the results and required
fewer computational resources than current 2D
human pose estimation methods.
The structure of the paper is laid out as follows

for ease of understanding: Section 2 provides an
overview of prior studies in this field. Section 3
describes the techniques and principles behind our
EBA-PRNetCC. In Section 4, we discuss the experi-
mental setup and the specific details of our implemen-
tation. Section 5 and 6 offers an in-depth analysis of
our results. Concluding the paper, Section 7 summa-
rizes the discussions and points out potential paths for
future studies.

2 RELATED WORK

In 2D HPE, DL methods have gained importance
due to their expertise in extracting features rang-
ing from simple to sophisticated. Initially, 2D
HPE research primarily centered on regression-based
approaches (Tian et al., 2019; Nie et al., 2019).
These models aimed to locate keypoint coordinates
directly, but their inconsistent reliability hindered
widespread adoption. The landscape evolved signif-
icantly when (Li et al., 2021) introduced the Resid-
ual Log-Likelihood (RLE). This method leveraged the
benefits of normalizing flows and delivered perfor-
mance comparable to premier heatmap techniques.
Following this, much of the HPE research shifted
towards utilizing two-dimensional Gaussian distribu-
tion heatmaps for precise joint coordinate mapping
(Cao et al., 2017; Cai et al., 2020; Cheng et al.,
2020). Pioneering contributions from researchers like
(Tompson et al., 2014) and (Newell et al., 2016)
were contributory to this shift, leading to innova-
tive architectures such as the celebrated hourglass
design. As investigations in the field deepened, a
strong push emerged for methods that maintained
high-resolution outputs from start to finish in the com-
putation process (Sun et al., 2019). However, even
with these advances, heatmap-based strategies faced
difficulties. Notably, quantization error remained a
persistent challenge, becoming even more evident in
scenarios with lower resolutions.

A significant challenge in 2D heatmap-based
HPE is quantization errors, particularly prominent
in smaller-dimensional heatmaps. Recognizing this,

many researchers have developed innovative solu-
tions(Zakir et al., 2023b; Salman et al., 2023a;
Salman et al., 2023c). (Zhang et al., 2020) intro-
duced a post-processing method using Taylor expan-
sion to improve heatmap distribution approximation.
In a distinctive approach, (Yin et al., 2020) proposed
transitioning from traditional 2D heatmaps to a more
compact 1D heatmap format, incorporating special
adjustable layers. They further enhanced the resolu-
tion of these 1D heatmaps using additional deconvo-
lution layers. While many HPE research efforts focus
on such techniques, some avant-garde methods stand
out. For instance, in facial landmark detection, the use
of 1D heatmap techniques is gaining traction, as seen
in pioneering works like that of (Yin et al., 2020), who
introduced a pivotal 1D heatmap regression method,
setting a new benchmark in the field.

(Chen et al., 2021) proposed Pix2Seq, an innova-
tive technique bridging the field of object detection
and linguistic modeling. SimCC (Li et al., 2022) ex-
plored a departure from conventional heatmap-centric
strategies for HPE in a related development. Their ap-
proach, compatible with both CNN and Transformer-
based HPE systems, eliminates the need for a distinct
Transformer decoder during predictions(Mao et al.,
2021). In contrast, our work, anchored on EBA-
PRNetCC, presents a refined solution to classical
heatmap-based HPE approaches, bypassing the de-
mands of resource-heavy post-processing.

3 EBA-PRNetCC

In the field of 2D HPE, given an RGB image or a
video frame labeled as I, the goal is to identify the
pose: the pose P of any individual is represented in
this visual content. This posture, expressed as P, is
characterized by a set of N specific keypoints. Each
keypoint is denoted by a two-dimensional coordinate
(xn,yn). The number of keypoints, N, can vary based
on the dataset used for training a model. Thus, our ob-
jective is to pinpoint the pose P = {Pi}N

i=1 for every k
individual within the input, as described in Algorithm
1. proposed

Our EBA-PRNetCC model, as illustrated in Fig-
ure 2, clearly demonstrates our proposed approach.
As depicted, we have deliberately selected ResNet34
for an optimal balance between computational de-
mands and model complexity. The illustration em-
phasizes the incorporation of Efficient Bridge Atten-
tion (EBA) Net within the ResNet34 structure, em-
phasizing its role in enhancing inter-layer communi-
cation. The diagram also captures the model’s unique
methodology in processing vertical and horizontal co-
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Figure 2: Detail architecture of our proposed EBA-PRNetCC model for coordinate classification in 2D HPE.

Data: RGB image or video frame I
Result: Posture P of every individual in I
Initialize P = /0 (Set to store postures of
individuals);

Detect number of individuals k in image I;
for i = 1 to k do

Detect K keypoints for individual i in I;
For each keypoint n, obtain its
coordinates (xn,yn);

Store the keypoints for individual i as Pi;
Add Pi to P;

end
Return P;

Algorithm 1: 2D Human Pose Estimation (HPE).

ordinates, concluding in its final predictive outcomes.
For a more comprehensive understanding of its intri-
cate design and functionality, we discuss each of its
components in greater detail in the subsequent sub-
sections.

3.1 Backbone Enhancement Using
Adapted ResNet

Autoencoder network architectures are gaining attrac-
tion within research communities, especially in tasks
requiring complicated annotations or detailed dataset
labeling. These architectures demonstrate a distinc-
tive capability to manage and optimize feature repre-
sentations effectively. In response to these require-
ments, we adopted an autoencoder design that logi-
cally reduces the resolution of feature representations
in stages. This step-by-step reduction optimizes com-
putational efficiency and retains broad spatial details,
guaranteeing the preservation of essential informa-
tion. One of the primary advantages of this design

lies in its capability to both intensify and recover the
original spatial clarity of the feature maps, making
the processing more robust and accurate. In contrast,
architectures like the Hourglass frequently produce
feature maps with more constrained dimensions than
their original inputs. Challenges can emerge when re-
sizing these condensed outputs to their initial dimen-
sions. One of the significant issues is the risk of quan-
tization, where the understated details might get over-
shadowed or lost. Further complicating the process
are potential biases during data transformation, which
can introduce errors. This is particularly noticeable
in scenarios where models misunderstand data due to
operations like horizontal mirroring, emphasizing the
importance of precise and bias-free data handling.

In our search to address the abovementioned chal-
lenges, we gravitated toward integrating ResNet34
into our proposed model. This decision was grounded
in the model’s inherent efficiency, particularly high-
lighted when considering the parsimonious parameter
count of ResNet34 compared to its denser counter-
parts, such as ResNet 50, 101, and 152. Our revision
of ResNet (He et al., 2016) allowed us to omit the av-
erage pooling and fully connected stages, setting the
stage for a more efficient processing approach. In-
stead of these, our model features four distinct ResNet
blocks as shown in Figure 3. Each block is a sequence
of convolution operations, batch normalization, ad-
vanced Mish activation, and max pooling operations.
The input process through our model begins with a
convolutional layer promptly followed by a pooling
layer, effectively reducing the spatial dimensions of
the feature maps by a factor of 2. These refined
feature maps then serve as inputs to the subsequent
ResNet blocks. Complexities within these blocks in-
volve convolutional layers, further reducing feature
dimensions by a factor of two, although the initial
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Figure 3: Efficient ResNet-Based architecture with integrated deconvolutional modules for precise feature representation for
n Keypoints.

ResNet block stands as an exception to this behavior.
We incorporated three deconvolutional modules, each
enhanced by batch normalization and employing the
Mish activation function. A notable feature of these
deconvolutional stages is their ability to upscale the
resolution of the feature maps iteratively. This pro-
cess continues until the feature maps align with the
spatial dimensions of the original input, guaranteeing
a thorough and detailed feature representation.

The EBA-PRNetCC model is tailored to process
images of dimensions H ×W × 3. In this format,
H and W symbolize the image’s height and width,
respectively. The third dimension, represented by
3, corresponds to the familiar RGB color scheme,
breaking down into Red, Green, and Blue channels.
ResNet34 plays a pivotal role within this setup as the
primary mechanism for extracting detailed features
from the image. As the image progresses through the
analytical depth of the ResNet34 backbone, the model
adeptly identifies and maps out n specific keypoint
representations, each corresponding to its designated
keypoint within the image.

3.2 Efficient Bridge Attention Net

In deep convolutional networks, attention mecha-
nisms serve as essential enhancements, enabling mod-
els to prioritize salient features in data dynami-
cally. The BA methodology is particularly distinc-
tive among these mechanisms. It offers solutions
to challenges inherent in conventional attention tech-
niques, primarily by ensuring an optimized utiliza-
tion of information across neural networks. A no-
table attribute of the BA approach is its adept fea-
ture compression within the attention layer. A crit-
ical insight underlying BA-Net is the recognition in
the observation that while advanced layers in neu-
ral structures primarily interpret high-level features,
preliminary layers provide contextual features. Due
to their layer-specific focus and computational con-
straints, traditional attention methodologies often by-

pass the nuanced information available in these ini-
tial layers. Addressing this gap, BA-Net introduces
a strategic ’bridge,’ facilitating a comprehensive in-
tegration of features throughout the network’s depth.
Expanding on the foundational concepts of our ap-
proach, we will probe further into the detailed oper-
ations of the EBA module as illustrated in Figure 4.
Given a block, an output from a function is character-
ized as Xi ∈ RCi×H×W . Here, Ci denotes the feature
map’s depth at the ith layer. An essential operation in
our methodology is the application of Global Average
Pooling (GAP) to these outputs, reducing their spatial
dimensions to Ci ×1×1. This condensed representa-
tion is crucial for facilitating subsequent feature inte-
gration and processing. Post-GAP, these features un-
dergo transformation through matrices sized Ci × Cn

r ,
producing “squeezed” features. Here, Cn is the n
number of channels in the feature map at the deepest
or current layer under consideration. This particular
dimensional transformation is essential to guarantee
the smooth integration of features from diverse lay-
ers. However, this procedure can induce variations in
feature distributions. Batch normalization BN is em-
ployed to counteract this, standardizing these distribu-
tions and bolstering their non-linear representations.
Mathematically, the integration process is expressed
as:

Si = BNi(Wi(GAP(Fi))) (1)

Fi is the feature map at the i-th layer of the network.
The transformation matrix is denoted by Wi, where Si
encapsulates the squeezed feature. For the BA mech-
anism, the comprehensive feature representation, de-
noted as IBA(·), emerges as a summation of these fea-
tures:

IBA(·) =
n

∑
i=n−q

Si (2)

where features from the (n− q)-th layer up to the n-
th layer are summed together. The value of q de-
termines how many previous layers’ features are in-
cluded in this summation. This composite feature
then advances to the generation phase G, resulting in
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Figure 4: Visualization of the EBA module’s feature integration and weights W generation mechanisms.

the final attention weights W :

W = G(IBA) (3)

However, simply fusing the features isn’t the final
step. The generation sequence in the module, distin-
guished by the use of the Mish activation function,
further refines this fused feature. This sequence cul-
minates with a sigmoid activation, ensuring the re-
sultant attention weights are bounded between 0 and
1. These weights are instrumental in modulating the
original feature maps, emphasizing salient regions
while deemphasizing others. The EBA module fea-
ture processing is describe in Algorithm 2.

Its integration within the ResNet-34 architecture
deserves special mention. ResNet34, with its series of
convolutional layers, offers a fertile ground for EBA-
Net’s capabilities. Both the BasicBlock and Bottle-
neck classes within ResNet34 incorporate the BA-
Net. During their forward passes, features are ex-
tracted at various stages, processed, and then modu-
lated by the EBA-Net derived attention weights. This
integration ensures that as data flows through the
ResNet34 architecture, the model continually refines
its focus, leveraging the combined wisdom of current
and preceding features. The result is a more attentive,
context-aware ResNet-34, poised to discern intricate
patterns with heightened precision.

3.3 Head and Coordinate Classification

As visualized in Figure 2, our improved model incor-
porates a refined head classification technique. One
essential refinement resides in the model’s head: in-
troducing a dual-layer MLP complemented by the
Mish activation function. This enhancement not only
pares down the parameter volume but also boosts pose
estimation accuracy, a feat we attribute to the non-
linear properties of the MLP and the Mish function’s
enriched gradient dynamics. Instead of simply ap-
pending horizontal and vertical classifiers with a sin-
gle linear layer for each, we have embedded these
MLPs. Each MLP is structured to first transform the

Data: Block output Xi ∈ RCi×H×W

Result: Attention weights W that modulate
the original feature maps

Initialize Cn as the number of channels in the
feature map at the deepest/current layer;

Initialize r as the reduction ratio;
/* GAP Function */ Apply Global Average

Pooling (GAP) to feature maps Xi to get the
condensed representation Ci ×1×1;

/* Integration Function */ For each layer i
from n−q to n:

• Apply GAP to Xi to get the condensed
representation;

• Transform the features using matrices of size
Ci × Cn

r ;

• Apply Batch Normalization (BN) to the
transformed features;

• Define Si as Si = BNi(Wi ×GAP(Xi));

Initialize IBA to zero;
for i = n−q to n do

Si = Integration of Xi;
IBA += Si;

end
/* Generation Function */ Apply Mish
activation function to IBA;
Apply sigmoid activation function to the
output of Mish;
Define W as the output of sigmoid activation;
Return the resultant attention weights W;
Algorithm 2: EBA Module Feature Processing.

representation into an intermediate dimension before
outputting the classification results. With respect to
the ResNet backbone, the resultant keypoint represen-
tations are reformatted from (n,H ′,W ′) → (n,H ′ ×
W ′) for the classification phase. This modified ap-
proach still retains the lightweight nature of the origi-
nal SimCC head but is designed for enhanced feature
capture, especially crucial for intricate object scenar-
ios.
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Figure 5: Visual analysis of 2D HPE models in terms of accuracy, parameters, and computational efficiency.

For the classification task, our method is rooted
in the principle of evenly converting each continuous
coordinate into an integer, which then acts as a train-
ing class label: cx falls within [1,Nx], and cy within
[1,Ny]. Here Nx = W × k and Ny = H × k specify the
bin counts for the horizontal and vertical dimensions,
respectively. The division factor, k, is sensibly cho-
sen to be ≥ 1 to curtail quantization discrepancies,
assuring granular localization accuracy. In generat-
ing the concluding predictions, EBA-PRNet indepen-
dently carries out vertical and horizontal coordinate
classifications, drawing on the n keypoint representa-
tions discerned by the backbone. For a given ith key-
point representation, the associated predictions oi

x and
oi

y are procured through the respective horizontal and
vertical classifiers.

3.4 Loss Function

Our 2D HPE EBA-PRNet methodology adopts a dis-
tinctive loss function termed KLDiscretLoss. This
loss function utilizes the Kullback-Leibler Diver-

gence (KLD) to measure the closeness between the
predicted pose coordinate distributions and the actual
ground truth distributions. At its core, this function
is an adaptation of PyTorch’s KLDivLoss, emphasiz-
ing non-aggregated loss outputs. Before computing
the divergence, predictions undergo a transformation
via the LogSoftmax layer, rendering them into a log-
probability format conducive to the KLD evaluation.
During the forward pass, the loss is computed for
each joint’s x and y coordinates. For every joint, the
predicted coordinates are juxtaposed with the ground
truth, and a specific weight modifies the resulting loss.
The aggregate loss is then derived by averaging these
individual joint losses, providing a holistic assess-
ment of the model’s efficacy in pinpointing human
pose coordinates. Mathematically, the loss for the ith

joint is expressed as:

Loss[i] = W[i]×
(

KLD
(
logSoftmax(oi

x),gt(oi
x)
)

+KLD
(
logSoftmax(oi

y),gt(oi
y)
))

(4)
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The overall KLDiscretLoss is then computed as
the mean of losses across all joints:

KLDiscretLoss =
1
N

N

∑
i=1

Loss[i] (5)

Here, N represents the total number of joints. (oi
x and

(oi
y) indicate the predicted x and y coordinates for the

ith joint, respectively, while gt(oi
x) and gt(oi

y) are the
corresponding ground truth coordinates. W symbol-
izes the weight designated for the ith joint. The term
KLD(A,B) defines the KLD between distributions A
and B.

4 EXPERIMENTAL SETUP

4.1 Dataset

The COCO keypoint dataset (Lin et al., 2014) oc-
cupies a prominent position in the field of 2D HPE.
Valued for its extensive range and variety, it has over
200K images. These images, captured across diverse
real-world settings, annotate a notable 250K individ-
uals across 17 distinct human joint categories. This
variety not only facilitates the training of complex
models but also presents challenges due to diverse
lighting, occlusions, and complex human poses. For
our research, we carefully limited our training to the
COCO 2017 training subset, which includes 57K im-
ages annotated for 150K individuals. It’s essential
to highlight that our training routine remained exclu-
sively within this dataset, preserving the integrity and
uniformity of our outcomes without the addition of
any outside data. Additionally, the dataset allocates
5K images for validation, a vital process in optimizing
and enhancing model accuracy. Another 20K images
are reserved for testing efforts, facilitating a thorough
evaluation of the model’s performance in unfamiliar
situations.

4.2 Evaluation Metric

We utilize evaluation metrics derived from the Ob-
ject Keypoint Similarity (OKS) methodology to as-
sess the accuracy of our keypoint localization. OKS
offers a measure of the difference between the pre-
dicted keypoints and their true ground-truth positions.
The mathematical representation of OKS is:

OKS =
∑i exp

(
− d2

i
2s2k2

i

)
δ(vi > 0)

∑i δ(vi > 0)
(6)

In this formula, di represents the Euclidean distance
between the predicted and ground-truth keypoints.

The term s refers to the scale of the person and ki is a
constant specific to each keypoint, accounting for its
inherent variability. The variable vi is an indicator of
keypoint visibility, taking a value of 1 if the keypoint
is visible and 0 if it’s either not visible or not labeled.
The function δ acts as an indicator, yielding 1 if its
condition is satisfied and 0 otherwise.

Our primary evaluation metric is the Average Pre-
cision (AP), which we carefully compute across ten
distinct OKS thresholds. For an in-depth analysis, we
offer a range of metrics. The AP metric provides a
wide-ranging perspective, averaging AP scores over
OKS values from 0.50 to 0.95, incremented by 0.05.
We further clarify performance at specific OKS values
with AP50 and AP75 metrics. We introduce metrics
AP(M) and AP(L) for medium and large objects to ad-
dress different object sizes. Lastly, the Averaging Re-
call metric, AR values over the selected OKS thresh-
olds, gives a comprehensive insight into the model’s
recall proficiency.

4.3 Implementation Details

We integrated specific data augmentation techniques
to enhance the proposed model’s adaptability to spa-
tial rotations and scale variations. These included ran-
dom horizontal reflections, rotations varying from -30
to +30 degrees, and scale changes within the 0.7 to 1.3
range. We constructed our model using the PyTorch
framework. During the training phase, we set the
learning rate at 1e-05, established a batch size of 16
for training and testing, utilized six dedicated work-
ers for parallel tasks, and conducted training over 140
epochs. The Mish activation function was our pref-
erence over the traditional ReLU, primarily because
Mish effectively navigates the challenges of vanishing
gradients, a limitation often associated with ReLU.
By retaining gradients during operations, Mish pro-
motes both efficient and steady training, especially
crucial for deeper network structures, positioning it as
an indispensable tool for our model’s superior func-
tionality. For optimization purposes, we included the
AdamW optimizer, an advanced iteration of the clas-
sic Adam method. A defining trait of AdamW is its
ability to handle weight decay and learning rate mod-
ifications distinctly, facilitating enhanced tuning ac-
curacy and substantially diminishing the tendency for
overfitting.

5 RESULTS AND DISCUSSION

In our study, we compared the performance of var-
ious pose estimation methodologies, including our
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Table 1: EBA-PRNetCC Performance Evaluation in Comparison with Previous Pose Estimation Methods.

Method Repr. Backbone Input AP AP(50) AP(75) AP(M) AP(L) AR
Simple Baseline Heatmap-based ResNet-50

384x288

71.5 91.1 78.7 67.8 78.0 76.9
TFPose Reg.-based ResNet-50T. 72.2 90.9 80.1 69.1 78.8 -
SimCC Coord.-based ResNet-50 73.4 89.2 80.0 69.7 80.6 78.8

EBA-PRNetCC Coord.-based ResNet-18 74.3 92.5 81.5 71.5 79.0 77.2
ResNet-34 76.9 93.5 83.6 73.9 81.6 79.6

Figure 6: Qualitative Results of EBA-PRNetCC for 2D HPE on COCO Dataset Under Viewpoint Changes, Occlusions, and
Adverse Imaging Conditions.

Table 2: Comparison of EBA-PRNetCC vs. Previous Meth-
ods: Input, AP, Parameters, and Computational Efficiency
(GFLOPS).

Method Input AP P(M) GF
Simple Baseline

384×288

71.5 34.0 20.0
TFPose 72.2 38.0 20.4
SimCC 73.4 36.8 20.4
EBA-PRNetCC18 74.3 19.0 4.0
EBA-PRNetCC34 76.9 29.0 8.1
EBA-PRNetCC18 256x256 71.3 17.0 2.4
EBA-PRNetCC34 74.1 28.0 4.8

proposed model EBA-PRNetCC. The results are pre-
sented in Table 1, which summarizes the performance
metrics across different models. From Table 1, it
is obvious that the Simple Baseline method (Xiao
et al., 2018), based on a heatmap representation with a
ResNet-50 backbone, achieved an AP of 71.5, AP(50)
of 91.1, and AP(75) of 78.7. When considering
medium-sized objects AP(M), the method attained
67.8 and 78.0 for larger objects AP(L). The aver-
age recall (AR) for this model stands at 76.9. The
TFPose (Mao et al., 2021), a regression-based ap-
proach with a combined ResNet-50 and Transformer

backbone, slightly outperformed the Simple Baseline
with an AP of 72.2, AP(50) of 90.9, and AP(75) of
80.1. However, the AR for this model is not provided.
SimCC (Li et al., 2022), another competitive model,
uses a coordinate-based representation with a ResNet-
50 backbone. It showed a promising AP of 73.4 and
an AR of 78.8. Notably, its performance on larger ob-
jects, AP(L), is 80.6, which is marginally better than
the aforementioned models. Our proposed method,
EBA-PRNetCC, was tested with two different back-
bones: ResNet18 and ResNet34. With the ResNet18
backbone, EBA-PRNetCC achieved an AP of 74.3,
which is higher than both the Simple Baseline and
TFPose methods.

The performance further improved with the
ResNet34 backbone, reaching an AP of 76.9, making
it the best-performing model among the ones tested.
Furthermore, the EBA-PRNetCC with ResNet34
achieved impressive results on AP(50) and AP(75)
with scores of 93.5 and 83.6, respectively. The AR
for this variant is 79.6, which is also the highest
among the models presented. Table 2 offers a deeper
dive, focusing on the balance between AP, model pa-
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Table 3: Performance comparison of EBA-PRNetCC with SLP and MLP Head.

Method Head Input AP AP(50) AP(75) AP(M) AP(L) AR Param(M) GFLOPS

EBA-PRNetCC SLP 384×288 76.3 93.5 82.6 73.2 80.9 79.0 35 8.2
MLP 76.9 93.5 83.6 73.9 81.6 79.6 29 8.1

Table 4: Performance comparison of EBA-PRNetCC variants with different backbones.

Method Backbone Input AP AP(50) AP(75) AP(M) AP(L) AR

EBA-PRNetCC ResNet18 256×256 71.3 91.4 78.1 68.2 75.8 74.5
ResNet34 74.3 92.5 81.5 71.5 79.0 77.2

rameters, and computational complexity in Gflops.
The Simple Baseline (Xiao et al., 2018), with its
384x288 input size, demands approximately 34.0M
parameters and 20.0 Gflops. TFPose (Mao et al.,
2021), despite having a slightly better AP of 72.2,
requires more parameters (38.0M) while maintain-
ing a computational complexity of 20.4 Gflops, sim-
ilar to SimCC’s requirements (Li et al., 2022). Our
EBA-PRNetCC models, notably EBA-PRNetCC34
and EBA-PRNetCC18, stand out for their efficiency.
EBA-PRNetCC34, with its ResNet34 backbone, not
only tops in AP with 76.9 but does so with just 29M
parameters, consuming only 8.1 GFLOPS. When
powered by ResNet-18, EBA-PRNetCC18 retains a
competitive AP of 74.3, but with a drastic reduction
in parameters to 19M and computational need to 4.0
GFLOPS. Even with a reduced input size of 256x256,
both models continue to impress. Their performance,
combined with reduced parameters and GFLOPS, un-
derlines their efficiency. our EBA-PRNetCC models,
both with ResNet34 and ResNet18 backbones, offer a
compelling balance between accuracy and efficiency,
we visualized the AP, GPLOPS, and number of Pa-
rameters of our models and other previous models in
Figure 5.

Figure 6 provides a thorough qualitative evalua-
tion of our EBA-PRNetCC for 2D HPE, illustrating
its effectiveness on the COCO dataset under a va-
riety of challenging conditions. The model adeptly
manages complex situations, including alterations in
viewpoint, diverse occlusions, blurry imagery, ex-
treme lighting variations, and complex human-object
interactions. The displayed outcomes emphasize the
model’s ability to precisely comprehend and adapt
to the nuanced dynamics of the human kinematic
chain, ensuring reliable and accurate pose estimation
throughout these demanding scenarios.

6 ABLATION STUDY

To understand the influence of the enhancements
made to the model’s head, we conducted an ablation
study comparing two key configurations of our EBA-

PRNetCC model: one employing a Single Layer Per-
ceptron (SLP) and the other utilizing a dual-layer
MLP with the Mish activation function. The results of
this study are presented in Table 3. EBA-PRNetCC-
SLP used a ResNet34 backbone, this version with
an appended SLP achieved an AP of 76.3 and re-
quired 35M parameters with 8.2 GFLOPS computa-
tional complexity. While EBA-PRNetCC-MLP intro-
ducing a dual-layer MLP with Mish activation, this
variant not only improved the AP to 76.9 but also
reduced the parameters to 29M while maintaining a
similar computational complexity of 8.1 GFLOPS.
The results highlight the efficiency and performance
gains achieved by embedding an MLP with Mish ac-
tivation in the model’s head, making EBA-PRNetCC
more effective without increasing computational de-
mands.

Table 4 presents the performance of the EBA-
PRNetCC model with a reduced input size of
256×256, using both ResNet-18 and ResNet34 as
backbones. With the ResNet18 backbone, the model
achieved an AP of 71.3. Its AP(50) score was partic-
ularly impressive at 91.4, indicating its ability to ac-
curately detect more obvious poses. The AR for this
configuration stood at 74.5. Switching to the ResNet-
34 backbone brought about significant improvements.
The AP increased to 74.3, and the AP(50) rose to an
impressive 92.5. The overall recall also saw an en-
hancement, registering at 77.2. These results high-
light the model’s consistent performance, even when
the input size is changed.

7 CONCLUSIONS AND FUTURE
WORK

This paper introduces EBA-PRNetCC, a novel
methodology that shifts from the conventional 2D
heatmap-centric techniques to a sophisticated, coordi-
nated classification strategy in 2D HPE. Leveraging a
modified ResNet34 architecture, our system achieves
reliable keypoint detection while reducing the num-
ber of parameters. A crucial enhancement in our
model’s design lies in its head incorporating a dual-
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layer MLP accentuated by the Mish activation func-
tion. This deliberate inclusion reduces the parameters
and amplifies pose estimation accuracy—a result we
link to the non-linear attributes of the MLP and the
gradient-rich dynamics of the Mish function. More-
over, the EBA infusion within ResNet34 enhances
our model’s feature extraction capabilities, granting
it deeper contextual insights. By emphasizing pixel-
level discretization, we curtail quantization irregular-
ities and boost joint localization precision. Experi-
mental results produce EBA-PRNetCC superior per-
formance on the COCO dataset, attributed to its re-
fined feature mapping, optimal activation function,
and sophisticated optimization techniques. In the fu-
ture, we aim to adopt increasingly efficient architec-
tures and expand training over varied datasets to en-
hance model generalization.
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