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Abstract: Technological advancement has made strides due in part to added convenience in our daily lives. This addition
of automation and quick access to information has given rise to the Internet-of-Things (IoT), where otherwise
normal items such as kitchen appliances, smartphones, and even electrical meters are interconnected and can
access the Internet. Since IoT devices can be accessed anywhere and have user-set behaviors, they transmit
data frequently over various networking standards which can be obtained by a malicious actor. While network
data is often encrypted, the patterns they construct can be used by such an adversary to infer user behavior,
device behavior, or the device itself. In this work, we evaluate various traditional machine learning models for
device classification using network traffic features generated from link-level flows to overcome both encryption
and differences in protocols/standards. We also demonstrate the viability of the GPT 3.5 large language model
(LLM) to perform the same task. Our experiments show the viability of flow-based classification across 802.11
Wi-Fi, Zigbee, and Bluetooth Low Energy devices. Furthermore, with a considerably smaller dataset, the LLM
was able to identify devices with an overall accuracy of 79% through the use of prompt-tuning, and an overall
accuracy of 63.73% for a larger more common dataset using fine-tuning. Compared to traditional models, the
LLM closely matches the performance of the lowest-performing models and even achieves higher accuracy
than the best-performing models.

1 INTRODUCTION

In the era of pervasive connectivity, advances in wire-
less technologies are fueling the growth of the Inter-
net of Things (IoT). Defined as an ecosystem where a
diverse range of smart devices interconnect to gather
and exchange data, IoT has significant implications
for home automation and convenience (Chataut et al.,
2023). These advances pave the way for smart homes,
which incorporate intelligent devices to manage vari-
ous household functions (Tripathi et al., 2022). How-
ever, as IoT devices proliferate, they bring along an
expanded attack surface. Vulnerabilities such as in-
adequate security measures, insecure network ser-
vices, and flawed update mechanisms expose these
systems to an increased risk of exploitation (Allifah
and Zualkernan, 2022).

The convenient factors provided by IoT devices
are enabled by their connectivity. However, the de-
gree of trust required to maintain these connections
can easily be abused. For instance, one-way authen-
tication can be “spoofed” by phantom devices (Wang
et al., 2022). Furthermore, simply by collecting net-

work traffic for these devices, it is possible to build
profiles and behavioral examinations to identify them.
(Hu et al., 2023). Finally, it has also been shown that
even encrypted, anonymized, IoT traffic (for example
through a VPN) can be de-anonymized and identify
target devices and network behaviors (Li et al., 2022).
Through the exploitation of such vulnerabilities, an
individual’s privacy, anonymity, and devices can be
compromised. A first step to this compromise is de-
vice classification.

Though these approaches can successfully iden-
tify such device characteristics, there are some lim-
itations in techniques that have not been considered
which may pose new threats to privacy. One such
limitation is the inability to classify IoT devices us-
ing multiple network protocols simultaneously (e.g.,
using one model to classify Wi-Fi, Bluetooth, and
Zigbee devices). Such a protocol-agnostic approach
would streamline both malicious and research en-
deavors. Similarly, pre-trained state-of-the-art models
including widely-versatile natural language process-
ing (NLP) models are becoming more widely avail-
able and can potentially be leveraged to improve de-

Morales, G., Romit, F., Bienek-Parrish, A., Jenkins, P. and Slavin, R.
IoT Device Classification Using Link-Level Features for Traditional Machine Learning and Large Language Models.
DOI: 10.5220/0012365700003648
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 10th International Conference on Information Systems Security and Privacy (ICISSP 2024), pages 297-308
ISBN: 978-989-758-683-5; ISSN: 2184-4356
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

297



vice identification as they can effectively serve as
broad knowledge-bases.

Our work addresses these considerations through
the use of traffic flows constructed from link-level net-
work data. Network data, by default, is an unorga-
nized sequence of packets. To organize the packet
data, traffic flows are used to represent each device’s
bidirectional communication. For consideration of
agnostic device classification, we extract data from
packets such as sizes, or addressing information, and
calculate subsequent statistical attributes. For exam-
ple, a flow consisting of one hundred forward pack-
ets would maintain a count of the total packets trans-
mitted, the maximum size, among many other similar
attributes. By removing network associations, many
protocols can be considered simultaneously. This is
possible because most protocols share some common
features at the link level, such as the MAC-like ad-
dresses and the statistical features mentioned above.
Furthermore, such statistical packet features (e.g.,
minimum/maximum packet size, number of packets
transmitted, etc.) do not vary based on payload en-
cryption, thus presenting a potentially valuable ap-
proach to broader classification techniques.

IoT devices, depending on the manufacturer, and
services provided, have deterministic behaviors (Za-
han et al., 2023). Correspondingly, we collect link-
level traffic to classify them. Among classic methods
ranging from a Random Forest Classifier to an SVM,
we also consider the use of Large Language Models
(LLMs), which have been trained on a large amount
of natural language data, in an attempt to capture ex-
pressive context, patterns, or dependencies within the
data. Through prompt engineering and fine-tuning,
we demonstrate how LLMs can be conditioned to
classify (in this case generate) a target class based on
input examples.

Our contributions are as follows:
1. Flow-Based, Link-Level Device Classification.

A flow-based approach to IoT device classifica-
tion is developed such that it can generalize across
different protocols using similar link-level fea-
tures. We evaluate this method on two datasets,
with nine 802.11 Wi-Fi, Zigbee, and Bluetooth
Low Energy device types.

2. Large Language Model Device Classification.
A large language model (LLM) is utilized to per-
form device classification for network flows from
both encrypted and unencrypted traffic. We com-
pare different approaches to prompt-tuning via in-
struction and fine-tuning to demonstrate the via-
bility of using an LLM for a non-NLP task in this
manner.

3. PROTOFLOW. An open source tool designed for

extensibility to generate protocol-agnostic link-
level flows. Additionally, we provide our training
scripts and resources for the LLM 1.

4. Encrypted IoT Traffic Dataset. A labeled
dataset of 10227 (before processing) network
flows among 42 IoT Zigbee, Bluetooth Low En-
ergy, and 802.11 Wi-Fi devices within nine device
classes. We make this dataset available to the pub-
lic with our PROTOFLOW repository.

The rest of this paper is organized as follows. Sec-
tion 2 discusses the technical background. Section 3
presents closely related work. Section 4 presents
our tool development, collecting custom data, under-
standing each protocol, and performing classification
using the LLM. Section 5 describes our experiment
design while Section 6 discusses the results. Finally,
Section 7 presents future work and conclusions.

2 BACKGROUND

In this section we discuss the wireless technology
standards we evaluated (Wi-Fi, Bluetooth Low En-
ergy, and Zigbee) and the concept of intra-device data
flows. Additionally, the basics of language models
and their typical usage are discussed.

2.1 Wireless Networking Protocols

IoT devices utilize a variety of networking protocols,
each with unique characteristics influenced by aspects
such as hardware limitations and operational environ-
ments. Analyzing these protocols individually is es-
sential, yet integrating them could facilitate a com-
prehensive analysis within smarthome settings. Our
work focuses on the widely-used 802.11 Wi-Fi, Blue-
tooth Low Energy (BTLE), and Zigbee protocols (Ho-
ryachyy, 2017; Danbatta and Varol, 2019; Stolojescu-
Crisan et al., 2021). The Open Systems Interconnec-
tion (OSI) model serves as a standard framework for
communication stacks (Kumar et al., 2014). In our
approach, we concentrate on the link-level (layer two)
of this model, where data encapsulation and physi-
cal transfer processes, including hardware addressing,
are handled (Kumar et al., 2014; Suresh, 2016). No-
tably, most encryption methodologies are applied at
higher OSI model levels, preserving the integrity of
link-level data.

Wireless technologies selection is contingent on
the specific application requirements. Wi-Fi, for ex-
ample, facilitates both Internet connectivity and ex-

1https://github.com/Gabriel-Morales/LLM-Paper-
Resources
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tensive local communication (Banerji and Singha-
Chowdhury, 2013). It allows IoT devices ot seam-
lessly integrate into home networks, establishing con-
nections with other devices and cloud services (Hory-
achyy, 2017; Wukkadada et al., 2018). BTLE, known
for its low-power consumption, supports data and au-
dio transmission with minimal energy use and is capa-
ble of forming extensive mesh networks (Horyachyy,
2017). Zigbee2, another low-power communication
technology, operates at slower data rates compared to
BTLE but excels in longevity (Ergen, 2004) and sup-
ports numerous nodes, ensuring ease of deployment,
interoperability, and network resilience (Safaric and
Malaric, 2006; Ramya et al., 2011).

2.2 Intra-Device Data Flows

In the context of device communication, a traffic flow
is a sequence of related attributes within the inter-
action between two devices. This concept encom-
passes both uni- and bidirectional flows. A unidi-
rectional flow represents the sequence of interactions
from a source to its destination, whereas a bidirec-
tional flow includes the exchange of communications
between a source and its destination, as well as the re-
verse path (Hayes, 2018; Habibi Lashkari et al., 2017;
Draper-Gil. et al., 2016). By aggregating multiple
such flows, a comprehensive flow table can be con-
structed.

2.3 Large Language Models (LLMs)

As a general task, language modelling seeks to gen-
erate text by predicting the next word in a given se-
quence (Kandpal et al., 2022). Many traditional mod-
els have been proposed and used for language mod-
elling; for example, the LSTM (Chang and Bergen,
2022). However, since the introduction of transformer
models (Vaswani et al., 2017), language models have
become more advanced and capable. Large language
models are trained on massive amounts of data such
as LLaMa (Touvron et al., 2023), BART (Lewis et al.,
2020), and the GPT family (Roumeliotis and Tselikas,
2023). Versions of these models have been fine-tuned
as conversational chatbots, for code generation, sum-
marization, and more.

These types of models have also been adapted to
other use-cases besides simple variants of text gen-
eration and conversation. Pearse, et. al utilize both
commercial LLMs (e.g., OpenAI Codex) and local
LLMs to study whether or not code completion capa-
bility of these models can help detect vulnerabilities

2https://csa-iot.org/all-solutions/zigbee/

within developer-written source code (Pearce et al.,
2023). Furthermore, LLMs have the capability of be-
ing applied to software engineering tasks such as test-
ing, requirements engineering, feedback, translation,
and other portions of the software development life-
cycle (Ozkaya, 2023). The aforementioned use-cases
point to the usefulness and expressive power of adapt-
ing these LLMs for various tasks, as also discussed in
Section 3. Adaptation of these models may be divided
into the following categories:

1. Zero-Shot Learning. Given desired attributes of
an example, the model uses no additional labels
to run an inference.

2. Prompt-Tuning. A few (or n) examples are pro-
vided as part of a prompt to the model to condi-
tion/steer its generation as desired.

3. Fine-Tuning. Using new data, the model is trained
to include new examples as part of its knowledge
to improve its domain specificity.

3 RELATED WORK

We discuss some related works for device classifi-
cation, network flow analysis, and LLMs in cross-
domain tasks here.

IoTFFID (Hao and Rong, 2023) is an incre-
mental IoT device fingerprinting method using two
publicly available datasets: UNSW and Yourthings.
This method achieves around 98% accuracy on both
datasets. Their contribution includes a transformer-
based model with a classification head to identify de-
vices, and adapt to new devices, which avoids catas-
trophic forgetting as traffic changes. The work is able
to expand into 50 device types from 20 with its in-
cremental behavior, noting that the types are specific
devices. In contrast, we focus on traffic requiring only
link-level information across three protocols using an
LLM with in-context learning capability.

Zhang et al. (Zhang et al., 2023) perform device
identification using Bluetooth on the link layer. The
frames are acquired by obtaining radio frequency data
using a software defined radio and demodulating it.
The packet data is fed into a deep neural network first
by stripping out specific identifiers that could gener-
ally be “spoofed”: MAC address, company identifier,
length of manufacturer-specific advertising data. The
neural network contains six layers, with an output size
of 15 classes (i.e., devices). The overall performance
reaches almost 100%. Our work considers more than
just Bluetooth and feature extraction uniformity that
is obtainable from the link-layer on major networking
protocols.
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Other work has introduced device identifica-
tion and fingerprinting beyond flow- and packet-
levels (Hamdaoui and Elmaghbub, 2022). In partic-
ular, a system is developed to perform classification
using deep learning on the radio frequency (RF) spec-
trum. While operating on the LoRa protocol, the work
studies inputs using inverse-quadrature (IQ) data and
FFT-based data. The testbed consists of 25 transmit-
ting devices, with collected data over different times
and days. The authors state that imperfections dur-
ing manufacturing of such devices cause cause unique
impairments in the way the hardware transmits on the
RF spectrum. These unique impairments can then be
used to distinctly fingerprint the transmitting devices.
Their experimental results achieve up to an 84% accu-
racy using the proposed feature set. While we do not
observe the RF spectrum, we do perform fingerprint-
ing; further, we also do not focus solely on a single
protocol.

TabLLM (Hegselmann et al., 2023) applies large
language models and templated prompting to perform
classification on a non-NLP-related task. Specifically,
inputs from tabular data are serialized (i.e., trans-
formed) into a natural language-compatible input for
the LLM. As an example, a column feature name
“heart rate” with value “93” would be transformed
into “The heart rate is 82.”. This approach provides
meaningful context to the LLM about what the fea-
tures represent, and evaluate their approach on nine
datasets. With the number of examples (shots) rang-
ing from zero to 512, the performance of the clas-
sification for TabLLM increases in a linear fashion.
Furthermore, the authors state that with a larger num-
ber of examples, the template matters less, but with
a smaller amount of classes, the LLM relies on the
values as well as the feature names. Interestingly, the
performance indicates the applicability of LLMs for
classification tasks. Our task is not a generic study
on LLMs and tabular data, but more focused on using
link-level network flows with LLMs for classification.

LLMs also have applications which mix natural
language with other inputs, otherwise known as mul-
timodal. Ma et al. introduce LLaViLo, a model to
retrieve relevant frames (start and end times) from a
video given a query. To achieve the task, an adapter
module is developed which fuses embeddings for an
input query and an input set of video frames and out-
puts them as tokens to the LLM. The LLM, using
a special masking strategy, is then prompted using
guided instruction to predict the time frames in nat-
ural language. In comparison to state of the art, their
results achieve a higher score, which shows that the
trajectory of using LLMs for multi-domain and mul-
timodal tasks is a worthy endeavor. While not specific

to security, this work helps motivate a reason why we
would like to explore the use of LLMs for our task.

To the authors’ knowledge, no other work has per-
formed a protocol-agnostic device classification on
the link-layer in addition to using LLMs to attempt
the same classification task as a whole.

4 METHODOLOGY

To perform device classification, the datasets of net-
work flows must be generated from traffic captures.
These captures can vary between protocols, but have
common properties. Networking protocols share var-
ious attributes within their packet information. These
attributes include timing information, addressing in-
formation, and length information. These three cate-
gories, and variations of such categories, are the only
ones always available across protocols at the link-
level. This allows us to achieve protocol-agnostic
flow generation for classification purposes. In that
manner, no specific protocol information, for exam-
ple Wi-Fi IP addresses and ports, are included. With
this in mind, flows are generalizable even to packets
that are captured on unencrypted networks; as men-
tioned earlier, this indicates that even more data can
be acquired.

4.1 PROTOFLOW

We seek to classify IoT devices universally. Since
classification methods such as machine learning re-
quire a good feature set, we need a way to repre-
sent uniform features across multiple packet types and
protocols. PROTOFLOW1 is designed to swap be-
tween protocols by detecting what type of protocol
is present within the first few packets. In addition,
parsing the packet types is as simple as adding a new
method within the detection branch, as the rest of the
parsing logic remains identical. PROTOFLOW gener-
ates flow tables (CSV of network flows) as long as
the packet format is a universally recognizable one
(e.g., pcap). Not only is it able to perform parsing
for raw frame traffic (i.e., 802.11 Wi-Fi, Zigbee, link-
layer BT), it is also able to identify regular LAN traf-
fic, which means that PROTOFLOW can even generate
the flows for UNSW pcap files.

Each flow has its statistical attributes calculated
and added as an entry within a dictionary data struc-
ture. As PROTOFLOW parses the capture file, it runs
through all packets within the file and fills the dictio-
nary for the corresponding communication pairs (re-
minder that a flow is a bidirectional communication
between devices). In addition, an auxilliary list is kept
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for each pair representing the running sizes for each
packet, which can be used to add new statistical at-
tributes if desired.

As part of our experiments, we use two datasets:
a larger publicly available dataset of unencrypted, la-
beled traffic from The University of New South Wales
(UNSW) and a smaller, encrypted dataset from our
own lab titled ZBW (Zigbee-BTLE-WiFi) 1. The next
sections discuss capturing traffic, protocol prepara-
tion, and LLM methodologies.

4.2 Link-Level Feature Set and
Classification

Figure 1: Flow to ML Pipeline.

Prior to device classification, data must be collected.
Network data is raw, binary, data which is captured
through network cards or other radio-frequency pe-
ripherals. Typically, each protocol that one sniffs traf-
fic for uses a special peripheral to capture its data
(due to considerations such as protocol specifications
or bandwidth). One important consideration prior to
creating the data for classification is how one wishes
to capture packets: in segments or continuous. This
particular matter will alter the number of flows gener-
ated and create more or less than desired, even if pro-
grammatically set to separate flows. For instance, two
packet files will generate more flows, as they would
be separated sessions. All of our packet captures are
made in segments where, after a timeout of a few min-
utes, they are split and the capture is looped to save
space as they are uploaded to a storage for use later.

As displayed in Figure 1, we begin by capturing
raw packet data on various protocols. The block en-
titled “Network Packets” indicates that packet cap-
tures from any protocol (i.e., protocol agnostic) is

captured; this represents both our custom dataset ac-
quired from our own lab, and the UNSW dataset, as
discussed shortly. Any dataset we acquire which is
in the form of packet capture data, is then passed
through a flow creation tool (e.g., PROTOFLOW) to
output organized flow tables of the data for ML al-
gorithms. PROTOFLOW produces a flow table of 38
features by default, which we reduce to a set of 30
features most generalizable and least likely to cause
overfitting or memorization as displayed in Table 1.
After the flow tables are created and curated to the
feature set we desire, we pass them into various ML
classifiers. Each model will then ideally produce a
device type during test time corresponding to the pat-
terns it has been trained on.

The custom data we capture is derived from our
lab, which consists of 22 unique devices from three
protocols, as indicated by Table 2. We also use the
UNSW dataset which consists of 31 unique devices.
Some device types overlap such as UNSW’s Android
Phone to our Google Pixel 4a, but many are different.
As we are classifying devices on two datasets, and to
keep things fair and consistent, we decide to abstract
common device types into a category of its own. In
particular, we abstract these devices into nine device
types, shown in Table 2.

Table 1: Flow Entry Features.
Flow Entry Features

Source OUI Dest OUI
Bidirectional Total Packets Bidirectional Total Bytes
Source to Dest Total Bytes Dest to Source Total Bytes
Source to Dest Total Packets Dest to Source Total Packets
Source to Dest Total Duration (ms) Dest to Source Total Duration (ms)
Bidirectional Total Duration (ms) Source to Dest Min Packet Size
Source to Dest Max Packet Size Source to Dest Mean Packet Size
Source to Dest Stdev Packet Size Dest to Source Min Packet Size
Dest to Source Max Packet Size Dest to Source Mean Packet Size
Dest to Source Stdev Packet Size Bidirectional min Packet Size
Bidirectional Max Packet Size Bidirectional Mean Packet Size
Bidirectional Stdev Packet Size Source to Dest Transmission Rate (ms)
Dest to Source Transmission Rate (ms) Bidirectional Transmission Rate (ms)
Source to Dest Transmission Rate Bytes (ms) Dest to Source Transmission Rate Bytes (ms)
Bidirectional Transmission Rate Bytes (ms) Protocol

Table 2: Base Link-level Lab Devices Captured.
Category Wireless Standard Detail
router Wi-Fi Asus Router RT-N12

Asus RT-AC1200GE
router Wi-Fi & Zigbee Tp-Link Kasa Router
smart speaker Bluetooth & Wi-Fi Bose Home Speaker 300
smart speaker Bluetooth & Wi-Fi Sonose One SL
smart speaker Wi-Fi & Zigbee Amazon Echo with Hub
smart switch Wi-Fi 5x C by GE 3-Wire On/Off Toggle
smart assistant Wi-Fi & Zigbee Amazon Echo with Hub
mobile Wi-Fi & Bluetooth Galaxy A21

Google Pixel 4a
smart bridge Zigbee & Wi-Fi Philips Hue Bridge
smart bulb Zigbee x3 Philips Hue Bulb
smart camera Wi-Fi x2 Blink mini camera

x2 Kasa Spot
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4.3 LLM-Based IoT Device
Classification

To study the use of LLMs for device classification
using network flows, we consider different ways to
interact with the model. The GPT 3.5 LLM is used
to perform this task due to its popularity and well-
documented API for model interaction. Our pipeline
to use the LLM is also represented by Figure 1, where
the LLM is the classifer.

4.3.1 Model Preparation

GPT 3.5 follows the format of system role prompt,
user query, and assistant response. Because of this
format and the generative nature of the model, it is
not sufficient to give these models an input and an ex-
pected output for training or fine-tuning as with tra-
ditional models. A natural language guidance (i.e.,
instruction) will tell the model exactly what its inputs
and expected outputs are to be; this takes place within
the system prompt. The system prompt contains an
instruction to the model indicating that it is to receive
features extracted from the flow table in a specific or-
der, and that its objective is to classify the device type
based on those features. A list of names and descrip-
tions for the features it is expected to receive is then
provided. Furthermore, the model’s prompt indicates
that it will receive the inputs for the features in the
same order in which they were described. The user
queries will be given as a tuple of feature values of
a flow (instead of feature names and values) to save
token counts. These user queries are given iteratively
from the datasets and the response from the model for
that query is the device type. GPT 3.5 is tuned to
the specific task using the following adaptation tech-
niques:

Zero-Shot Learning. Here, the base GPT 3.5
model is used as is, without giving it any examples
for the device classes. This gives us a baseline for the
model’s performance that can be compared with our
prompt-tuning and fine-tuning approaches.

Prompt-Tuning. In this case, the same instructions
and classes as above are provided, except now we pro-
vide various examples of each device type’s attributes
along with their label within the prompt. This ap-
proach, in conjunction with the fine-tuning approach,
lets us answer two important questions: how many ex-
amples per class are needed to ensure sufficient classi-
fication accuracy, and whether prompt-tuning or fine-
tuning is the better way to feed those examples to the
model.

Fine-Tuning. The process for extracting device
classifications from the fine-tuned model is divided

into two phases: training and querying.
In the training phase, the model is provided with

five training examples for each of the device abstrac-
tions. The examples are provided to the model using
the fine-tuning methods from the OpenAI API. Each
training examples has 3 parts: a system role prompt,
a user query, and an ideal assistant response. Unlike
the other two adaptations, the prompt contains no de-
scriptions of the inputs given to the model or the or-
der in which they are given. This is done not only
to save costs, but to also mimic the training environ-
ment of traditional machine-learning tasks, where the
model is usually not given any description of the in-
put features. The user query is the same as the other
two adaptations, and the ideal assistant response is a
string containing the correct device abstraction.

In the querying phase, the fine-tuned model is
given the instructions in the same format as described
above, similar to the other two adaptations.

The justification for using fine-tuning is the same
as that for using prompt-tuning.

5 EXPERIMENTAL DESIGN

In this section we describe the process and implemen-
tation of collecting our data and experiment design to
evaluate whether it is possible to use both types of
data to perform link-level device classification using
the models of our choice. In the following, we formu-
late our research questions (RQs):

• RQ1. Can link-layer features extracted from
datasets acquired across different protocols and
locations be used to identify the IoT devices com-
prising those networks?

• RQ2. Can IoT devices be identified using a LLM
using link-layer features?

• RQ3. Is an LLM viable for device identification
compared to non-LLM models?

5.1 Link-Level Feature Set and
Classification

As part of RQ1, we describe the practical design for
collecting traffic in our datasets. Our customized
dataset, ‘ZBW’, includes devices running on the Zig-
bee, Bluetooth and Wi-Fi protocols. Each of the pro-
tocols are sniffed without association to the respec-
tive networks, enabling us to collect solely link-level
data. All Wi-Fi data is captured using monitor mode,
which enables us to sniff traffic non-specific to one lo-
cation; for instance, any devices broadcasting around
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us (such as another building) can have its data col-
lected if the signal is strong enough. Bluetooth and
Bluetooth LE traffic is captured using the Ubertooth
One dongle, using the ubertooth-btle command
for Bluetooth LE traffic and the ubertooth-rx for
Bluetooth traffic. Zigbee traffic is captured using an
Apimote and the zbdump command to capture Zig-
bee frames. In addition, we download a secondary
dataset from the University of South Wales (UNSW)
consisting of only Wi-Fi-based IoT devices. Further-
more, the UNSW dataset was captured on the local
area network (LAN) traffic. For the purposes of the
study in this work, however, the primary distinctions
between our dataset and the UNSW dataset is simply
how they are captured. The significance to this comes
down only to obtaining link-level features, which is
available in both datasets.

Our prior study (Morales et al., 2023) focuses
on transferability between encrypted and unencrypted
datasets: using encrypted data and decrypted data
interchangeably due to consistent packet sizes (as
shown in the original paper). However, the study per-
formed in this work redesigns and implements new
experiments focusing on classification methods using
the original features as a basis: For the first exper-
iment, we try to understand and evaluate how well
our link-level feature set works for classification in
both datasets (i.e., we run classifiers on both). In
addition, we reduce the abstraction complexity to
cover nine new device types as opposed to 15 de-
vice types, and PROTOFLOW has been expanded to
work on LAN traffic (thus removing original trans-
ferability constraints). Finally, we evaluate these new
device types. For the second experiment, we utilize
newer, more powerful state-of-the-art models to com-
pare with traditional classification methods. Specifi-
cally, using chat-based LLMs, we reason that by treat-
ing them like humans to perform an instructed task,
they may be able to scale and perform tasks for non-
NLP domains. To that end, we treat ChatGPT (GPT
3.5) as a classifier with instructions to contextually
analyze and understand link-level features extracted
from these two datasets.

As a baseline comparison, we employ three simple
to deploy, yet robust, ML algorithms: Random Forest
(RF), Support Vector Machine (SVM), and K-Nearest
Neighbors (KNN). The choice of these three algo-
rithms allows for an empirical view of the contrast
between classic methods and the state-of-the-art mod-
els. As preprocessing steps, a standard scaler is used
to scale the numerical features of the training data.
Then, one hot encoders are used for non-numerical
features. Furthermore, as the datasets use addressing
identifiers (e.g., MAC addresses, Zigbee addresses),

we also extract the organizationally unique identifier
(OUI); this particular attribute is reserved to specific
manufacturers for each device, which can be mapped
and added as a unique feature. Consequently, we
build a mapping between OUI addresses, the devices
we have in our lab, and those given as a table from
the UNSW dataset. Afterward, we add the manufac-
turer identifier as a feature to our feature set. We be-
lieve that this feature will have additional weight in
creating contextual representations in the datasets for
the LLM. Seven examples per class are provided as
training data to the traditional models. In all exper-
iments, we test on 1,012 and 1,023 samples for the
encrypted ZBW dataset (DZBW ) and the unencrypted
UNSW dataset (DUNSW ) respectively. Our choice for
the number of testing samples was based on the token-
based monetary cost required for using the GPT 3.5
API. These datasets are used across all subsequent ex-
periments.

5.2 LLM-Based IoT Device
Classification

For RQ2 and RQ3, we now describe how we interact
with each model and implement the experiments for
each adaptation technique.

Our interactions with the model are enabled by
a script written in Python and the OpenAI API. Be-
fore issuing requests, price is approximated using
the tiktoken library and the price-per-token of the
model. The DUNSW and DZBW datasets are used for
testing. The base prompt which we give our model
for the prompt-tuning task is as follows:

Your task is to use various attributes of the
traffic transmitted/received by different
IoT devices to classify them into one of 9
specific device types. You’ll be provided
a comma-separated tuple with 30 traffic

attributes in the following order:
Communication Attributes [attributes]

Transmission Attributes (Time in
milliseconds, Size in bytes, Packets in
count) [attributes]

Packet Size Attributes (Size in bytes) [
attributes]

Transmission Rate Attributes (Bytes per
millisecond, Packets per millisecond) [
attributes]

You can only classify the traffic into only
one of the following 9 IoT device types,
exactly as they appear below:

[attributes]

You can only classify the traffic into only
one of the following 9 IoT device types,
exactly as they appear below:
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camera
router
mobile
switch
speaker
bulb
computer
motion_sensor
printer

Note: Not all attributes might be available
for every frame, and some may be more
telling than others in identifying the
device type.

Now, you will be given [N] examples of tuples
for each type of device. The order of the
attributes in the tuples will be same as
the order in which they were defined above

Examples for camera:
[N examples]

Examples for router:
[N examples]

Examples for mobile:
[N examples]

Examples for switch:
[N examples]

Examples for speaker:
[N examples]

Examples for bulb:
[N examples]

Examples for computer:
[N examples]

Examples for motion_sensor:
[N examples]

Examples for printer:
[N examples]

Where the attributes enclosed by square brackets are
expanded by the authors to include the full feature list
and their descriptions.

The base prompt for the fine-tuning task is as fol-
lows:

Given a comma-separated tuple with 30 traffic
attributes of the traffic transmitted/
received by different IoT devices,
classify the input tuple to a device type.

5.2.1 Zero-Shot

The temperature set for the model generation is set to
0.5. The temperature refers to how imaginative the

model will be. According to the OpenAI documen-
tation, the lower the temperature, the more determin-
istic and strict the output will be; the higher the tem-
perature, the more imaginative and random the model
will be. The temperature value can range from zero
to two with a default value of one3. Our chosen value
for temperature is half the default value in order to get
more deterministic outputs than the default and avoid
potentially unpredictable behavior from extreme tem-
perature values such as 1.

5.2.2 Prompt-Tuning

Three sub-experiments with three, five, and seven ex-
amples per class are conducted to identify an optimal
number of examples to include in the prompts. Given
the nine classes, a total of 27, 45, and 63 examples
are provided, respectively. For each sub-experiment,
the performance of the model is evaluated on DUNSW
and DZBW . Just as with the zero-shot task, we set
the temperature to be 0.5. All of the examples in the
prompt-tuning sub-experiments are from the DUNSW
dataset.

5.2.3 Fine-Tuning

In the fine-tuning task, we provide five examples for
each of the nine device classes for a total of 45 ex-
amples as JSON file entries for the API. These ex-
amples are the same as those for the prompt-tuning
sub-experiment with five examples per class. As with
the prompt-tuning experiments, we conduct queries
on DUNSW and DZBW . The temperature of the model
is set to 0.5 for this experiment.

6 EXPERIMENTAL RESULTS

Here, we discuss the results of our experimentation.

6.1 RQ1. Link-Level Device
Classification

Tables 3 and 4 show the results for traditional ML
algorithms on the link-level data. DUNSW has a low
accuracy of 28.73% and 24.53% for both the KNN
and SVM algorithms, respectively. However, the RF
algorithm reaches a 52.49% accuracy. From DZBW t,
both the KNN and SVM algorithms reflect the same
pattern as before with low accuracy. RF performs
best across both datasets with the highest accuracy

3https://platform.openai.com/docs/api-
reference/chat/create
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Table 3: UNSW (Unencrypted) Link-level Classification Results.

UNSW
KNN RF SVM

Class Support Precision F1 Recall Precision F1 Recall Precision F1 Recall
Bulb 12 4.72 8.75 58.33 14.28 25 100 4.76 8.80 58.33
Camera 203 42.85 2.85 1.47 39.28 38.59 37.93 52 20.55 12.80
Computer 342 47.36 23.68 15.78 90.47 42.50 27.77 33.96 9.11 5.26
Mobile 101 15.04 15.88 16.83 30.12 37.45 49.50 31.70 18.30 12.87
Motion Sensor 134 33.81 45.47 69.40 94.05 80.85 70.89 60.62 59.00 57.46
Printer 22 21.33 32.98 72.72 50.0 65.62 95.45 7.88 14.22 72.72
Router 80 35.16 37.42 40.0 90.80 94.61 98.75 31.74 27.97 25
Speaker 79 42.42 47.19 53.16 42.51 57.72 89.87 21.89 31.42 55.69
Switch 50 29.70 39.73 60.0 49.33 59.2 74 21.73 31.91 60
Macro Avg 1023 30.27 28.22 43.08 55.65 55.72 71.57 29.59 24.59 40.01
Weighted Avg 1023 38.24 25.33 28.73 67.37 52.61 52.49 38.20 23.24 24.53
Total Accuracy 28.73 52.49 24.53

Table 4: ZBW (Encrypted) Link-Level Classification Results.

ZBW
KNN RF SVM

Class Support Precision F1 Recall Precision F1 Recall Precision F1 Recall
Bulb 1 0 0 0 0 0 0 0 0 0
Camera 115 0 0 0 10.63 18.95 86.95 5.47 9.31 31.30
Computer 0 0 0 0 0 0 0 0 0 0
Mobile 23 1.05 1.94 13.04 60 21.42 13.04 0 0 0
Motion Sensor 0 0 0 0 0 0 0 0 0 0
Printer 0 0 0 0 0 0 0 0 0 0
Router 860 50.94 5.91 3.13 42.85 0.69 0.34 0 0 0
Speaker 9 0 0 0 100 50 33.33 0 0 0
Switch 4 0 0 0 0 0 0 0 0 0
Macro Avg 1012 6.49 0.98 2.02 26.68 11.38 16.71 0.68 1.16 3.91
Weighted Avg 1012 43.31 5.07 2.96 39.88 3.67 10.77 0.62 1.05 3.55
Total Accuracy 2.96 10.77 3.55

for both. The scores for DZBW suggest that the origi-
nal data distribution is too low for the chosen devices.
DUNSW has a larger and much broader data distribu-
tion of traffic flows, which can point to its better per-
formance.

6.2 RQ2. LLM-Based IoT Device
Classification

Tables 5 and 6 show the prompt-tuning results for
the UNSW and ZBW Testing Sets, whereas Tables 8
and 7 show the results for fine-tuning.

Overall, the weighted accuracy score (percentage
of devices correctly identified) across both DUNSW
and DZBW is 11.70% for zero-shot learning, 49.97%
for prompt-tuning with three examples, 50.56% for
prompt-tuning with 5 examples, 49.92% for prompt-
tuning with seven examples, and 33.23% for fine-
tuning with five examples. Therefore, prompt-tuning
with five examples provides the best overall perfor-
mance. Fine-tuning with five examples provides the
best classification accuracy for the DUNSW (63.73%)

while prompt-tuning with five examples provides
the best accuracy for DZBW (79.44%). The model
achieves better classification accuracy on the DZBW
than the UNSW Testing dataset for all the exper-
iments except the fine-tuning experiment. In nine
out of the 10 experiments, the weighted precision is
higher than the weighted recall (the only exception is
the zero-shot experiment with DZBW ).

For zero-shot learning, the model performs poorly
with both datasets. It achieves a classification ac-
curacy of 9.67% for the UNSW Testing dataset and
13.63% for the ZBW Testing dataset. However, the
weighted F1 score for the ZBW Testing dataset in
the zero-shot experiment (21.82%) is more than four
times higher than that for the UNSW Testing dataset
(5.33%), suggesting that the model knowledge base
might contain more information about the types of
devices present in our lab than those present in the
UNSW Testing dataset.

In prompt-tuning, the F1 and accuracy scores for
DZBW in the prompt-tuning experiments are signif-
icantly higher than those in DUNSW . The average
prompt-tuning F1 score for DZBW (80.47%) is almost
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Table 5: LLM-Based UNSW Dataset Classification Results via Prompting.
UNSW

Zero-shot 3 Ex/class 5 Ex/class 7 Ex/class
Support Precision F1 Recall Precision F1 Recall Precision F1 Recall Precision F1 Recall

Bulb 12 2.56 4.44 16.66 22.22 35.08 83.33 15.90 25 58.33 24 32.43 50
Camera 203 29.09 12.40 7.88 26.82 9.01 5.41 36.66 16.73 10.83 34.28 17.58 11.82
Computer 342 0 0 0 96.70 40.64 25.73 96 13.07 7.01 88.09 19.27 10.81
Mobile 101 5.88 1.69 0.99 31.81 11.38 6.93 29.62 12.5 7.92 26.92 11.02 6.93
Motion Sensor 134 0 0 0 4.59 3.61 2.98 23.75 25.85 28.35 15.89 20.37 28.35
Printer 22 61.53 66.66 72.72 23.75 37.25 86.36 27.94 42.22 86.36 24.39 38.46 90.90
Router 80 8.64 15.60 80 14.41 23.33 61.25 16.41 26.50 68.75 13.95 22.04 52.50
Speaker 79 0 0 0 36.58 25 18.98 40.90 29.26 22.78 64.28 33.64 22.78
Switch 50 0 0 0 12.31 20.85 68 11.15 18.70 58 16.66 26.92 70
Macro Avg 1023 11.96 11.20 19.80 29.91 22.91 39.88 33.15 23.31 38.70 34.27 24.64 38.23
Weighted Avg 1023 8.38 5.33 9.67 46.72 22.96 23.16 51.18 18.76 21.50 48.67 20.53 22.18
Total Accuracy (%) 9.67 23.16 21.50 22.18

Table 6: LLM-Based ZBW Dataset Classification Results via Prompting.
ZBW

Zero-shot 3 Ex/class 5 Ex/class 7 Ex/class
Class Support Precision F1 Recall Precision F1 Recall Precision F1 Recall Precision F1 Recall
Bulb 1 33.33 50 100 14.28 25 100 16.66 28.57 100 33.33 50 100
Camera 115 95.83 33.09 20 68.75 16.79 9.5 85.71 18.60 10.43 42.85 4.91 2.60
Computer 0 0 0 0 0 0 0 0 0 0 0 0 0
Mobile 23 11.11 6.25 4.3 6.66 5.2 4.34 9.5 9.09 8.69 0 0 0
Motion Sensor 0 0 0 0 0 0 0 0 0 0 0 0 0
Printer 0 0 0 0 0 0 0 0 0 0 0 0 0
Router 860 51.62 20.65 12.90 95.35 91.66 88.25 95.13 93.04 91.04 95.09 92.53 90.11
Speaker 9 100 36.36 22.22 13.33 16.66 22.22 27.27 30 33.33 42.85 37.50 33.33
Switch 4 0 0 0 0.97 1.86 25 4.34 8.21 75 2.66 5.06 50
Macro Avg 1012 32.43 16.26 17.71 22.15 17.47 27.71 26.51 20.83 35.39 24.08 21.11 30.67
Weighted Avg 1012 55.93 21.82 13.63 89.13 80.10 76.58 91.08 81.72 79.44 86.10 79.60 77.47
Total Accuracy (%) 13.63 76.58 79.44 77.47

four times higher than that for DUNSW (20.75%). One
of our features is a manufacturer identifier, which we
believe the model attempts to make a contextual con-
nection with the class label. As DUNSW is larger in
distribution (therefore more manufacturers) than the
DZBW , the performance for prompt tuning is more de-
graded for DUNSW than DZBW .

As seen in Table 7, fine-tuning significantly im-
proves the performance for DUNSW , as the fine-tuning
F1 score for that dataset (64.59%) is almost three
times higher than the highest prompt-tuning F1 score
of 22.96%, with three examples. The model re-
ceives the same examples in the fine-tuning experi-
ment and the prompt-tuning experiment with five ex-
amples per class, suggesting that given the same train-
ing data, fine-tuning produces better results for per-
forming classification on DUNSW flows. However,
fine-tuning has the exact opposite effect on DZBW .
The average F1 score for DZBW drops from 80.47%
(for the prompt-tuning experiments) to 2.10% for the
fine-tuning experiment (Table 8).

Given the performance seen across the tables,
specifically the fine-tuning task for DUNSW , the LLM
is capable of identifying IoT devices using link-level
features.

6.3 RQ 3. LLM Task Viability

Comparing the results between the traditional algo-
rithms and GPT 3.5, GPT 3.5 outperforms the tradi-
tional algorithms for the smaller DZBW . For instance,
with only five examples per class and prompt tuning
(Table 6) it reached 79.44% compared to the weaker
10.77% of the RF model. Even for the individual
classes in both fine-tuning and prompting tasks, it
is able to classify more compared to the many zeros
seen for the traditional algorithms. Additionally, fine-
tuning with five examples per class outperforms tra-
ditional algorithms for the same dataset with 63.73%
compared to 52.49% for the RF model on DUNSW .
These results imply feasibility of device classification
by LLMs compared to traditional approaches and sug-
gest stronger viability with a larger training set.

7 CONCLUSION AND FUTURE
WORK

In this work, we utilize methods to classify IoT de-
vices using link-level flows across three networking
protocols with various models. This task is performed
for both unencrypted and encrypted traffic using both
traditional ML algorithms and newer, more powerful,
LLMs using prompting and fine-tuning techniques.
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Table 7: Fine-Tuning DUNSW with Five Examples Per
Class.

Fine-Tuning UNSW
Class Support Precision (%) F1 (%) Recall (%)
Bulb 12 100 100 100
Camera 203 46.87 54.98 66.50
Computer 342 98.57 75.22 80.81
Mobile 101 59.00 72.51 94.05
Motion Sensor 134 91.66 15.06 8.20
Printer 22 95.65 97.77 100
Router 80 96.72 83.68 73.75
Speaker 70 100 93.95 88.60
Switch 50 33.89 47.61 80
Macro Avg 1023 72.23 64.08 67.19
Weighted Avg 1023 80.26 64.59 63.73
Total Accuracy 63.73

Table 8: Fine-Tuning DZBW with Five Examples Per Class.
Fine-Tuning ZBW

Class Support Precision (%) F1 (%) Recall (%)
Bulb 1 100 100 100
Camera 115 33.33 1.69 0.86
Computer 0 0 0 0
Mobile 23 90.90 58.82 43.47
Motion Sensor 0 0 0 0
Printer 0 0 0 0
Router 860 100 0.46 0.23
Speaker 9 5.14 9.65 77.77
Switch 4 0 0 0
Macro Avg 1012 36.58 18.95 24.70
Weighted Avg 1012 90.97 2.10 2.07
Total Accuracy 2.07

We successfully classify devices on these three
networking protocols; using prompt tuning, the LLM
successfully classified devices on a smaller dataset
reaching an accuracy of 79.44%. Through fine tuning,
the LLM successfully classified devices on a larger
dataset reaching an accuracy of 63.73%. The F1 score
for these two instances are also in-line with them, dif-
fering by no more than two. The LLM outperforms
the traditional models with the same data distribution.

For future work, we plan to transition to us-
ing LLMs entirely for this task by generating wider
datasets and further incorporating the knowledge em-
bedded in pre-trained language models. Furthermore,
we plan to evaluate this and similar tasks with other
LLMs (e.g., Llama 2) as the results of this work imply
feasibility in the use of LLMs for network classifica-
tion tasks, thus opening potential avenues for their use
in network security and privacy.
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