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Abstract: The evaluation of academic load is necessary and constitutes a fundamental process in the design and redesign 
of programs. This is because an excessive academic load can have academic consequences such as lag, as 
well as effects on mental health, including depression, anxiety, burnout, self-esteem problems, among others. 
Academic load is a complex and dynamic topic, resulting in the absence of a single approach to its study and 
measurement. In this sense, this work proposes a mathematical model of linear programming. The case study 
evaluated in Magister, a Chilean university. The results reveal an even distribution of academic load between 
semesters and courses within the program. As the semesters progress, the academic load tends to increase 
gradually. Integrated courses, such as Course 10 and Course 11, have higher loads compared to others. In the 
third semester there is variability in the academic load, with one course concentrating most of the study hours. 
In total, 294 hours of study are required to complete the program. A comprehensive review of academic load 
distribution is recommended to ensure an equitable and manageable educational experience for students.

1 INTRODUCTION 

The academic load of a curriculum is a critical issue 
for educational institutions because it is necessary to 
guarantee the competences and skills established in 
an outcome profile (undergraduate or graduate 
profile). Therefore, the curriculum seeks to achieve 
the outcome profile through the definition of course 
contents and training periods. In this topic, the 
academic load of a course represents the total time 
that an average student must spend attending classes 
and studying independently (i.e., making lectures, 
projects, self-study, trainee, etc.) for obtaining the 
learning outcomes (Ünal and Uysal, 2014). For this 
reason, designing a curriculum involves several 
complexities, such as the challenge of ensuring 
accessibility and effectiveness of learning for all 
students, considering their diversity in terms of 
abilities, prior knowledge, learning styles, and special 
needs (Dantas & Cunha, 2020; Woodcock et al., 
2022); the inclusion of excessive contents, generating 
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curricular overload (Chen et al., 2023); the necessity 
of periodic curriculum reviews and updates for 
ensuring its relevance and effectiveness (Chen et al., 
2023). 

Regarding the academic load, optimization 
models have been proposed in the literature for 
establishing it. According to Lambert et al. (2006), 
one of the first models that dealt with this topic was 
the balanced academic curriculum problem (BACP) 
introduced by Castro and Manzano, (2001). The 
proposed model was an integer linear programming 
model, which sought to design a balanced academic 
curriculum by assigning courses to periods, 
guaranteeing a similar academic load in each period. 
The model was executed using synthetic instances, 
concluding that it could solve medium size problems. 
A few years later, Hnich et al., (2004) presented a 
hybrid modelling approach that combines a mixed 
integer linear programming model with a data-driven 
model. Additionally, the authors used machine 
learning techniques in order to forecast the course 
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demand. These authors also applied their approach to 
synthetic instances. They concluded that the hybrid 
model could increase the complexity of the problem. 
However, they did not mention conclusions about 
improvements in the academic load related to their 
approach. Based on the model presented by Castro 
and Manzano (2001), Lambert et al. (2006) developed 
a method for solving it, which combines two solution 
techniques: genetic algorithms (Holland, 1992) and 
constraint propagation (Jaffart et al., 1987). Genetic 
algorithms are used to generate solutions for the 
model of Castro and Manzano (2001), and to explore 
the solution space, while constraint propagation 
method is applied to improve the solutions, and to 
ensure the feasibility of the solutions. In 2012, 
Chiarandini et al. (2012) presented a generalized 
version of the balanced academic curriculum problem 
(BACP) proposed by Castro and Manzano, (2001) 
The new version of the model considers different 
curricula and professors’ preferences and was solved 
by using a local search metaheuristic (Hoos, 2004). In 
this study, the authors used a real case study, 
corresponding to the curricula of an engineering 
school of Italy. The new model aimed to balance the 
academic curricula of all the engineering careers of 
the school simultaneously. Therefore, some 
limitations of the model discussed by the authors 
were: i) a course established in the curriculum for 
different engineering careers, one was scheduled for 
each career instead of defining only one for all 
careers; ii) the model did not balance the academic 
load of professors; iii) the increase in the number of 
elective courses made the model more complex; iv) 
engineering students could have some terms without 
courses because the model does not force that a 
course be carried out every term. Later, Ünal and 
Uysal (2014) presented a bi-objective mixed integer 
linear programming model, which was called relevant 
course balancing problem (RBCB). This model also 
seeks to balance a curriculum but considers two 
objective functions. One objective function 
minimizes the distance (relevant score) of relevant 
courses among periods, prioritizing scheduling these 
courses in a same period (zero distance). The other 
objective function minimizes the bias of the academic 
load per term. In this study, the authors used a real 
case study, corresponding to the curriculum of an 
undergraduate career from the industrial engineering 
department of Fatih University in Turkey. The 
proposed model enables consolidating loads of 
students per semester, meeting the prerequisite 
conditions. Furthermore, the authors compared their 
model with the BACP, where the RBCB generated 
better course timetabling solutions than the BACP. 

About this comparison, they concluded that the 
BACP can be solved faster than the RBCB. 
Nevertheless, the RBCB obtained optimal solutions 
in about 3–15 minutes, which is a reasonable time. It 
is important to highlight that none of the studies 
presented in the literature took into account the 
specific knowledges that need to be incorporated in 
each course, which are directly related to the 
academic load of a curriculum.  

Regarding the taxonomy for classifying 
knowledges, the current literature has dealt with this 
issue as a peripheral topic (Tuma & Nassar, 2021). In 
education, the taxonomy is relevant because it 
classifies educational objectives into various 
cognitive levels, from the simplest to the most 
complex. The most known taxonomy is the Bloom’s 
Taxonomy, proposed by Benjamin Bloom in 1956 
(Choi-Koh, 2003), and it has had a significant impact 
on education by offering a well-organized framework 
for both curriculum design and the evaluation of 
learning (Tuma & Nassar, 2021). Moreover, this 
classification defines six levels of cognitive 
complexity, which are: remembering (remember facts 
and concepts); understanding (understand and 
explain the meaning of the information); applying 
(apply knowledge in new or specific situations); 
analyzing (divide the information into parts and 
understand their relationships); evaluating (judging 
the validity of information, arguments or methods); 
and creating (combining elements to form a new 
whole or create something new). 

In the current study, a methodology that includes 
the development of a linear programming model for 
designing a curriculum is proposed. In this way, the 
developed model seeks to allocate knowledges to 
courses, where the courses have been pre-defined for 
each term. The objective of this allocation is to 
guarantee the achievement of competences and skills 
outlined in the graduate profile. 

This article is structured as follows. Section 2 
describes the proposed methodology to estimate the 
academic load. Section 3 presents a real case study, 
belonging to a Chilean university. Finally, the main 
conclusions are presented in Section 4. 

2 METODOLOGY 

The proposed methodology of this study has three key 
stages, which are described as follows. 

• Step 1. Rating Knowledges by an Expert 
Team. In this step, the knowledges need to be 
rated for incorporating them as input parameters 
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of the proposed linear programming model. 
Therefore, a multidisciplinary expert team is 
required to rate them. The rating process can be 
carried out by using the “developing a 
curriculum methodology.”  

• Step 2. Execution of the Optimization Model 
for Estimating the Academic Load. In this step, 
the proposed mathematical programming model 
is executed by using the parameters determined 
in the previous step. The model allows allocating 
the minimum number of knowledges to the 
courses, maintaining the defined academic load 
of each course, that is, the established academic 
credits of each course. Thus, excessive, or low 
academic load per term is avoided. 

• Step 3. Comparison of Results with the 
Current Curriculum. The purpose of this 
comparison is to evaluate the quality and 
consistency of the current curriculum, and to 
propose improvements. 

2.1 Model Knowledge-Based 
Curriculum Balance (BKCP) 

For contextualizing the terms used in the proposed 
mathematical model, a schematic representation of a 
curriculum is shown in Figure 1. 

 
Figure 1: Schematic representation of a curriculum. 

In Figure 1, the concepts as term, credit, content 
levels and Taxonomy Bloom’s levels. A term consists 
in a group of courses dictated in the same period. 
Every course is associated with a specific set of 
knowledges. Furthermore, each knowledge is 
characterized by a action verb, quantified according 
to the Bloom’s Taxonomy, that is, from 1 to 6. It is 
important to notice that every knowledge has a 
content, which is also assessed by experts regarding 
to its level of complexity, by using a scale from 1 to 
6. On the other hand, in a curriculum, there are 
integrative courses designed to comprehensively 
address and evaluate the concepts’ learning. These 

courses aim to foster the integration of knowledges 
and skills from diverse content areas.  

Two examples regarding the different 
complexities of a content are described as follows. 
For example, a student could need more time to solve 
Quantum Physics exercises than Uniform Rectilinear 
Motion problems because the first content requires 
more knowledges. The similar situation can be 
observed in the taxonomic level. For example, 
memorizing axioms of probability requires less time 
than applying them. Finally, the academic period also 
influences the time required by a student for learning. 
For example, a first-year student may spend more 
time making a Python coding assignment than a 
senior student. 

The proposed model seeks to assign knowledge 
assigned in each course and period of the program 
curriculum according to a Bloom j taxonomy level, at 
a content level of each knowledge. As mentioned 
previously, the objective of the proposed model is to 
allocate the minimal quantity of knowledges to 
courses, while guaranteeing the academic load 
requirements. In this way, it allows distributing the 
academic load of a curriculum to comply with the 
knowledges declared at graduation profile. 

The linear programming model developed in this 
study, called as knowledge-based curriculum balance 
(BKCP), which is applied in the Step 2, is detailed as 
follows.  

Definition of Parameters: 𝐼 = Number of courses, 𝐽 = Number of Bloom’s taxonomy levels, where 1 = 
remembering, 2= understanding, 3= applying, 4= 
analyzing, evaluating=5 and 6=creating, 𝑀 = Number of terms in the curriculum, 𝐾 = Number of content levels, where 1= Very Easy, 
2=Easy, 3=Moderate, 4=Difficult, 5= Very 
Challenging and 6= Extremely Difficult, 𝐴 = Set of integrative courses, 𝐵௜ = Set of terms from which the course i is excluded, 
i=1,…I, 𝐶𝐴௜ = Number of credits per course i, i = 1, …, I, 
SC = Minimum number of knowledge elements 
required per credit in the curriculum, 𝑝ଵ = Percentage of slack accepted between the 
declared credits and the credits assigned according to 
the model, 𝑉௝,௞,௠ = The number of hours required by the student 
to acquire knowledge based on course I, Bloom's 
taxonomy level j, content level k, and term m, j = 1, 
…, J, k=1, …, K and m=1, …, M, 𝑀𝐷 = The maximum number of knowledges of the 
same course and content within a specific term. 
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Definition of the Decision Variables: 𝑥௜,௝,௞,௠= number of knowledge elements in course i 
with a Bloom’s taxonomy level j, at a content level k, 
in a term m, i=1, …, I, j = 1, …, J, k=1, …, K and 
m=1, …, M. 

Mathematical Formulation: 
 Minimize ෍ ෍ ෍ ෍ 𝑥௜,௝,௠,௞ூ

௜ୀଵ
௃

௝ୀଵ
ெ

௠ୀଵ
௄

௞ୀଵ  (1) 

෍ ෍ ෍ 𝑉௝,௞,௠ 𝑥௜,௝,௠,௞௃
௝ୀଵ

ெ
௠ୀଵ

௄
௞ୀଵ ≤ 𝑝ଵ 𝐶𝐴௜,∀ 𝑖 = 1, … , 𝐼 

(2) 

෍ ෍ ෍ 𝑉௝,௞,௠ 𝑥௜,௝,௠,௞௃
௝ୀଵ

ெ
௠ୀଵ

௄
௞ୀଵ ≥ 𝑝ଶ 𝐶𝐴௜, ∀ 𝑖 = 1, … , 𝐼 

(3) 

෍ ෍ ෍ 𝑥௜,௝భ,௠,௞ூ
௜ୀଵ

ெ
௠ୀଵ

௄
௞ୀଵ − ෍ ෍ ෍ 𝑥௜,௝మ,௠,௞ூ

௜ୀଵ
ெ

௠ୀଵ
௄

௞ୀଵ≤ 𝑀𝐷, ∀𝑗ଵ, 𝑗ଶ 
(4) 

෍ ෍ ෍ 𝑥௜,௝,௠,௞ூ
௜ୀଵ

௃
௝ୀଵ

௄
௞ୀଵ = 0, ∀ 𝑗 = 1, … , 𝐽 (5) 

෍ ෍ ෍ 𝑥௜,௝,௠,௞௃
௝ୀଵ

ெ
௠ୀଵ

௄
௞ୀଵ ≥ 𝑆𝐶 × 𝐶𝐴௜ ,  ∀ 𝑖 = 1, … 𝐼 

(6) 

෍ 𝑥௜,௝,௠,௞௃ିଵ
௝ୀଵ − ෍ 𝑥௜,௝ାଵ,௠,௞௃ିଵ

௝ୀଵ ≤ 0,  ∀ 𝑖 = 1, … 𝐼, 𝑚 = 1, … 𝑀, 𝑘 = 1, … 𝐾 

(7) 

෍ ෍ 𝑥௜,௝,௠,௞௄
௞ୀଵ

௃
௝ୀଵ = 0 , ∀ 𝑖 = 1, … 𝐼, 𝑚 𝜖 𝐵௜ (8) 

෍ ෍ ෍ 𝑥௜,௝,௠,௞భ
ூ

௜ୀଵ
௃

௝ୀଵ
ெ

௠ୀଵ − ෍ ෍ ෍ 𝑥௜,௝,௠,௞మ
ூ

௜ୀଵ
௃

௝ୀଵ
ெ

௠ୀଵ≥ 0, ∀ 𝑘ଵ, 𝑘ଶ = 1, … 𝐾  

(9) 

෍ ෍ 𝑥௜,௝,௠,௞ ≥ 0ூ
௜ୀଵ

௃
௝ୀଵ ,  ∀ 𝑘 = 1, … 𝐾, 𝑚 = 1, … 𝑀 

(10) 

𝑥௜,௝,௠,௞ ∈ ା, ∀ 𝑖, 𝑗, 𝑚, 𝑘. (11) 
 

The objective function seeks to minimize the 
number of knowledge elements in the study plan. 
Constraint (2) ensures that each course has at least p1 
percentage of the academic load defined in the 
program. Constraint (3) ensures that courses cannot 
have more than p1 percentage of the academic load 
defined in the program. Constraint (4) ensures that the 
number of knowledge elements by taxonomy is 
similar at different levels. Constraint (5) ensures that 
the course has knowledge elements according to the 
level where the course is located. Constraint (6) 
ensures that each course has at least SC knowledge 
elements for each of the assigned credits. Constraint 
(7) ensures that courses in the first period cannot have 
more knowledge elements of the highest taxonomy 
level than the sum of the knowledge elements of 
lower levels. Constraint (8) ensures equitable content 
coverage, while Constraint (9) ensures that the 
content is distributed equally across all semesters of 
the program. Constraint (10) guarantees the inclusion 
of all the required contents in each term. Constraint 
(11) establishes the nature of the decision variables. 

It is important to notice that in the BKCP model, 
the parameter V represents the number of hours 
required by a student to acquire knowledges and 
skills. This parameter considers the complexity of the 
contents, the taxonomic levels, and the current 
academic period (term).  

3 CASE STUDY 

Below are the results, evaluating a 4-semester study 
program at Magister a Chilean university. The 
program consists of 98 SCT credits and 12 courses (of 
which the 11th and 12th are integrative courses), and 
the parameters can be found in the annexes of this 
work.  

Each course has a different number of credits, 
integrative courses have a greater academic load, as 
can be seen in Table 1. Regarding the number of 
knowledges, currently the program has 101 
knowledge. By analyzing this knowledge by 
semester, we can see that the curriculum has a large 
amount of high-level knowledge according to   
Bloom's taxonomy, in the first semesters of the 
program. The courses with the highest number of 
credits are in turn those with the lowest number of 
knowledges, which shows an imbalance in the 
academic load. 
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Table 1: Number of knowledges per course of the study 
program. 

Semester Course Credit 
Bloom's Taxonomy 

Total
1 2 3 4 5 6 

1 

1 5 4  5   2  
 

 1   12 
2 5 

 
10  

  
 10 

3 5 2  
 

 1   2 2 7 
4 5 

   
 4  4 8 

Total 1  20 4  7  12   1   7 6 37 

2 

5 5 1  
 

 6   2   1   10 
6 5 

  
10  

 
 10 

7 5 
   

 3 3 6 
8 2 

  
 3  

 
 3 

9 5 1   1   1  3 6 
Total 2   22 2  0  7  15  5  6 35 

3  
10 2  3  1  4  
11 26 1  8 9  18  

Total 3  28 0 1 0 0 11  10  22  
4 12 28  3 4  7  
Total 4  28 0 0 0 0  3  4  7  
Total  98 6  8  19  16  26  26  101  

3.1 Model BKCP Results 

The results reveal a substantial redistribution of 
knowledge, with a notable increase from 101 to 336 
units of knowledge. This increase is primarily 
attributed to the higher levels of Bloom's taxonomy 
(levels 4, 5, and 6). In terms of knowledge allocation 
per course, those with 5 credits are associated with 15 
units of knowledge distributed across various levels  

Table 2: Model BKCP results. 

Semester 
  
Course 

Bloom's Taxonomy 
Total 1 2 3 4 5 6 

1 

1  3  3  9 15 
2   5 1 1 8 15 
3  3 1 2  9 15 
4  1  14   15 

Total 1   0 7 6 20 1 26 60 

2 

5   5 7  3 15 
6  4   1 10 15 
7  1 1 12 1  15 
8   4  11  15 
9 1     5 6 

Total 2   1 5 10 19 13 18 66 

3  
10  24   42 12 78 
11   2 4   6 

Total 3   0 24 2 4 42 12 84 
4 12 55 20 38 13   126 
Total 4   55 20 38 13   126 
Total   56 56 56 56 56 56 336 

When considering the knowledge distribution in 
integrative courses, the model suggests an increase of 
over 70 units of knowledge. This substantial increase 
is due to the considerably higher load of these courses 
compared to other courses in the curriculum. 

3.2 Comparison of Model Results with 
the Current Learning Path 

The current program has only one-third of the 
knowledge items that the mathematical model 
identified as optimal. According to the comparison 
presented in Table 1, the existing pathway 
demonstrates a notably lower quantity of high-level 
cognitive knowledge. As a result, from a curricular 
perspective, questions may arise regarding students' 
achievement of the specified competency levels. 

In analyzing the distribution of knowledge by 
Bloom's Taxonomy and content, we can appreciate 
that the results of the BKCP model diversify the 
distribution of the academic load. This translates to 
none of the 6 identified contents being at the highest 
level of Bloom's Taxonomy (Figure 2 and 3). 

 
Figure 2: Number of knowledges Number of knowledges 
per Bloom's Taxonomy and content of the study program. 

 
Figure 3: Number of knowledges Number of knowledges 
per Bloom's Taxonomy and content of Model BKCP. 

Furthermore, a disparity in the quantity of 
knowledge among courses in the first and second 
semesters is noticeable, despite all these courses 
having the same number of credits. 
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On the other hand, when we analyze courses 10 
and 11, which were defined as integrative knowledge 
courses, the number of knowledge items is low. 

4 CONCLUSIONS 

There is an unequal distribution of academic load 
across different semesters and courses. Notably, 
courses like Course 6 in the second semester and 
Course 10 in the third semester exhibit significantly 
higher loads compared to others. 

Certain courses, such as Course 10 and 12, carry 
notably heavier academic burdens compared to their 
counterparts. This demands special attention to 
ensure students can effectively manage their load. 

Across all semesters and courses, a total of 336 
areas of knowledge is required, providing a 
comprehensive overview of the complete academic 
load within the program. 

Concerning the distribution of academic load 
based on Bloom’s taxonomy, it becomes evident that 
knowledge at the lower taxonomy levels is 
predominantly concentrated in the first two 
semesters, while higher-level knowledge in Bloom’s 
taxonomy is predominantly concentrated in the later 
semesters.  

For future research, it is advisable to consider the 
incorporation of additional variables into the model, 
including soliciting student feedback on their courses. 
In addition, the inclusion of prerequisites for each 
course would be considered, as has carried out in the 
study of Lambert et al., (2006). 
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Bloom’s Taxonomy Content Semester Value 
1 1 1 54,00  
2 1 1 27,00  
3 1 1 18,00  
4 1 1 13,50  
5 1 1 10,80  
6 1 1 9,00  
1 2 1 27,00  
2 2 1 13,50  
3 2 1 9,00  
4 2 1 6,75  
5 2 1 5,40  
6 2 1 4,50  
1 3 1 18,00  
2 3 1 9,00  
3 3 1 6,00  
4 3 1 4,50  
5 3 1 3,60  
6 3 1 3,00  
1 4 1 13,50  
2 4 1 6,75  
3 4 1 4,50  
4 4 1 3,38  
5 4 1 2,70  
6 4 1 2,25  
1 5 1 10,80  
2 5 1 5,40  
3 5 1 3,60  
4 5 1 2,70  
5 5 1 2,16  
6 5 1 1,80  
1 6 1 9,00  
2 6 1 4,50  
3 6 1 3,00  
4 6 1 2,25  
5 6 1 1,80  
6 6 1 1,50  
1 1 2 48,00  
2 1 2 24,00  
3 1 2 16,00  
4 1 2 12,00  
5 1 2 9,60  
6 1 2 8,00  
1 2 2 24,00  
2 2 2 12,00  
3 2 2 8,00  
4 2 2 6,00  
5 2 2 4,80  
6 2 2 4,00  
1 3 2 16,00  
2 3 2 8,00  
3 3 2 5,33  
4 3 2 4,00  
5 3 2 3,20  
6 3 2 2,67  
1 4 2 12,00  
2 4 2 6,00  

Bloom’s Taxonomy Content Semester Value 
3 4 2 4,00  
4 4 2 3,00  
5 4 2 2,40  
6 4 2 2,00  
1 5 2 9,60  
2 5 2 4,80  
3 5 2 3,20  
4 5 2 2,40  
5 5 2 1,92  
6 5 2 1,60  
1 6 2 8,00  
2 6 2 4,00  
3 6 2 2,67  
4 6 2 2,00  
5 6 2 1,60  
6 6 2 1,33  
1 1 3 42,00  
2 1 3 21,00  
3 1 3 14,00  
4 1 3 10,50  
5 1 3 8,40  
6 1 3 7,00  
1 2 3 21,00  
2 2 3 10,50  
3 2 3 7,00  
4 2 3 5,25  
5 2 3 4,20  
6 2 3 3,50  
1 3 3 14,00  
2 3 3 7,00  
3 3 3 4,67  
4 3 3 3,50  
5 3 3 2,80  

3 3 2,33  
1 4 3 10,50  
2 4 3 5,25  
3 4 3 3,50  
4 4 3 2,63  
5 4 3 2,10  
6 4 3 1,75  
1 5 3 8,40  
2 5 3 4,20  
3 5 3 2,80  
4 5 3 2,10  
5 5 3 1,68  
6 5 3 1,40  
1 6 3 7,00  
2 6 3 3,50  
3 6 3 2,33  
4 6 3 1,75  
5 6 3 1,40  
6 6 3 1,17  
1 1 4 36,00  
2 1 4 18,00  
3 1 4 12,00  
4 1 4 9,00  
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Bloom’s Taxonomy Content Semester Value 
5 1 4 7,20  
6 1 4 6,00  
1 2 4 18,00  
2 2 4 9,00  
3 2 4 6,00  
4 2 4 4,50  
5 2 4 3,60  
6 2 4 3,00  
1 3 4 12,00  
2 3 4 6,00  
3 3 4 4,00  
4 3 4 3,00  
5 3 4 2,40  
6 3 4 2,00  
1 4 4 9,00  
2 4 4 4,50  
3 4 4 3,00  
4 4 4 2,25  
5 4 4 1,80  
6 4 4 1,50  
1 5 4 7,20  
2 5 4 3,60  
3 5 4 2,40  
4 5 4 1,80  
5 5 4 1,44  
6 5 4 1,20  
1 6 4 6,00  
2 6 4 3,00  
3 6 4 2,00  
4 6 4 1,50  
5 6 4 1,20  
6 6 4 1,00  
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