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Abstract: Along with surgery and chemotherapy, radiation therapy (RT) is a very effective method to treat cancer. The 
process is safety-critical, involving complex machines, human operators and software. A proactive hazard 
analysis to predict what can go wrong in the process is therefore crucial. Failure Modes and Effect Analysis 
(FMEA) is one of the methods widely used for risk assessment in healthcare. Unfortunately, the available 
resources and FMEA expertise strongly vary across different RT organizations worldwide. This paper 
describes i-SART, an interactive web-application that aims to close the gap by bringing together best practices 
in conducting a sound RT-FMEA. Central is a database that at present contains approximately 420 FMs 
collected from existing risk assessments and cleaned from ambiguities and duplicates using NLP techniques. 
Innovative is that the database is designed to grow, due to both user input and generative AI algorithms. This 
is work in progress. First experiments demonstrated that using machine learning in building i-START is 
beneficial. However, further efforts will be needed to search for better solutions that do not require human 
judgment for validation. We expect to release soon a prototype of i-SART that hopefully will contribute to 
the global implementation and promotion of safe RT practices. 

1 INTRODUCTION 

Cancer is the second leading cause of death 
worldwide. About 40% of world’s population will be 
diagnosed with cancer at some point during their 
lifetimes (NCI, 2017). Radiation therapy (RT) is a 
highly effective cancer management approach 
received by approximately 50% of all patients. One 
can say that RT is a field where healthcare meets 
informatics. The process takes place in complex, 
computer-controlled linear accelerators (linacs), 
where high-energy ionizing radiation is used to 
reduce or eliminate the tumor(s) and at the same time 
sparing the healthy tissue (Fig. 1). The core RT team 
consists of different healthcare professionals, 
including radiation oncologists, medical physicists, 
radiation therapists, dosimetrists and nurses. A 
generic process RT process is illustrated in Fig. 1. 
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After a patient is referred for radiotherapy and 
assessed by a radiation oncologist, the next step 
involves an imaging exam, usually a CT localization 
scan. On these images, the radiation oncologist 
delineates the specific regions that have to be 
irradiated and prescribes the dose in each of these 
regions. After that, the treatment planning and 
treatment delivery teams accurately follow this 
prescription and deliver the needed radiation, by 
using the linac and various types of software 
products. During the whole process, Quality 
Assurance (QA) and patient monitoring activities are 
mandatory.   

A few devastating accidents that occurred in the 
last decades demonstrate that the RT process is 
safety-critical - any mistake, be it caused by 
hardware, software or humans, can have fatal 
consequences (Leveson and Turner, 1993), (Borras et 
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al., 2006). Therefore, RT is nowadays a strongly 
regulated process, with safety standards in place 
(Council of European Union, 2014), (IAEA, 2018). 
According to these standards, an RT process needs to 
be thoroughly assessed for all the risks it poses, 
before obtaining permission to proceed (Huq et al., 
2016). This can be addressed with a proactive risk 
analysis, which aims to anticipate failure modes (FM) 
or hazards, defined as conditions that can lead to 
incidents, or in other words, the various ways a 
system can fail.   

To conduct a safety assessment, the analysts can 
choose from a range of systematic methods, such as 
the traditional Failure Mode and Effects Analysis 
(FMEA), Fault Tree Analysis (FTA) and Hazard and 
Operability Analysis (HAZOP) (Pawlicki et al., 
2011), or the more modern Systems Theoretic 
Accident Model and Process (STAMP) (Pawlicki et 
al., 2016), (Silvis-Cividjian et al., 2020).  All these 
methods work in the same way: first, a team identifies 
the potential hazards in a process, addresses their 
causes and evaluates their effects, and finally 
formulates appropriate mitigation measures. 

 
Figure 1: a) The principle of RT; b) The geometry of RT, 
where one can see that the tumor receives the highest 
radiation dose (in red) and the healthy tissue the lowest (in 
blue). From (Kane, 2014); c) A view from a typical 
treatment facility room, where a radiation therapist needs to 
distribute their attention over many computer screens. 
Credits to A. Sarchosoglou; d) The workflow of a generic 
RT process.  

A general problem is that many RT departments 
lack the time, training, or manpower required to 
perform an in-depth risk assessment. Another problem 
is that knowledge tends to remain compartmentalized 
within departments, with safety analysis results often 
not being shared widely. For example, currently there 
is no centralized database with potential RT-specific 
FMs that could be used as a reference by practitioners 
who intend to conduct a proactive risk analysis. This 
is a missed opportunity in our opinion, because 
despite their diversity, all RT process workflows 
feature in fact sufficient common FMs. 

On the other hand, assistive and data mining 
software applications,  often powered by artificial 
intelligence (AI), are rapidly emerging in all domains 
of our daily life, including healthcare and RT. 
Examples are software systems for electronic patient 
dossiers, prediction of the response to a treatment, 
disease risk assessment, or, specific for the RT 
domain, radiation dose calculation, automatic 
delineation of tumors and organs at risk on CT scan 
images, or defacing of CT images of head-and-neck 
cancer patients for privacy reasons, etc.   

In this paper, we will present an attempt to close 
the gap and improve RT safety worldwide with i-
SART, an online platform that assists practitioners in 
performing an effective proactive FMEA-based 
safety analysis. Central is a novel database that brings 
together a large number of possible RT-specific FMs, 
formulated in English and free of ambiguities or 
duplicates. Innovative is that the database is designed 
in such a way that new FM data can be fed not only 
by safety-aware RT practitioners around the globe, 
but also by state-of-the-art generative AI (GenAI) 
algorithms. To the best of our knowledge, this is the 
first attempt to use GenAI for synthetic FMs. As this 
is work in progress, synthetic FMs were not included 
yet in the i-SART database. Nevertheless, a prototype 
of i-SART will be soon released for all interested RT-
practitioners. 

The remainder of the paper is organized as 
follows. In Section 2 we formulate the problem we try 
to solve with i-SART, in Section 3 we will present the 
design of i-SART, its database and user interface. 
Section 4 will present some preliminary results and 
Section 5 will outline our conclusions and future 
work plans. 

2 PROBLEM STATEMENT 

First used by the US Military at the end of 40’s, 
FMEA is a safety assessment method widely adopted 
in systems engineering in 60’s (Arnzen, 1966). 
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FMEA has been also widely used and recommended 
for healthcare in general and RT in particular, in order 
to prevent medical errors propagating and reaching 
the patient (Ibanez, 2018), (Olch, 2014),  (deRosier, 
2002).  

The general process flow of an FMEA is 
illustrated in Fig. 2. The method is bottom-up, 
meaning that for each component in the process, one 
have to ask the question “How often would this 
component fail, and what will happen if it fails?”. The 
risk of each FM is evaluated using a Risk Priority 
Number (RPN), calculated as the product of severity, 
probability of occurrence, and detectability.  
     The result of an FMEA analysis is a list with all 
possible FMs, ranked by their RPNs, their causes and 
their effects, followed by measures to mitigate the 
most critical ones. In an RT process, some FMs that 
can occur are readily conceivable, such as “A wrong 
patient is invited to the treatment room” or “The linac 
gantry in rotation collides with the treatment couch”. 
However, to conduct an analysis that will predict all 
ways a process can fail is challenging. This task 
demands considerable time, domain knowledge and 
clinical experience. Unfortunately, these resources 
may not always be readily available as the main task 
of RT practitioners is to treat as many patients as 
possible in a race against the clock with fast-evolving 
cancer.  

 
Figure 2: The workflow of an FMEA analysis. 

To gain more insights into the current FMEA 
practices within the RT, we recently conducted a 
literature review that highlighted the diversity 
between departments in the way they conduct their 
FMEA (Sarchosoglou et al., 2022). A challenge we 
encountered was for example the heterogeneity of the 
terminology used to formulate FMs. Nonetheless, on 
a more optimistic note, our findings also revealed 
noteworthy similarities and common FMs that 
support the need for a digital tool to aid departments 
with their proactive risk assessment. Furthermore, the 
level of safety awareness maturity strongly varies 
among different RT organizations. In addition, the 
knowledge about FMs is compartmentalized; if a 
safety analysis was conducted somewhere, its results 
usually stay in the department and are not widely 
disseminated. Moreover, as technology in RT rapidly 
advances, new, previously unidentified risks are 
continuously emerging, presenting challenges to 
professionals tasked with their implementation 
(Ortiz-Lopez, 2009). Finally, education material and 
non-proprietary digital tools to assist safety analysts 
are practically non-existent.  
The cumulative effect of all these challenges is that 
incidents and errors of suboptimal RT treatment still 
occur on daily basis (Ford and Evans, 2019). Hence, 
there is an urgent need for assistance in conducting 
hazard analyses, with the ultimate goal of enhancing 
the safety of RT patients worldwide. This imperative 
served as the driving force behind the initiation of the 
i-SART project, a collaborative effort between the 
computer science department at the Vrije Universiteit 
in The Netherlands and the biomedical sciences 
department at the University of West Attica in 
Greece. The project addressed the following research 
questions: 

RQ1. Can we build an open-source software tool to 
assist RT practitioners in conducting an effective 
FMEA? 

RQ2. Can we use machine learning to augment the 
data obtained by the FMEA studies ? 

3 i-SART, AN INTELLIGENT 
FMEA ASSISTANT 

The main goal of i-SART was to engage RT 
practitioners in a dynamic FMEA learning 
experience. Given the fact that RT professionals may 
or may not have experience in FMEA, we expected 
the usage of this tool to vary accordingly. On the one 
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hand, FMEA beginners can use it as an expert system 
to guide their analysis.  On the other hand, RT experts 
who are proficient in FMEA will be able to learn 
about new FMs reported by other departments, or 
share interesting FMs they have identified in their 
institutions. 

Technically, i-SART is designed as a cloud-
hosted web-application with two kinds of users: 
administrators and RT practitioners (users), each with 
their permissions and rights.  The high-level 
architecture of i-SART is illustrated in Fig. 3. Central 
to i-SART is a novel database that aims to contain as 
many as possible FMs that can occur in various RT 
techniques, such as Intensity Modulated 
Radiotherapy (IMRT), Stereotactic Body Radiation 
Therapy (SBRT), etc. In the database, the FMs are 
also grouped per sub-process and step in the RT sub-
process, such as Treatment planning, Treatment 
delivery, etc. as illustrated in Fig. 1.  

The web-application’s back-end was programmed 
using Python 3.9 and the Django REST 1 framework. 
Care was taken to ensure a secure transfer of 
information between client and server, using the 
JSON Web Token authentication 2 . A relational 
database MySQL technology was used to achieve 
persistent storage of both users’ and FM information. 
The front-end user interface of i-SART was 
developed using a Java-script-based framework 
called Vue.js3.  Its main function is to allow an RT 
user to search in i-SART for FMs that might happen 
in their particular RT process. There are also 
searching, filtering and ordering functions available. 
For example, if a user discovers a new FM in their 
daily practice, they can add it to the i-SART database, 
after a preliminary validation by the system 
administrator, who is an RT expert. The administrator 
can also visualize on a dashboard all the FMs in 
different pie-charts, categorized based on their 
severity or risk (see Fig. 4).  A Vue chart component 
library called Vue-ECharts4 was used to plot these 
charts. Finally, all users have the possibility to 
evaluate the tool and send feedback and suggestions 
to improve it.  

 
 
 
 

 
1  https://www.djangoproject.com/ 
2  https://django-rest-framework-simplejwt.readthedocs.io/ 

en/latest/ 

4 FIRST RESULTS  

4.1 First FM Data  

The first step after the skeleton of the i-SART 
prototype was ready, was to populate the FM 
database. First 584 FMs were extracted from 
scientific papers and un-published safety reports, all 
written in English (see Table 1). All FMs were 
classified into subprocesses and their corresponding 
steps. Interesting is that we found that 32.5% of the 
collected FMs fall into the subprocess Treatment 
planning, 25.5% into the subprocess Treatment 
delivery, and 20.7% into subprocess Imaging.  

Table 1: Sources for the first collection of FMs . 

Reference type #FMs Author/Year/Country 

Research paper 

16 Gilmore et al. (2021), UK  

284 Pobbiati et al. (2019), Italy  

220 Huq et al. (2016), USA  

7 Bright et al. (2022), USA  

26 Gehad et al. (2021), Egypt  

Report from 
individual RT 
department  

10 Not published, UK, 2022 

21 Not-published, UK, 2021 

 
Figure 3: The high-level architecture of i-SART.  

3  https://vuejs.org/ 
4  https://github.com/ecomfe/vue-echarts 
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Figure 4: A screenshot of the administrator’s dashboard 
screen in i-SART.  

4.2 Cleaning Data to Eliminate 
Duplicates 

Very soon however, we discovered that these “raw” 
FMs contained many duplicates and ambiguities, 
inherent to any text formulated in natural language. 
We distinguished two types of duplicates: explicit, 
defined as two exactly same FMs, which were easy to 
detect, and implicit duplicates, where the semantics 
was the same, but the syntax was different, which 
were more difficult to detect. For example, we 
considered the following two FMs as implicit 
duplicates. 

Collision risk due to gantry rotation  

Gantry collision with visual aid device  

We detected implicit duplicates using both manual 
review by our RT expert team, and automated Natural 
Language Processing (NLP) algorithms. For 
example, first, the RT experts extracted a group of 
keywords such as wrong, poor, imperfect, to help to 
identify potential duplicates. Next, for each keyword, 
all kinds of forms (i.e., verb, adjective, noun, adverb, 
singular, plural) were generated using two NLP 
libraries called inflect5 and word-forms6 and finally 
were added to the keyword list. While we were aware 
that words like "poor" and "wrong" may have 
different causes and effects, we considered two FMs 
containing these words as candidates for duplicates. 
We eventually classified them as real duplicates only 
after a thorough validation by our RT experts.  

Next, we inspected FMs that exhibited a tree-like 
structure. For instance, let us take a look at the 

 
5 https://pypi.org/project/inflect/ 

following FMs, belonging to the subprocess Imaging 
and its step “CT image acquisition”: 

Wrong CT scan for treatment planning: wrong choice 
of anatomical volumes 

Wrong CT scan for treatment planning: fiducial 
markers not implanted 

Wrong CT scan for treatment planning (Vero®): 
Optoelectronic markers not completely included into 
the scan 

Wrong CT scan for treatment planning 
(CyberKnife®): scan volume not compliant to the 
specifics requirements of the TPS 

In all these four FMs, the text to the left of the colon 
(:) describes the same unsafe situation (Wrong CT 
scan), whereas the text to the right of the colon is an 
elaboration on the specific causality. We suspected 
that these FMs might be treated as implicit duplicates, 
or at least be clustered in the same FM group.  Again, 
this happened in reality only after a validation by the 
RT experts.  

As a result of all these data-cleaning procedures, 
we were able to eliminate 57 explicit duplicates, 37 
implicit duplicates based on keywords and 130 
implicit duplicates based on the tree-like structure.  
Given the fact that an FM can be flagged as duplicate 
multiple times by different filtering methods, we took 
action to ensure each FM only appears once. As a 
result, the total amount of uniquely duplicated FMs 
was reduced to 166.  Eventually, we ended up with 
584-166 = 418 unique FMs, which we entered into the 
database. We have to note that this is an indication of 
the number of FMs available so far. This work is in 
progress. Our team is working on fine-tuning the 
application and improving the database. A prototype 
of i-SART with approximately this number of FMs 
will be soon available to be used and tested by 
interested RT practitioners. To conclude, we would 
like to emphasize that during the process of 
eliminating the duplicates, the final decisions need to 
be taken by our RT experts’ team, who will ensure 
that no critical FM will get excluded by mistake.    

4.3 Augmenting the Database with 
Synthetic FMs 

Although we were initially satisfied with the way we 
populated the i-SART database, we also investigated 
the possibility of augmenting the database with new, 
synthetic AI-generated FMs. The reason for this was 
the consideration that if the database will be used in 

6 https://pypi.org/project/word-forms/ 
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the future for training machine learning algorithms, a 
few hundred FMs will be definitely not sufficient to 
achieve a high prediction accuracy. For example, 
deep learning models used in NLP use typically 
training datasets containing millions of items (Bailly, 
2022). In this section, we will present a few 
interesting results. We have to note here that these 
were separate experiments and none of these results 
have been yet implemented in i-SART.  

Generative AI (GenAI) is a modern, powerful 
technology that can produce new plausible media 
content from existing content, including  text, images, 
audio, etc trying to mimic human creativity.  It 
originates in the research done at Google in 2017 
(Vaswani, 2017) that first analyzed a language trying 
to discover patterns in it, and then transformed this 
analysis into a prediction on which word or phrase 
should come next.  Many GenAI algorithms exist, 
varying from the probabilistic Naïve Bayes Networks 
and Markov Models, to all kinds of feature-based 
neural-networks variations, such as recursive neural 
networks (RNN), convolutional neural networks 
(CNN), and the GPT-2, -3 and -4 series, where GPT 
stands for “Generative Pre-trained Transformer”. 
Regardless the algorithm, automated text generation 
works basically in the same way. In the beginning, all 
probabilities or adjustable weights in the neural 
network are unknown; we say that the model is not 
trained. However, the model can learn these 
parameters if provided with a huge number of training 
examples. Eventually, when the training is finished, 
and one starts with one word (also called prompt), the 
model will be able to accurately predict the most 
likely next word in a phrase.  

Therefore, GenAI seemed a perfect approach 
suitable for our purpose. We had a rather small 
collection of training text data (the FMs) and we 
wanted an AI algorithm to learn how to create more, 
synthetic FMs. In line with these thoughts, we 
conducted two preliminary experiments that explored 
the performance of different GenAI algorithms.  

The first experiment, in the context of a MSc CS 
graduation project (Haddou, 2022), used two 
different algorithms, Markov Chains and ChatGPT-3 
to learn how to create new FMs based on an existing 
collection. The training database was slightly 
different, containing around 600 FMs collected from 
literature and a few RT departments in Europe. From 
these, eleven FMs that were generated with the 
Markov Chains algorithm were presented for 
validation to an RT expert. Out of these six were 
found useful.  There was at least one artificial FM 
with a high RPN, namely “Incorrect image data set 
associated with patient shifts determined” that was 

interpreted by the RT expert as “patient shifts 
determined by incorrect image data set”. Another FM 
was very interesting because the RT expert had seen 
it a lot of times before, namely ‘Patient head’s 
position is not ideal’. The RT expert noted that this 
FM would never come spontaneously to her mind. 
This FM was clearly and correctly generated by the 
Markov Chain algorithm.  

The GPT-3 algorithm generated eleven FMs that 
were also presented to the same RT expert.  Out of these, 
four of them were found useful. Especially the FM: 
“Patient or nurse falls” and “Patient falls down due 
to mobile phone dropping on the floor” were very 
interesting. We could conclude from here that 
synthetic FMs have the potential to raise awareness 
or reveal unpredicted hazards that might occur during 
any process, not necessarily RT specific. 

The second experiment used a Generative 
Adversarial Network (GAN) algorithm to generate 
artificial FMs (Brophy, 2023). As a training dataset 
we used our most recent FM database. GANs are a 
branch of GenAI algorithms that consist of two 
artificial neural networks, called Generator and 
Discriminator (Goodfellow, 2020). The Generator 
tries to generate new data as similar to original data 
as possible, while the Discriminator’s role is to 
determine if the input belongs to the real dataset or 
not. The optimization process is characterized as a 
game where the generator successfully learns to 
“fool” the discriminator in such a way that the 
discriminator cannot distinguish between the real one 
and the synthetic one.  In particular, our experiment 
used the seqGAN model (Yu, 2017). 

The Bilingual Evaluation Understudy (BLEU) 
score was one of the metrics used to measure the 
quality of the FMs produced by the generative 
algorithm. The basic idea of the BLEU score is 
straightforward: the closer the synthetic FM is to the 
human-generated target sentence, the better it is; a 
score of 1 means a perfect match, and 0 means no 
match. A BLEU-score has different levels (n), 
depending on how many n-grams are being 
compared. For example, if n=1, each word from the 
original and synthetic text will be compared, and if 
n=2, each word pair will be matched.   As training 
data we used all the 584 raw FMs initially collected 
as described in section 4.1, plus 1721 FM taken from 
the headlines of incidents reported in IAEA 
SAFRON, (SAFety in Radiation ONcology), an 
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international platform that collects RT incidents and 
promotes patient safety7.  

The seqGAN model implemented in Pytorch8 was 
able to create additional 640 artificial FMs. From 
these, 230 were identified as useful by an RT expert, 
with 53 duplicates. A handful of them (only 9) were 
considered as really novel with respect to the existing 
FMs in the database (see Table 2). However, so far 
we found that the synthetic FMs lacked syntactic 
accuracy and clarity. Fig. 5 shows the performance of 
the seqGAN algorithm measured using the BLEU 
scores with levels n = 2, 3, 4, 5. The black dot line 
splits the training into two phases:  1) Before the 
divider is the pre-training process where the initial 
generator was trained, and 2) after the divider is the 
adversarial training process where the generator 
continues to update based on the reward from the 
discriminator. We can see that the more grams the 
calculation of a BLEU score is based on, the lower 
the score. In our experiment, the BLEU-2 values were 
the highest and reached the maximum value of 0.6.   

 
Figure 5: The BLEU-[2, 3, 4, 5] scores of the synthetic FM 
generation using the seqGAN model.  

These first results show that using GenAI algorithms 
is an interesting idea to generate synthetic FM. 
However, more efforts will be needed in future to 
increase their accuracy and eliminate the need of 
human judgement.   
Finally, we also identified a few limitations to this 
approach. For example, when deciding if the newly 
generated FM is a valid one, we consulted only one 
RT practitioner, while the assessment of any FM in a 
process needs an RT team. Moreover, we didn’t 
include the steps in which an FM could occur. This 
would bring more clarity to the results. We also 
expect that a larger FM dataset will also improve the 
accuracy. This will happen in time, when i-SART will 
be used by a large community of RT practitioners. 
Moreover, while AI integration is innovative, there’ s 

 
7 https://www.iaea.org/resources/rpop/resources/databases-

and-learning-systems/safron 

a risk of overconfidence in AI-generated FMs without 
adequate human oversight.  

Table 2: Novel, synthetic FMs created using GANs. 

Synthetic Failure mode Correction/Comments 
by RT expert 

incorrect isocentre not 
used

incorrect isocentre used 

patient positioning with 
wrong tattoo

(Nice! I haven’t seen this 
in the 584 FMs!) 

patient was treated with 
wrong side of tattoo

(sounds similar to  
previous one) 

incorrect selection of 
appointments delivery 
recorded on verification 
system

incorrect selection of 
appointments on record 
and verify system 

PTV received higher and 
treated on the patient 

A higher dose was 
prescribed for the PTV* 
and was delivered  to  the 
patient   

incorrect collimator 
angles not imported 

collimator angles not 
imported (Yes, although 
I’m not sure if this is 
technically possible.)

old treatment protocol use of the old treatment 
protocol instead of the 
new one 

wrong field size on portal 
image

this is fully correct   

planned for the wrong 
beam angles for one of 
treatment fields

wrong beam angles for 
one of treatment fields 

*PTV means Planning Target Volume and is the region 
around the tumor that needs to be irradiated   

5 CONCLUSION AND FUTURE 
WORK 

We presented i-SART, a novel web-application that 
aims to assist RT practitioners in conducting a sound 
proactive safety assessment using FMEA. i-SART is 
the result of a successful cooperation between RT and 
computer science researchers. Central is an FM 
database that can grow due to contributions from 
participating users. We also experimented with 
machine learning techniques, such as NLP for 
duplicates elimination and generative AI to create 
synthetic FMs. We conclude that although machine 
learning can be useful in assisting a safety assessment 
process, the results need to be always validated by RT 
experts. Future work includes optimizing the machine 
learning algorithms, including a variety of other 

8 https://github.com/williamSYSU/TextGAN-PyTorch 
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safety analysis methods besides FMEA and 
investigating the possibilities to offer i-SART as an 
open-source collaborative tool for the international 
RT community with the common goal of contributing 
to a safe and fair global healthcare.    
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