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Abstract: Complex network analysis is a thriving research field, with a particular focus on community detection. This
paper addresses the challenge of community detection in multiplex networks, which model multiple types of
relationships to reflect reality. Our approach consists of two key steps. First, we employ multiplex network
flattening techniques to transform it into a one-dimensional network. Second, we introduce a cuckoo search-
based algorithm to maximize the modularity function and identify the best network partitions. Our algorithm
strategically combines the continuous aspects of the standard cuckoo search algorithm with the discrete nature
of community detection, to achieve better results. Experiments on both synthetic and real-world multiplex
networks demonstrate the efficiency and effectiveness of our approach.

1 INTRODUCTION

Real-life networks often involve various types of con-
nections between entities. For instance, human re-
lationships can encompass family ties, business as-
sociations, social interactions, and more. To model
such complex networks, researchers have introduced
the concept of multiplex networks (Boccaletti et al.,
2014). A multiplex network comprises several in-
dividual layers, with each layer representing a dis-
tinct type of connection or relationship (Kivelä et al.,
2014). However, the challenge arises as each layer
in a multiplex network possesses its unique commu-
nity structures, potentially missing the comprehensive
composite community (Pizzuti, 2017). This complex-
ity contrasts with the relatively straightforward com-
munity structure in traditional networks, where sub-
graphs highlight nodes with stronger internal connec-
tions than with the rest of the network (Girvan and
Newman, 2002).

Despite the community detection problem being
one of the main topics of social network analysis for
over a decade, only recently it has been tackled in the
context of complex multidimensional systems (Gong
et al., 2013; Shen and Cheng, 2010). Several re-
cent surveys have suggested categorizing existing ap-
proaches that handle the presence of multiple layers
into three main classes (Huang et al., 2021; Roozba-
hani et al., 2021; Magnani et al., 2021): (1) Flatten-

ing techniques that combine all layers into one, fol-
lowed by the application of traditional network anal-
ysis methods. (Loe and Jensen, 2015); (2) Assem-
bly techniques that detect communities in each layer,
and then find a consensus between them (Harakawa
et al., 2019); and (3) Direct detection techniques
that identify multiplex community structures without
layer simplification (Mucha et al., 2010).

In this paper, we propose a two-phase community
detection approach in multiplex networks. In the first
phase, we draw inspiration from the work of Berlin-
gerio et al. (2011) to apply flattening techniques. In
the second phase, we apply an optimization algorithm
for community detection to the flattened network. To
achieve robust results, we introduce a novel algo-
rithm called Cuckoo Search Algorithm (CSA) (Yang
and Deb, 2009). CSA is a relatively recent nature-
inspired optimization technique known for its effec-
tiveness in global optimization tasks (Yang and Deb,
2010). However, its direct application to community
detection is limited. To overcome this limitation, we
incorporate a random key representation that operates
within a continuous space. This allows for global and
local exploration within the search space, striking a
balance between exploration and exploitation. Addi-
tionally, we introduce a locus-based representation to
accommodate the discrete nature of network commu-
nity detection needs.

The paper is organized as follows: Section 2 de-
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scribes the community detection problem in multiplex
networks. Section 3 outlines the proposed algorithm.
The experimental results on synthetic and real net-
works are presented in Section 4. Finally, Section 5
concludes the paper and explores potential future re-
search directions.

2 MULTIPLEX NETWORKS AND
COMMUNITIES

A multiplex network (Boccaletti et al., 2014) is a se-
ries of graphs G = {Gα;α ∈ {1, ...,d}} where Gα =
(V,Eα) represents the αth layer of G, and Eα repre-
sents the αth type of connection among the same set
of nodes V . G can be represented by an adjacency ma-
trix A[α] = (aα

i j) ∈ R N×N for each layer Gα, where:

aα
i j =

{
1 if(vα

i ,v
α
j ) ∈ Eα

0 else
(1)

The problem of community detection requires
the partitioning of the network into sub-clusters or
communities. This partitioning is denoted as C =
{C1, ...Ck}, where each element Cl l = 1,2, ...,k is a
proper subset of V , and k is the total number of com-
munities. Moreover, for any two communities Ci and
C j ∈C and i ̸= j, Vi ∩Vj = φ.

3 PROPOSED SOLVING
APPROACH

The proposed process of community detection in mul-
tiplex networks using flattening techniques involves
two distinct phases (Figure 2). Initially, the multiplex
network is consolidated into a mono-dimensional net-
work. Subsequently, we apply an optimization mono-
dimensional community detection algorithm.

In what follows, we will delve into a comprehen-
sive exploration of the proposed algorithm, providing
a detailed explanation of its two phases.

3.1 Flattening Techniques

Numerous approaches have been developed for com-
munity detection in multiplex networks, including the
flattening technique, which transforms a multiplex
network Gm into a mono-dimensional network (tra-
ditional network) G while preserving as much infor-
mation as possible. Berlingerio et al. (2011) propose
three flattening techniques as follows:

• The first technique, referred to as f1, assigns a
weight of 1 to the edge Ei j in G if there exists

at least one dimension connecting nodes i and j in
Gm (Figure 2a) (Eq2).

wi j =

{
1 if ∃d : (i, j,d) ∈ E
0 otherwise (2)

• The second technique, denoted as f2, takes into
account the count of dimensions connecting any
pair of nodes, i and j, and uses this count as
the weight for the newly added mono-dimensional
edge (Berlingerio et al., 2011) (Figure 2b) (Eq3).

wi j = |d : (i, j,d) ∈ E| (3)

• The third technique, designated as f3, extends its
consideration to the neighbors of nodes i and j,
rather than solely focusing on the connection be-
tween these nodes. This modification is grounded
in the assumption that common neighbors are
likely to belong to the same community as nodes i
and j (Berlingerio et al., 2011) (Figure 2c)(Eq4).

wi j =
|Ni

⋂
N j|

|Ni
⋃

N j|−2
(4)

Where N. is the set of neighbors in dimension d
for a node.

3.2 Cuckoo Search Optimization

The Cuckoo Search Algorithm (CSA), introduced by
Yang and Deb (2009), is a nature-inspired metaheuris-
tic optimization algorithm. It draws inspiration from
the brood parasitism behavior observed in certain
bird species, notably the cuckoo (Yildiz, 2013). In
the proposed algorithm, called FCSA for flattening-
based CSA, candidate solutions are represented us-
ing a novel structure that combines both the locus
and random key representations, using nests or eggs.
These solutions are created through a combination
of global and local walks. Subsequently, the algo-
rithm assesses their quality using the modularity func-
tion, leaning on the locus representation, and replaces
the existing solutions in the nests with any improved
ones. The random key representation serves as a vital
guide in steering the search and exploration processes,
maintaining the algorithm’s continuous nature. How-
ever, when it comes to replacing solutions within the
nests, the algorithm places a specific emphasis on the
locus representation to enhance community detection
results.

Next, we will delve into a comprehensive explo-
ration of the proposed algorithm.

3.2.1 Solution Representation and Objective
Function

FCSA starts with solution encoding to create a ran-
dom initial population. A candidate solution X is en-
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(a) Multiplex network. (b) Flattened network. (c) Graph partitions.
Figure 1: Proposed flattening-based process of community detection in multiplex networks.

(a) Flattening function f1. (b) Flattening function f2. (c) Flattening function f3.
Figure 2: Multiplex network (1a) flattening techniques.

coded and initialized using two-field structure as il-
lustrated in Figure 3, where:

• The first field is the locus vector (Figure 3b)
that uses the locus-based representation (Pizzuti,
2008). In this representation, Each node u within
an individual is associated with a value v, repre-
senting one of its adjacent nodes. The decoding
step can be accomplished in linear time (Cormen
et al., 2022) (Pizzuti, 2008).

• The second field corresponds to the key vector
(Figure 3c), where each node in the network is
associated with a random value ranging from 0 to
1.

Modularity Q is by far the most used and best-
known quality function for measuring the quality of a
partition of a network (Newman and Girvan, 2004)

For each graph G, with n nodes and m edges, mod-
ularity is computed as follows:

Q =
1

2m ∑
i j
[Ai j −

kik j

2m
]δ(ci,c j) (5)

Where Ai j represents the adjacency matrix, ki(k j)
is the sum of edge weights of node i( j), ci(c j) is the
community of node i( j), m is the sum of all the edge
weights in the graph. δ is the Kronecker delta function
δ(x,y) = 1 if x = y, 0 otherwise.

(a) Graph partitions.

(b) Locus vector.

(c) Key vector.
Figure 3: Example of a solution representation (Boukabene.
et al., 2023).

3.2.2 Global Walk

In the proposed algorithm, the first component,
known as Lévy flights or global walk, is responsible
for generating new solutions near the best solution
found so far (Reda et al., 2022) (Boukabene. et al.,
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2023). To create a new cuckoo, both a new key vec-
tor and a new locus vector are generated. The new
key vector is produced using the Lévy flights’ distri-
bution, as defined in equation 6.

xi
key(t +1) = xi

key(t)+αs(xi
key(t)− xbest

key (t)) (6)

Where xi
key(t), xi

key(t +1) and xbest
key are the current,

the new, and the best key solution, respectively. s is
the step size while α is the scale of the step size.

In Mantegna’s algorithm (Mantegna, 1994), the
step size s can be calculated using two Gaussian dis-
tributions u and v via the transformation of equation
7.

s =
u

|v|
1
β

(7)

With u ∼ N(0,var(u)) et v ∼ N(0,var(v))
And

var(u) = [
Γ(1+β)

βΓ((1+β)/2)
sin(πβ/2)
2(β−1)/2 ]1/β,

var(v) = 1
(8)

Where u and v are random numbers from a
normal distribution, N(Γ) is the normal(gamma)
distribution. var(u(v))is the variance of u(v) is the
gamma distribution, and β = 1.5.

To generate a new locus vector, we calculate the
difference between the old and new value of the
key vector |xi

key(t + 1)− xi
key(t)|. If the difference is

greater than the acceptance rate δ, we reinitialize the
corresponding node with the neighbor of the best so-
lution so far xbest

locus(t). Otherwise, the node’s value re-
mains the same as the previous iteration.

The newly generated solution is evaluated using
the modularity measure (Eq. 5) on the locus vector. If
the new solution exhibits higher modularity than the
current solution, it replaces the current solution within
this nest.

3.2.3 Local Walk

The second component of the proposed algorithm is
the abandon operator which generates solutions far
from the best solution to prevent the search from get-
ting trapped in local optima and to encourage explo-
ration of different regions of the search space. By
introducing diversity into the search process, the al-
gorithm increases the chances of finding the global
optimum or better solutions (Reda et al., 2022).

The purpose of the abandon operator is to discover
foreign eggs from those of the host bird within a prob-
ability Pa. If foreign eggs are found, the host bird will

abandon them and replace them with new eggs. In
FCSA, this process is applied to the key vector, where
foreign solutions are replaced with new solutions gen-
erated using equation 9.

xi
key(t +1) = xi

key(t)+S∗K (9)

With

K =

{
1 i f rand > Pa
0 Otherwise (10)

And

S = (xrand perm(n)
key (t)− xrand perm(n)

key (t)) (11)

Where rand is a random number within [0,1], Pa
is the discovery probability and rand perm(n) is the
permutation function that chooses a random number
in the range [0,n].

After generating a new key vector, the locus vector
needs to be updated by comparing the old and new
value of the key vector |xi

key(t+1)−xi
key(t+1)|. If the

difference exceeds the acceptance rate, a specific node
in the locus vector undergoes re-initialization through
a roulette selection process. The probability of halting
the roulette for this modification is denoted as p and
is determined by the formula:

p =
wi j

∑k∈N(i) wik

Here, wi j represents the weight of the edge Ei j be-
tween nodes i and j and N(i) denotes the set of neigh-
bor nodes connected to node i. If the calculated prob-
ability p exceeds a random number, a replacement is
made, and the current node is substituted with node
i. Otherwise, the node’s value remains the same as
in the previous step. If the newly generated solution
has greater modularity than the current solution, it re-
places the current solution for this nest.

4 EXPERIMENTAL RESULTS
AND DISCUSSION

In this section, we present the results of a series of
computational experiments conducted to assess the
effectiveness of our three proposed flattening-based
CSA algorithms. We denote these proposed algo-
rithms as FCSA1, FCSA2, and FCSA3, each of which
combines our CS algorithm with one of the flattening
functions, namely, f 1 (Eq. 2), f 2 (Eq. 3), and f 3 (Eq.
4), respectively. We implemented our algorithms in
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Phyton and ran experiments on a personal computer
running Windows 10 Enterprise, equipped with 8 GB
of RAM and powered by an Intel(R) Core(TM) i7-
3537u CPU.

All experiments are conducted on both synthetic
and real-world networks. We generated synthetic
networks using the mLFR benchmark (Brodka and
Grecki, 2014), which extends the LFR benchmark
(Lancichinetti et al., 2008), with varied structures and
layers by adjusting both the mixing parameter (µ) and
the degree change chance (Dc). Increasing the values
of µ and Dc made the community detection task more
challenging by blurring the boundaries between com-
munities and increasing the differences in node de-
grees across network layers (Table 1). For real-world
networks, we employed a diverse set of 6 real-world
networks from various domains with diverse sizes and
characteristics (Table 2).

Table 1: The m-LFR128 Parameter Settings.

Parameter Value
Number of nodes 128

Node average degree 8
Number of layers [2, 3, 4]
Mixing parameter [0.1, 0.2, 0.3, 0.4, 0.5]

Degree change chance [0.2, 0.4, 0.6, 0.8]
Maximal community size 32
Minimal community size 8

Node maximal degree 16

Table 2: Real-world networks.

Network Nodes Edges Layers
florentine 16 35 2
Tailorshop 39 552 4
London Transport 369 441 3
CKM Physicians In-
novation

246 1551 3

EU-Air Transporta-
tion

450 3588 37

FAO Trade 183 16048 339
Plasmodium GPI 1203 2521 3
Celegans GPI 3879 8181 6

Given the fact that we have two types of networks,
with and without the ground truth community struc-
ture, we adopt two widely used criteria to evaluate
the accuracy of community detection algorithms. For
the synthetic networks where the ground truth com-
munity structure is known, we used the Normalized
Mutual Information (NMI) (Danon et al., 2005) met-
ric to assess the similarity between the detected com-
munities and the ground truth. For real-world net-
works, where the ground truth community structure
is not available, we evaluated the quality of the de-

tected communities using Qm (Eq. 12) the average
modularity function (Eq. 5) across all layers.

Qm =
∑

d
i=1 Qi

d
(12)

Where d is the number of layers and Qi is the mod-
ularity of layer i.

Furthermore, we conducted a sensitive analysis of
the FCSA algorithm to assess the impact of varying
its five parameters. Due to space constraints, we pro-
vide a summary of these parameters, Population size
n takes a value of 150, Maximum number of iterations
maxGen equal to 1000, Abandonment probability Pa
is 0.5, Step size scale α takes a value of 0.1, Accep-
tance rate δ is 0.1.

The proposed algorithms are compared against
the Louvain algorithm, which will be combined with
three flattening techniques as proposed in (Berlinge-
rio et al., 2011), denoted Louvain1, Louvain2, and
Louvain3. Additionally, we will evaluate our al-
gorithms against five other community detection al-
gorithms in multiplex networks: Cinfomap (Rosvall
and Bergstrom, 2008), CBGLL (Lancichinetti and
Fortunato, 2012), GenLouvin (Mucha et al., 2010),
CLPAm (Barber and Clark, 2009), and MMCD (Ma
et al., 2018)). However, due to the unavailability of
the source code for these algorithms, the comparison
will only take place in real-world networks where re-
sult values are shared.

In what follows, we will first present the per-
formance analysis of our newly proposed flattening-
based CSAs on the synthetic multiplex networks, and
then on the real ones.

4.1 FCSA Performance Analysis on
Synthetic Networks

Figure 4 shows the results of our experiments on the
mLFR benchmarks. It serves as a visual representa-
tion of the performance of various algorithms, includ-
ing FCSA1, FCSA2 and FCSA3, compared with Lou-
vain1, Louvain2 and Louvain3. These algorithms are
evaluated in terms of their effectiveness in identify-
ing real communities, considering different values of
the mixing parameter (µ) and the degree change haz-
ard (Dc). Each column in this figure is devoted to
networks with a different number of layers, while the
rows represent networks with different degree change
chance (Dc). The graphs in the figure illustrate the
results in terms of NMI versus mixing parameter (µ).

When we consider a µ of 0.1, most of the al-
gorithms successfully identify the real communities.
However, as we increase µ to values beyond 0.1, the
algorithms encounter challenges in accurately detect-
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Figure 4: The NMI results for mLFR-128 networks with the increase of network layers (i.e., L = 2, 3, 4) and the change of
network structure (mixing parameter mu and degree change chance Dc).

ing the true communities. Notably, for µ values be-
tween 0.3 and 0.6, the Louvain algorithms consis-
tently outperform the other methods in community
detection. In more complex networks with higher val-
ues of the mixing parameter, we observe that FCSA
algorithms deliver superior results. A similar trend
can be observed regarding the degree change chance
(Dc). At a Dc value of 0.2, the algorithms perform
at their best, after which their performance starts to
decline as Dc increases. Furthermore, the number of

layers in the network significantly influences commu-
nity detection, particularly for µ values between 0.3
and 0.6. It’s evident that the task is more manageable
for networks with fewer layers, and the complexity
increases when we move from two to three or four
layers.

In summary, comparing various flattening tech-
niques proves to be challenging due to performance
variations across diverse network structures and pa-
rameter settings. It’s worth noting that FCSA consis-
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Table 3: Comparison of modularity results on real-world networks.

Network Florentine Tailorshop London
Transport

CKM EU-Air FAO
Trade

Plasmo-
dium

Celegans

FCSA1 0.2781 0.2370 0.7259 0.6973 0.0107 0.0301 0.1563 0.4498
FCSA2 0.3250 0.2377 0.7239 0.7030 0.0131 0.1740 0.1601 0.5320
FCSA3 0.2725 0.2332 0.7325 0.6960 0.0110 0.0215 0.1559 0.4324
Louvain1 0.2780 0.2335 0.7227 0.6938 -0.0399 0.0555 0.1765 0.5480
Louvain2 0.3250 0.2374 0.6529 0.6918 -0.0173 0.1938 0.1766 0.5480
Louvain3 0.2385 0.1696 0.6224 0.6715 -0.0230 0.0449 0 0.4250
Cinfomap - - 0.7456 0.6579 0.0120 0.3113 0.4601 0.4905
CBGLL - - 0.7352 0.6833 0.0479 0.2378 0.4734 0.4732
Gen-
Louvain

0.2936 0.2238 0.7892 0.6944 0.1154 0.3174 0.5183 0.5445

CLPAm - - 0.5352 0.5702 0.1033 0.3124 0.3406 0.3998
MMCD 0.3060 0.2107 0.7932 0.7056 0.1219 0.3174 0.5237 0.5524

tently delivers optimal results for complex networks
characterized by high values of mu and DC.

4.2 FCSA Performance Analysis on
Real Networks

Table 3 presents the experimental modularity results
for real-world networks, with values highlighted in
bold indicating the highest modularity values in their
respective columns based on problem resolution type.
As the modularity values for real-world networks are
gathered from the literature, the use of dashes indi-
cates that the specific result values for the correspond-
ing algorithm and dataset were not available. Our
analysis reveals noteworthy trends, particularly the
superior performance of the second flattening func-
tion, outperforming other techniques in 6 out of 8
real-world networks when both FCSA and Louvain
are employed. Compared to Louvain, FCSA demon-
strates superiority in 4 out of 7 real-world networks
and achieves comparable results for the Florentine
network.

In a comparison between FCSA and direct meth-
ods, FCSA exhibits superiority in multiple instances,
surpassing CLPAm and Cinfomap in 3 out of 6 cases,
CBGLL in 2 out of 6 cases, GenLouvain in 3 out of 8
cases, and MMCD in 2 out of 8 cases. Upon anal-
ysis, it becomes apparent that a significant amount
of information is lost when flattening multiplex net-
works with a high number of layers and high density.
This information loss could explain why direct meth-
ods outperform our proposed algorithm. However, for
small networks with a limited number of layers, such
as Florentine and Tailorshop, our approach yields bet-
ter results due to the minimal loss of information dur-
ing flattening.

5 CONCLUSIONS

In this paper, we introduced FCSA, a novel commu-
nity detection algorithm utilizing three distinct strate-
gies to flatten multiplex networks. The incorporation
of locus and random key representations in FCSA
enhances network encoding and search capabilities.
Experimental results on synthetic networks demon-
strate the algorithm’s superior performance for com-
plex networks. However, when applied to real-world
networks, its effectiveness is more pronounced for
small networks. It is crucial to note that the trans-
formation of the multiplex network into a mono-
dimensional network introduces some information
loss, which stands as a current limitation of our algo-
rithm. Our future objective is to extend the algorithm
to operate directly on the multiplex network, aiming
to overcome this specific limitation.
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