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Abstract: Image inpainting aims to realistically fill missing regions in images, which requires both structural and tex-
tural understanding. Traditionally, methods in the literature have employed Convolutional Neural Networks
(CNN), especially Generative Adversarial Networks (GAN), to restore missing regions in a coherent and re-
liable manner. However, CNNs’ limited receptive fields can sometimes result in unreliable outcomes due to
their inability to capture the broader context of the image. Transformer-based models, on the other hand,
can learn long-range dependencies through self-attention mechanisms. In order to generate more consistent
results, some approaches have further incorporated auxiliary information to guide the model’s understanding
of structural information. In this work, we propose a new method for image inpainting that uses sketch-
pencil information to guide the restoration of structural, as well as textural elements. Unlike previous works
that employ edges, lines, or segmentation maps, we leverage the sketch-pencil domain and the capabilities of
Transformers to learn long-range dependencies to properly match structural and textural information, resulting
in more consistent results. Experimental results show the effectiveness of our approach, demonstrating either
superior or competitive performance when compared to existing methods, especially in scenarios involving
complex images and large missing areas.

1 INTRODUCTION

Image inpainting is a task that aims to fill unknown re-
gions of a damaged image. Over the years, the signifi-
cance of image inpainting has grown considerably, as
it has found applications in various real-world scenar-
ios such as object removal (Zeng et al., 2020), photo
restoration (Wan et al., 2020), and image editing (Yu
et al., 2019). The major challenge of this task lies
in the necessity to properly restore missing regions
with content that is both visually realistic and seman-
tically plausible. To achieve this, the restoration pro-
cess must encompass not only the structural aspects
but also the textural nuances of the missing regions,
ensuring coherence between them in the global con-
text of the image.

Several approaches have been proposed to pur-
sue realism in image inpainting (Ghorai et al., 2019;
Gamini and Kumar, 2019; Liu et al., 2020; Yu et al.,
2018; Nazeri et al., 2019; Dong et al., 2022; Liao
et al., 2021; Suvorov et al., 2022; Yang et al., 2020).
Classical approaches focus on restoring missing re-
gions using diffusion-based and patch-based mod-
els (Ghorai et al., 2019; Gamini and Kumar, 2019).
However, these approaches suffer from restoring

plausible structures and realistic textures by ignoring
the global context of the image.

More recently, approaches based on convolutional
neural networks (CNN) and generative adversarial
networks (GAN) have emerged to address these prob-
lems. However, these approaches still present some
challenges:

(i) limited receptive fields: this limitation raises the
difficulty of achieving the restoration of seman-
tically coherent structures, due to the difficulties
of CNNs to capture the broader context of the
image;

(ii) complex models: handling large masks can lead
to creating models that manage to capture the
global context of the image and produce high-
quality results. However, this model requires the
use of multiple components, which transforms
the model into a more complex one and requires
more parameters/time to learn;

(iii) incomplete structures: CNN-based models can
produce incomplete results, due to a lack of un-
derstanding of structural information, such as
edges or lines, that guide the coherent restora-
tion of the image.

122
Campana, J., Decker, L., Souza, M., Maia, H. and Pedrini, H.
Image Inpainting on the Sketch-Pencil Domain with Vision Transformers.
DOI: 10.5220/0012363500003660
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2024) - Volume 3: VISAPP, pages
122-132
ISBN: 978-989-758-679-8; ISSN: 2184-4321
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



In response, some methods employ various convo-
lution and upsampling operators (Liu et al., 2020) or
even dilated convolutions (Yu et al., 2018) to restore
the global context. Unfortunately, these strategies of-
ten result in the creation of duplicate patterns or blurry
artifacts. Other methods have used strategies such as
wavelets (Yu et al., 2021) or contextual attention (Yu
et al., 2018) to capture global context without the need
for multiple convolution operators. However, these
methods can lead to the generation of artifacts for
complex patterns. Some others have employed aux-
iliary information such as edges (Nazeri et al., 2019),
lines (Dong et al., 2022), segmentation maps (Liao
et al., 2021), gradients (Yang et al., 2020) to guide
the structural or texture restoration of the inpainting
model. Nevertheless, applying semantically incorrect
auxiliary information to image inpainting models can
lead to inconsistent results.

Therefore, these challenges motivate the creation
of a model capable of inferring auxiliary structural
and texture information consistently to guide our in-
painting model to restore the damaged regions in a se-
mantically coherent and visually detailed way. More
specifically, we employ a Transformer-based model to
learn the auxiliary information since the Transformers
have the ability to model long-range dependencies,
compared to the limited receptive fields of CNNs. In
addition, we use new auxiliary information extracted
from the sketch-pencil domain (also known as hand-
drawn sketch or pencil drawing). This domain helps
us to effectively encapsulate the structural informa-
tion, as well as infer better texture content to guide
the inpainting model to obtain coherent and detailed
results.

In our proposed method, a damaged image is con-
verted into the sketch-pencil domain. This feeds a
Transformer Structure Texture Restoration (TSTR)
model based on the architecture proposed by Cam-
pana et al. (2022). Our TSTR model employs the
patch partitioning strategy to capture relevant struc-
tural information such as edges, and texture content
from the context global image to restore the miss-
ing regions. Subsequently, a Efficient Transformer
Inpainting (ETI) model (Campana et al., 2022) is
utilized to predict the structure and texture guided
from the restored sketch-pencil image, generating an
inpainted image from (i) the restored sketch-pencil
image and (ii) the damaged image (Fig 1). In ad-
dition, both models employ the patch-self attention
strategy (Campana et al., 2022) to reduce memory
consumption and computational power compared to
the global-self attention approach (Dosovitskiy et al.,
2021).

The main contribution of this work is an image

Figure 1: Approach Overview. Left: Input image with
missing regions. The missing regions are represented in
the white pixels. Center: Inpainted sketch-pencil image.
The input image is converted into the sketch-pencil domain,
resulting in a damaged sketch-pencil image. Our sketch
model inpaints the damaged sketch-pencil regions to obtain
the inpainted sketch-pencil image. Right: Image inpaint-
ing results of the proposed inpainting model. The inpainted
sketch-pencil image combined with the damaged image is
employed to restore the missing region and obtain the in-
painted image.

inpainting method based on Vision Transformers that
use auxiliary information extracted from the sketch-
pencil domain to guide a semantically reliable and
visually realistic restoration. We conducted experi-
ments on Places2, PSV, and CelebA datasets. Our re-
sults outperformed state-of-the-art competitors in per-
ceptual measures, namely FID and LPIPS, for the two
latter datasets and achieved competitive results on the
former.

This text is organized as follows. Section 2
presents recent image inpainting methods relevant to
this work, including those that utilize auxiliary meth-
ods to guide the image inpainting task and those
based on vision transformers. Section 3 thoroughly
describes our approach using two vision transform-
ers for image inpainting. Section 4 presents our re-
sults, along with information about datasets and train-
ing implementation. We conducted quantitative and
qualitative comparisons with state-of-the-art meth-
ods. Section 5 provides an ablation study of the im-
ages in the sketch-pencil domain. Finally, we present
our conclusions in Section 6.

2 BACKGROUND

Image Inpainting based on Auxiliary Information.
Some works used auxiliary information sources to
deal with difficult situations in image inpainting, such
as large masks and complex elements. This additional
information may include edges, lines, gradients, or
segmentation maps, which guide the inpainting pro-
cess. For example, Nazeri et al. (2019) proposed a
two-step network called EdgeConnect. In the first
step, it fills an edge map computed by the Canny edge
detector. Then, it predicts the inpainted image us-
ing both the restored edge map and the original in-
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put image. In another approach, Dong et al. (2022)
presented a method called ZITS, which consists of
two main components. The first component, Trans-
former Structural Restoration, completes the edges
and lines predicted from the damaged image. The sec-
ond component, Fourier Texture Restoration, uses the
inpainted edges and lines, along with the damaged im-
age, to achieve the final inpainted image. In this work,
we employ auxiliary information extracted from the
sketch-pencil domain, which brings more structural
consistent information as well as texture details com-
pared to other auxiliary information, such as edges.

Image Inpainting based on Transformers. Vision
Transformers have gained great popularity in com-
puter vision due to their exceptional performance
across a range of tasks, including image classifi-
cation (Dosovitskiy et al., 2021) and semantic seg-
mentation (Strudel et al., 2021), among others. In
the context of image inpainting, transformers have
emerged as powerful alternatives to methods based
on Convolutional and Generative Adversarial Net-
works, primarily due to their self-attention mecha-
nism, which enables the capture of global context.
Li et al. (2022) introduced a Transformer-based ap-
proach that employs dynamic masks to effectively
handle large masks. Meanwhile, Cao et al. (2022)
proposed a method based on the Masked Autoen-
coders (MAE) (He et al., 2022), where features ex-
tracted from the MAE model are utilized in the
Attention-based CNN Restoration (ACR) model to
learn the intricacies of reconstructing missing regions.
Campana et al. (2022) proposed a model based on
Transformers that use different patch sizes and a vari-
able number of heads in the self-attention mechanism
to capture the global context of the image efficiently
in training and inference time. Based on the lat-
ter, here we propose the use of Transformers in the
sketch-pencil domain to infer the structural informa-
tion leveraging the global context image. This infor-
mation helps our inpainting model to generate coher-
ent and detailed results.

3 PROPOSED METHOD

This section describes the main steps of our sketch-
pencil image inpainting method using Vision Trans-
formers.

Overview. Figure 2 illustrates the proposed
pipeline. Our Transformer Structure Texture Restora-
tion (TSTR) computes the inpainted sketch-pencil
image Îs = TSTR(Id , Is,M) (Section 3.1) from the

inputs: the damaged image Id , the damaged sketch-
pencil image Is, and a binary mask M. The Efficient
Transformer Inpainting calculates the inpainted
image Iout = ETI(Id , Îs) (Section 3.2) guided from the
inpainted sketch-pencil image and taking as input the
damaged image. TSTR and ETI are, respectively, the
Transformer Structure Texture Restoration and the
Efficient Transformer Inpainting models.

3.1 Transformer Structure Texture
Restoration

By leveraging the inherent capacity of Transformers
to capture global context information (Dosovitskiy
et al., 2021), we adopted the work proposed by Cam-
pana et al. (2022, 2023) as our baseline. The Trans-
former Structure Texture Restoration framework is
employed to guide the restoration of the inpainting
model by improving the structural and texture infor-
mation in the sketch-pencil domain.

A sketch image is an artistic visual effect that re-
sembles a hand-drawn sketch or a pencil drawing (Qiu
et al., 2019). This effect can be achieved through var-
ious techniques in image processing and computer vi-
sion fields. Figure 3 presents the conversion process
giving an input image into an image in the sketch-
pencil domain or a sketch-pencil image1.

How Much Sketch-Pencil Information Is Needed?
We explored the most adequate amount of edges,
lines, and texture information that our sketch-pencil
image must have for better final inpainting. This
amount is controlled by the Gaussian filter parameter
(δ).

Figure 4 shows the impact of δ in the sketch-pencil
image. We chose δ = 21 since it produces darker
and thicker edges and lines, making them suitable for
shading and adding texture to our inpainting model.
This appropriate selection of δ value enabled us to op-
timize the guidance provided by the sketch-pencil do-
main for both structural and textural restoration dur-
ing the image inpainting process.

Proposed Framework. Given the original image
and its inpainting mask M, both with a size of
256×256 pixels, our first step is to compute the
sketch-pencil image and its damaged version Is.

Subsequently, TSTR uses Is and M to compute the
inpainted sketch-pencil image Îs. The TSTR archi-
tecture is composed of an encoder, eight transformer
blocks, and a decoder. A description of these compo-
nents is provided in the following subsections.

1https://github.com/rra94/sketchify/tree/master
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Figure 2: An illustration of our image inpainting method based on vision transformers. Left: TSTR restores the damaged
sketch-pencil image from inputs including the damaged image and mask. Right: ETI computes the inpainted image by using
the restored sketch-pencil image and the damaged image.
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Figure 3: Conversion of an input image into the sketch-
pencil domain using image processing techniques. (1) The
input image is transformed into a gray-scale image. (2) The
gray image is inverted. (3) Gaussian blur is applied to the
inverted image. (4) The smoothed inverted image is inverted
to the original. (5) The sketch-pencil image is computed by
blending the smoothed gray image with the gray image.
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Figure 4: Illustration showing the degree of structural and
texture information that can be recovered by using a larger
or smaller Gaussian filter.

3.1.1 Encoder-Decoder

We used two convolutional layers on both the encoder
and decoder to reduce computations and memory us-
age in transformers. For each layer, we employed
LeakyReLU as the activation function and Instance

Normalization to help stabilize the training process
and learn better representations. Furthermore, con-
volutional layers may be particularly advantageous to
effectively capture structural information, leading to
a better representation and optimization (Raghu et al.,
2021).

3.1.2 Sketch-Pencil Transformer Blocks

We used the patch self-attention mechanism (Cam-
pana et al., 2022), which aims to capture the global
image context while reducing memory costs in both
training and inference. We employ four pairs of trans-
former blocks, and adopt a multi-scale patch parti-
tioning strategy in each one (Figure 5).

In the first and second blocks, we strategically
vary the patch size to strike a balance between captur-
ing the global context and enhancing computational
efficiency during both training and inference. This
approach not only optimizes memory usage but also
contributes to more effective structural and texture in-
formation restoration from the sketch domain, which,
in turn, guides our image inpainting model to obtain
coherent and reliable results.

We define the set of patch sizes denoted as P =
{2,4} for each group of transformer blocks. This
selection ensures that the information belonging to
edges and lines from the sketch domain is adequately
restored, aligning with the requirements of our in-
painting process.

Concerning the number of attention heads in our
model, it is worth noting that a larger number can en-
able simultaneous focus on different regions of the
image, enhancing the model’s capacity to learn intri-
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Figure 5: Patch self-attention mechanism is used to attend
to the missing pixels by capturing the global context of the
image based on the distance between valid pixels of each
patch.

cate patterns. However, this also requires an increase
in the number of parameters, resulting in higher com-
putational costs during both training and inference,
including memory usage.

In our model, we maintain a consistent number of
heads, which is denoted as K = {4,4}. This choice
strikes a balance between model effectiveness and
computational efficiency, ensuring that the proposed
model can effectively learn complex patterns while
remaining manageable in terms of memory and com-
putation.

3.2 Efficient Transformer Inpainting

In our approach, we adopt the same model configura-
tion as presented by Campana et al. (2022). In every
two Inpainting Transformer Blocks, we increase the
patch size, denoted as p = {4,8,16,32}. On the other
hand, we decrease the number of attention heads, de-
noted as k = {8,4,2,1}.

The inpainting process unfolds as follows. Given
a damaged image Id , a mask M, and an inpainted
sketch-pencil image Îs as input, all in a 256×256
pixel resolution, these components are jointly passed
to the Efficient Transformer Inpainting (ETI) model.
ETI is responsible for the restoration of both struc-
tural and textural information using prior information
from the sketch-pencil domain, yielding the inpainted
image denoted as Iout that seamlessly integrates the
visually realistic content.

3.3 Loss Functions

We adopt the same loss functions as those described
by Campana et al. (2022), expressed as

Ltotal = λrecLrec +λstyleLstyle +λpercLperc +λadvLadv
(1)

where λrec = 1, λstyle = 90 for TSTR and 360 for ETI,
λperc = 1.5 for TSTR and 0.9 for ETI, and λadv = 0.01.
We assigned higher weights to the hole, valid, and
perceptual losses for TSTR, aiming to emphasize the
structural aspects. In contrast, we set a higher weight
to the style loss on ETI to emphasize the restoration of
texture details. We define each term in the following
paragraphs.

Reconstruction Loss (Lrec). This loss ensures the
coherence between the inpainted and surrounding
known regions, in addition to approaching the
ground-truth information as closely as possible. We
defined this loss as the sum of the hole loss Lhole and
valid loss Lvalid :

Lhole =
1

NI−M
∥(I−M)⊙ (Iout − Igt)∥1 (2)

Lvalid =
1

NM
∥M⊙ (Iout − Igt)∥1 (3)

Lrec = Lhole +Lvalid (4)
where I the identity matrix, and 1

NI−M
and 1

NM
denote

the number of holes and valid pixels in M.

Perceptual (Lperc) and Style Losses (Lstyle). Per-
ceptual loss (Lperc) encourages the inpainted image
Iout to match the overall visual appearance of the
ground truth image Igt . In turn, Style loss (Lstyle) helps
to preserve and match the texture characteristics of the
ground truth image Igt . We defined the perceptual and
style loss, respectively, as

Lperc = ∑
i

∥φi(Iout)−φi(Igt)∥1
Nφi(Igt )

(5)

and

Lstyle = ∑
i

∥ωi(Iout)−ωi(Igt)∥1
Nωi(Igt )

, (6)

where φi (.), i = 1, . . . ,5 denote the activation
maps ReLu1_1, ReLu2_1, ReLu3_1, ReLu4_1, and
ReLu5_1 from a pre-trained VGG-16 (Simonyan and
Zisserman, 2015). ωi (I) = φi(I)T φi(I) denotes
the Gram matrix formed by four activation maps
from VGG-16: ReLu2_2, ReLu3_3, ReLu4_3, and
ReLu5_2. Nφi(Igt ) denotes the dimension of the fea-
ture map φi(Igt), and Nωi(Igt ) denotes the dimension of
the feature map ωi(Igt), which are used as a normal-
ization factor.
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Adversarial Loss (Ladv). This loss forces the gener-
ated inpainted image Iout to be indistinguishable from
ground truth image Igt . We employ the adversarial
loss proposed by Goodfellow et al. (2014), defined as

LG =−EIout [log(D(Iout))], (7)

LD =−EIgt [log(D(Igt))]−EIout [log(1−D(Iout))],
(8)

Ladv = LG +LD, (9)
where LG and LD represent the loss functions of the
generator and discriminator.

4 EXPERIMENTS

In this section, we present our experimental results.
First, we briefly describe the datasets used and some
implementation details. Then, we report and discuss
both our quantitative and qualitative results.

4.1 Datasets

For our experiments, we utilized three well-
established datasets commonly used in inpainting re-
search: Places2 (Zhou et al., 2017), which encom-
passes images from 365 diverse scene categories;
CelebA (Liu et al., 2015), comprising facial images
of celebrities; and Paris StreetView (PSV) (Doersch
et al., 2015), which includes street views and build-
ings from Paris. In the case of Places2, we em-
ployed the 1.8 million images from the training set
and 36.5 thousand images from the validation set
for training and evaluation, respectively. These sets
were obtained from the Places2 dataset available at
the following link: http://places2.csail.mit.edu/index.
html. For CelebA and PSV datasets, CelebA contains
202.599K and PSV 15.000K total images, so we per-
formed a split into training and validation sets, and
the reported results are based on this single training-
validation split. Specifically, for CelebA, we used ap-
proximately 162.7K images for training and 19.961K
images for validation. For PSV, we employed 14.9K
images for training and 100 images for validation.

We used irregular masks generated online during
training. For validation, we employed the mask set
defined by Liu et al. (2018), which consists of 12K ir-
regular masks equally divided into six intervals based
on hole size. In this study, we employed only three
intervals: 20-30%, 30-40%, and 40-50%.

4.2 Implementation Details

Our method was implemented using PyTorch. We
set the batch size as 16 and resized the input image

to 256×256 for both TSTR and ETI. We trained the
TSTR and ETI using Adam optimizer with β1 = 0.99
and β2 = 0.9.

We trained TSTR for 75, 50, and 40 epochs and
set the initial learning rate to 10−5, 10−4, and 10−4,
respectively, for Places2, CelebA, and PSV. Addition-
ally, we decayed these learning rates by a factor of
10−1 in the last 5, 10, and 10 epochs for Places2,
CelebA, and PSV, respectively. For ETI, we used 80,
75, and 75 epochs, respectively, for Places2, CelebA,
and PSV. The initial learning rate was set to 10−4 and
was decayed in the same manner as during the train-
ing of TSTR.

4.3 Quantitative Comparison

Inpainting Results. To assess our experiments, we
used four well-established metrics: Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index
(SSIM), Frechet Inception Distance (FID) (Heusel
et al., 2017) and Learned Perceptual Image Patch
Similarity (LPIPS) (Zhang et al., 2018). PSNR and
SSIM are simpler measures that assess image similar-
ity according to the ground truth. On the other hand,
FID and LPIPS are particularly important for evaluat-
ing the perceptual realism of the inpainted regions.

For the Places2 dataset, our method showed better
results than our baseline (Campana et al., 2022), pri-
marily due to the incorporation of sketch-pencil do-
main information. However, ZITS achieved the best
results for the perceptual measures, generating high-
quality inpainted images. In addition, LaMa outper-
formed our method by a slight margin in terms of FID
but was outperformed by us in terms of LPIPS.

For CelebA and PSV datasets, our method was
ranked among the best for all metrics, but especially
for perceptual ones, FID and LPIPS. This strong per-
formance emphasizes the efficacy of TSTR in gener-
ating highly realistic inpainted images across various
datasets and scenarios.

Sketch-Pencil Results. Table 2 shows quantitative
results related to the sketch-pencil image inpainting
(TSTR) on the Places2, CelebA, and PSV datasets.
These results highlight the effectiveness of our model
in restoring this information coherently.

To evaluate the quality of the restored edges and
lines, as well as texture, we employ the SSIM and
LPIPS metrics. SSIM assesses the structural similar-
ity between the restored edges and lines, with values
closer to 1 indicating greater similarity. On the other
hand, LPIPS measures the perceptual similarity of the
texture content within the sketch-pencil domain be-
tween the real and restored sketch-pencil image, with
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Table 1: Comparison of our method against state-of-the-art approaches on Places2, CelebA and Paris Street View. The first
and second-best results are marked in bold and underline, respectively.

Datasets Methods
PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓

20-30% 30-40% 40-50% 20-30% 30-40% 40-50% 20-30% 30-40% 40-50% 20-30% 30-40% 40-50%

Places2

Edge-Connect (Nazeri et al., 2019) 24.9439 22.8172 21.1207 0.8661 0.8043 0.7373 2.8315 5.5362 9.9219 0.0841 0.1253 0.1722
CTSDG (Guo et al., 2021) 25.7374 23.4326 21.6453 0.8817 0.8212 0.7552 3.7493 8.6340 16.8813 0.0911 0.1421 0.1992
WaveFill (Yu et al., 2021) 26.1047 23.7590 21.4553 0.8874 0.8274 0.7422 1.3011 3.2134 11.3293 0.0647 0.1028 0.1697
SPL (Zhang et al., 2021) 27.6768 25.2369 23.2940 0.9105 0.8618 0.8064 2.0407 4.5186 8.8990 0.0722 0.1137 0.1616
MADF (Zhu et al., 2021) 26.9094 24.5930 22.7039 0.8938 0.8430 0.7855 1.2426 2.5276 5.1664 0.0897 0.1214 0.1599
Lama (Suvorov et al., 2022) 26.0241 23.9370 22.2043 0.8770 0.8266 0.7701 1.0391 1.6844 2.6772 0.1165 0.1426 0.1747
Patch-Attn (Campana et al., 2022) 26.4769 24.2554 22.3163 0.8923 0.8368 0.7758 1.1783 2.3969 4.6187 0.0650 0.0995 0.1404
ZITS (Dong et al., 2022) 26.3277 24.0073 22.1937 0.8910 0.8359 0.7746 0.9534 1.7659 3.1039 0.0574 0.0889 0.1261
Ours 26.8025 24.4342 22.5445 0.8948 0.8398 0.7779 1.3245 2.7390 5.2472 0.0629 0.0973 0.1386

CelebA

Edge-Connect (Nazeri et al., 2019) 29.1435 26.5719 24.4178 0.9047 0.8662 0.8211 2.4361 3.6728 5.7569 0.0527 0.0755 0.1040
RFR (Li et al., 2020) 29.8901 27.2036 25.0676 0.9280 0.8886 0.8440 1.7047 2.8320 4.4911 0.0431 0.0645 0.0899
CTSDG (Guo et al., 2021) 30.0308 27.1553 24.9321 0.9330 0.8929 0.8473 2.3009 4.3930 7.4196 0.0515 0.0780 0.1090
SPL (Zhang et al., 2021) 32.6547 29.6495 27.2305 0.9539 0.9249 0.8897 1.2756 2.2643 3.5706 0.0421 0.0641 0.0904
MADF (Zhu et al., 2021) 31.8397 28.7059 26.2538 0.9475 0.9135 0.8729 0.7546 1.4399 2.6177 0.0385 0.0563 0.0787
Patch-Attn (Campana et al., 2022) 31.3763 28.7415 26.5915 0.9420 0.9105 0.8740 0.8072 1.4175 2.4025 0.0335 0.0498 0.0697
Ours 32.5599 29.8027 27.4940 0.9482 0.9187 0.8831 0.5761 0.9274 1.5156 0.0310 0.0450 0.0636

PSV Edge-Connect (Nazeri et al., 2019) 28.6885 26.3160 24.7027 0.8973 0.8478 0.7943 39.9341 50.4303 67.2686 0.0677 0.1027 0.1404
RFR (Li et al., 2020) 28.8133 26.6124 24.8159 0.8999 0.8519 0.7963 30.1260 41.7321 53.7483 0.0617 0.0912 0.1280
CTSDG (Guo et al., 2021) 29.4851 27.0640 25.0938 0.9095 0.8599 0.8013 38.7129 56.2173 76.6186 0.0808 0.1052 0.1498
WaveFill (Yu et al., 2021) 30.1529 27.1075 26.0107 0.9178 0.8740 0.8222 28.2945 38.0996 50.4732 0.0482 0.0737 0.1078
SPL (Zhang et al., 2021) 30.9665 28.4221 26.3540 0.9294 0.8897 0.8407 35.8653 47.9462 69.6496 0.0639 0.0977 0.1415
MADF (Zhu et al., 2021) 30.6575 28.0885 26.0039 0.9247 0.8820 0.8303 24.9763 37.4429 51.7381 0.0565 0.0836 0.1198
Patch-Attn (Campana et al., 2022) 29.9215 27.6332 25.7936 0.9145 0.8722 0.8208 24.9832 36.6138 47.9300 0.0544 0.0794 0.1135
Ours 30.5096 28.0505 26.0226 0.9188 0.8762 0.8242 23.6015 32.9914 44.7338 0.0488 0.0730 0.1059

values closer to zero signifying greater structural and
textural similarity between the two images.

Capitalizing on the restored structural and textu-
ral information, our ETI model effectively guides the
structural and textural restoration process for the dam-
aged image, as shown in Table 1. These results col-
lectively affirm the success of our approach in seam-
lessly restoring both structural and textural elements,
presenting a high inpainting performance.

4.4 Qualitative Comparison

Inpainting Results. Figure 6 compares our quali-
tative results with classical and state-of-the-art meth-
ods. For the CelebA and PSV datasets, our method
consistently shows better structural restoration than
its competitors. We highlight highly detailed textures
in eyes, flowers, and architectural elements. Our se-
mantic reconstruction is competitive, especially when
compared to Patch-Attn.

On the other hand, Edge-Connect shows poor
structural and textural outcomes. RFR and MADF
achieved better semantic results but performed poorly
in recovering the structure and texture of large masks
in the face of some building regions. SPL and Wave-
fill outperformed the aforementioned methods at the

semantic level, but SPL produces overly smoothed
content, while Wavefill introduces artifacts in high-
structural regions. Finally, Patch-Attn improves se-
mantic and textural reconstruction but also produces
some artifacts in large high-textural regions, such as
the flowers in the CelebA dataset.

For the Places2 dataset, our method achieved
competitive visual results compared to ZITS, espe-
cially for large regions requiring inpainting in com-
plex images. However, ZITS demonstrated possibly
the best results in both semantic and textural restora-
tion among all the methods. Edge-Connect performed
poorly, particularly in images featuring rich semanti-
cal and textural content. LaMa showed improved re-
sults compared to Edge-Connect and Patch-Attn but
exhibited artifacts in high-texture areas, such as is-
lands and trees.

Sketch-Pencil Results. Figure 7 shows our quali-
tative results for sketch-pencil images. These results
highlight the good performance of our TSTR model
on Places2, CelebA, and PSV datasets.

For PSV and Places2, our model efficiently re-
stored edges and lines coherently. In CelebA, it
predicted facial features properly, including the eyes
and face. Our method inpainted sketch-pencil im-
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Table 2: Quantitative results on Places2, CelebA and PSV for sketch-pencil inpainting.

Methods Datasets SSIM ↓ LPIPS ↓
20-30% 30-40% 40-50% 20-30% 30-40% 40-50%

Sketch-Pencil
Places2 0.8586 0.7943 0.7248 0.0879 0.1262 0.1698
CelebA 0.9089 0.8626 0.8107 0.0526 0.0754 0.1022
PSV 0.8879 0.8303 0.7636 0.0623 0.0913 0.1300
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Figure 6: Comparison of details for inpainting results among the proposed method and literature approaches for Places2,
CelebA, and Paris Street View on the Paris Street View dataset.

ages with rich textures successfully, such as those in
Places2, without introducing artifacts that might con-
fuse the ETI in the subsequent task.

5 ABLATION STUDIES

Sketch-Pencil Domain versus Inpainting Quality.
Table 3 shows the inpainting results with and with-
out sketch-pencil information. Our proposed model
achieved better results for every metric when sketch-
pencil information was incorporated into the inpaint-
ing model.
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Figure 7: Visual examples of inpainted images in the sketch-pencil domain.

Table 3: Ablation study comparing inpainting results with sketch-pencil information (our full proposed model) and without
sketch-pencil information (Inpainting model trained without sketch information). We employed masks with size 40-50% to
evaluate our models.

Sketch-Pencil Places2 CelebA PSV

No Yes No Yes No Yes

PSNR ↑ 22.3563 22.5445 26.3606 27.4940 25.7015 26.0226
SSIM ↑ 0.7750 0.7779 0.8700 0.8831 0.8194 0.8242
FID ↓ 5.2778 5.2472 1.7700 1.5156 47.5351 44.7338

LPIPS ↓ 0.1435 0.1386 0.0705 0.0636 0.1160 0.1059

Loss Function for Image Inpainting. Table 4
presents the impact of multiple loss function combi-
nations, namely the reconstruction loss (Lrec), style
loss (Lstyle), perceptual loss (Lperc) and adversarial
loss (Ladv) for sketch-pencil prediction, using the
CelebA dataset. We verified that we achieved the
best results when using all three losses, which sug-
gests that this combination contributes to the overall
quality and realism of the inpainted images.

Sketch-Pencil Domain versus Edges from Edge-
Connect. We conducted an analysis to compare the
impact of using the Canny edge detector (Nazeri et al.,
2019) versus sketch-pencil information. We experi-
mented with this comparison on the CelebA dataset.
We report these results in Table 5. Using sketch-
pencil information improved the inpainting results,
especially due to the enhanced structural informa-
tion restoration and more detailed texture compared
to Canny edge detector.

6 CONCLUSIONS

We propose a method based on Vision Transformers,
which establishes a clear consistency between struc-
tural and texture information through the utilization of
the sketch-pencil domain. Our approach is based on
the use of a model that previously restores the seman-
tic structural information using edges and lines ex-
tracted from the sketch-pencil domain. Furthermore,
the proposed model also serves as a base to guide the
restoration of the texture of the damaged images using
the restored texture in the sketch-pencil domain.

Quantitative assessments based on experimental
results demonstrate the superiority of our approach.
We have achieved remarkable results on benchmark
datasets such as CelebA and Paris StreetView, and our
performance remains highly competitive on Places2
dataset. Moreover, qualitative evaluations reveal the
compelling ability of our method to consistently and
reliably restore both structural and textural elements
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Table 4: Ablation study comparing loss function for sketch-pencil inpainting on CelebA.

Losses FID ↓ LPIPS ↓
20-30% 30-40% 40-50% 20-30% 30-40% 40-50%

Lrec + Lperc + Ladv 0.8326 1.6155 3.3576 0.0348 0.0521 0.0751
Lrec + Lstyle + Ladv 0.7143 1.1646 1.7654 0.0339 0.0489 0.0686
Lrec + Lstyle + Lperc + Ladv 0.5761 0.9274 1.5156 0.0310 0.0450 0.0636

Table 5: Ablation study comparing sketch-pencil with edges on CelebA.

Losses
PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓

20-30% 30-40% 40-50% 20-30% 30-40% 40-50% 20-30% 30-40% 40-50% 20-30% 30-40% 40-50%

Canny 31.2759 28.5871 26.4022 0.9415 0.9091 0.8713 0.6910 1.1469 1.8917 0.0335 0.0500 0.0703
Sketch-pencil 32.5599 29.8027 27.4940 0.9464 0.9187 0.8793 0.6185 1.0203 1.6966 0.0331 0.0485 0.0685

within the missing regions, culminating in visually
pleasing inpainted images.
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