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Abstract: In this study, we explore the explainability of neural networks in agriculture and forestry, specifically in fer-
tilizer treatment classification and wood identification. The opaque nature of these models, often considered
’black boxes’, is addressed through an extensive evaluation of state-of-the-art Attribution Maps (AMs), also
known as class activation maps (CAMs) or saliency maps. Our comprehensive qualitative and quantitative
analysis of these AMs uncovers critical practical limitations. Findings reveal that AMs frequently fail to
consistently highlight crucial features and often misalign with the features considered important by domain
experts. These discrepancies raise substantial questions about the utility of AMs in understanding the decision-
making process of neural networks. Our study provides critical insights into the trustworthiness and practi-
cality of AMs within the agriculture and forestry sectors, thus facilitating a better understanding of neural
networks in these application areas.

1 INTRODUCTION

The application of neural networks in agriculture and
forestry has proven beneficial in various tasks such
as wood identification (Nieradzik et al., 2023), plant
phenotyping, yield prediction, and disease detection.
However, a significant roadblock to wider adoption is
the inherently opaque nature of these models, which
tends to dampen user confidence due to their limited
explainability.

Wood identification serves as a prime example of
this challenge. It remains unclear whether the de-
cisions of neural networks focus on the same set of
features as a human expert would. Humans use 163
structural features defined by the International Asso-
ciation of Wood Anatomists (Wheeler et al., 1989) for
microscopic descriptions of approximately 8,700 tim-
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bers, as collected in various databases (Richter and
Dallwitz, ards; Wheeler, ards; Koch and Koch, 2022).

To demystify these black-box models, Attribution
Methods have emerged as standard tools for visualiz-
ing the decision processes in neural networks (Zhang
et al., 2021b). These methods, particularly relevant
in Computer Vision tasks with image inputs, com-
pute Attribution Maps (AMs), also known as Saliency
Maps, for individual images based on trained mod-
els. AMs aim to provide human-interpretable visu-
alizations that reveal the weighted impact of image
regions on model predictions, enabling intuitive ex-
planations of the complex internal mappings. Despite
their potential, the practical adoption of AMs in vari-
ous domains remains limited.

Addressing this gap, our paper conducts a thor-
ough evaluation of multiple state-of-the-art attribution
maps using two real-world datasets from the agricul-
ture and forestry domain. We have trained state-of-
the-art Convolutional Neural Networks (CNNs) on a
wood identification dataset and a dataset concerning
fertilizer treatments for nutrient deficiencies in winter
wheat and winter rye. The key contributions of this
paper include:
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Figure 1: Visualization of different attribution maps (AM)
on the same input image of a wood identification dataset.
All the AMs focus on different regions that are also different
from the expert annotation. Notably, SmoothGradCAM++
(Omeiza et al., 2019) appears to exclusively show noise.

• A comprehensive analysis of state-of-the-art attri-
bution maps for wood identification and fertilizer
treatment, both qualitatively and quantitatively.

• We identify significant variance among attribution
methods, leading to inconsistent region highlight-
ing and excessive noise in certain methods.

• Our results raise concerns regarding attribution
maps that display excessive feature sharing across
distinct classes, suggesting potential issues.

• In collaboration with wood anatomists, key fea-
tures were annotated in the wood identification
dataset. These annotations were used to measure
the alignment with respect to the attribution maps.
Notably, none of the maps showed high alignment
with expert annotations.

By investigating these aspects, this study provides
valuable insights into the effectiveness and reliabil-
ity of attribution maps for wood species identification
and fertilizer treatment classification, benefiting do-
main experts in agriculture and forestry.

2 RELATED WORK

2.1 Attribution Methods

The field of attribution methods has witnessed sig-
nificant growth in recent years, with numerous tech-
niques being developed and widely used in the con-
text of neural networks. Full back-propagation meth-

ods, such as Gradients (Simonyan et al., 2014), have
played a fundamental role in the early approaches
to attribution maps for classification models. These
methods compute gradients of a learned neural net-
work with respect to a given input, providing insights
into the importance of different image regions. De-
ConvNet (Zeiler and Fergus, 2013) and Guided back-
propagation (Springenberg et al., 2015) were intro-
duced as extensions to Gradients, modifying the gra-
dients to allow the backward flow of negative gradi-
ents. Another variant, SmoothGrad (Smilkov et al.,
2017), enhances the gradient computation by adding
Gaussian noise to the input and averaging the results.

Path backpropagation methods take a different ap-
proach by parameterizing a path from a baseline im-
age to the input image and computing derivatives
along this path. Integrated Gradients (Sundararajan
et al., 2017), for example, uses a straight line path be-
tween a black (all-zero) image and the test input, and
integrates the partial derivatives of the neural network
along this path. Variations of Integrated Gradients,
such as Blur Integrated Gradients (Xu et al., 2020)
and Guided Integrated Gradients (Kapishnikov et al.,
2021), have been proposed to improve the path initial-
ization and computation.

Class Activation Maps (CAMs) offer an alterna-
tive to computing gradients with respect to the input.
CAM methods stop the back-propagation of gradients
at a chosen layer of the network. GradCAM (Sel-
varaju et al., 2019), a popular CAM approach, com-
putes an attribution map by summing weighted acti-
vations at the chosen layer. GradCAM++ (Chattopad-
hay et al., 2018) further enhances the original Grad-
CAM by incorporating different gradient weighting
schemes. Smooth GradCAM++(Omeiza et al., 2019)
adds Gaussian noise to the input, similar to Smooth-
Grad, to improve the visualization. Other CAM vari-
ants, such as LayerCAM (Jiang et al., 2021) and
XGradCAM (Fu et al., 2020), introduce different
weighting schemes for the computed gradients.

In contrast to gradient-based methods, ScoreCAM
(Wang et al., 2020b) does not rely on gradient compu-
tations for attribution. Instead, it measures the impor-
tance of channels in an intermediate layer by observ-
ing the change in confidence when removing parts of
the activation values.

Beyond these well-known approaches, numer-
ous other attribution map methods have been pro-
posed, building upon and combining existing tech-
niques (Ancona et al., 2017). These methods in-
clude SS-CAM (Wang et al., 2020a), IS-CAM (Naidu
et al., 2020), Ablation-CAM (Desai and Ramaswamy,
2020), FD-CAM (Li et al., 2022), Group-CAM
(Zhang et al., 2021a), Poly-CAM (Englebert et al.,
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2022), Zoom-CAM (Shi et al., 2020), and Eigen-
CAM (Muhammad and Yeasin, 2020), each introduc-
ing unique modifications and improvements to the at-
tribution map generation process.

Additionally, black-box methods offer an alterna-
tive approach by masking the input in various ways.
For instance, RISE (Petsiuk et al., 2018a) and its pre-
cursor, introduced in earlier works (Zeiler and Fergus,
2013), randomly occlude the input image and record
the resulting change in class probabilities. Several
other black-box methods have also been proposed in
the literature (Fong et al., 2019; Fong and Vedaldi,
2017; Petsiuk et al., 2018b; Ribeiro et al., 2016).

Overall, the field of attribution methods offers
a diverse range of techniques, each with its own
strengths and limitations.

2.2 Evaluation of Attribution Methods

In this work, we aim to evaluate and compare various
state-of-the-art attribution map methods in the context
of wood species identification and fertilizer treatment
classification, specifically focusing on their applica-
bility and usefulness in real-world domains such as
agriculture and forestry.

A similar study conducted by (Saporta et al.,
2022) in the medical field evaluated attribution maps
for interpreting chest x-rays. However, their analysis
focused mainly on comparing attribution maps with
human annotations. In contrast, we extend our study
to scenarios where annotations are not available. It is
important to note that annotations are not necessarily
the basis for the network’s decision. As a surrogate,
we measure the consistency between different attribu-
tion maps, use established metrics from the existing
literature, and perform a thorough qualitative analy-
sis.

In another relevant research endeavor in the area
of plant phenotyping (Toda and Okura, 2019), various
methods for visualizing network behavior were con-
sidered. While qualitative analysis is certainly valu-
able, our approach places a greater emphasis on the
quantitative aspects.

Finally, we argue for the use of modern CNN
architectures. The aforementioned works relied on
models such as InceptionV3 (Szegedy et al., 2015),
DenseNet121 (Huang et al., 2018), or ResNet152 (He
et al., 2015), which are considered somewhat out-
dated in light of the rapidly evolving field of Deep
Learning. These models produce suboptimal results
on both standard and real-world datasets (Fang et al.,
2023). We propose to use more modern architectures
that potentially produce better class activation maps
(Liu et al., 2022) (as seen in (Tan and Le, 2019)).

3 METHOD

3.1 Consistency

The output of attribution methods are matrices, nor-
malized within the range of [0,1]n×m, where n and m
represent the image’s dimensions. Given that these
matrices do not typically exhibit high structural com-
plexity necessitating adjustments for shifts or color
adaptations, we opt for straightforward metrics per-
forming pixel-wise comparisons between the saliency
maps. A low similarity index among saliency maps
indicates reduced consistency, as different regions are
deemed important by different maps. Moreover, when
all the saliency maps roughly agree with each other, it
means that the choice of the saliency map is not that
important. However, in situations where all saliency
maps disagree, one may prove superior to the rest.

We introduce two metrics to measure consistency.
The first metric is the Pearson correlation coefficient,
defined as:

rxy =
∑

n
i=1(xi − x̄)(yi − ȳ)√

∑
n
i=1(xi − x̄)2

√
∑

n
i=1(yi − ȳ)2

,

where xi is the ith pixel in the AM and x̄ is the sam-
ple mean. Similarly, yi is the ith pixel of the second
AM. The output range of rxy is [−1,1], with 1 indicat-
ing the highest consistency and ≤ 0 a low consistency.
rxy = 0 is intuitively random noise and rxy = −1 an
”inverted” saliency map.

The second metric is the Jensen–Shannon diver-
gence (JSD). We assume that each pixel is the result of
a binary regression model, which classified the pixel
as either important or unimportant (Bernoulli distri-
bution). Then we can compare the distribution X of
this pixel against a second distribution Y to see how
similar the two distributions are.

First, let us define the Kullback–Leibler diver-
gence between all the pixels of two saliency maps.

D(X ∥Y )=
1
n

n

∑
i=1

xi log2

(
xi

yi

)
+(1−xi) log2

(
1− xi

1− yi

)
The formula D(X ∥ Y ), while informative, lacks

symmetry and does not have an upper bound of 1,
making the results less interpretable. To yield more
understandable numbers, we opt for JSD instead. This
is a smoothed and symmetric variant of the Kullback-
Leibler divergence, thereby offering an enhanced in-
terpretability. It is defined as

0 ≤ JSD(X ∥ Y ) =
1
2

D(X ∥ M)+
1
2

D(Y ∥ M)≤ 1 ,

where M = 1
2 (X +Y ).
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(a) Insertion with blurring.
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(b) Insertion without blurring.

Figure 2: The ”Insertion” metric evaluated on an example image illustrates the impact of the parameter ”blurring” in com-
parison to ”no blurring”. In (a), the starting image is a completely blurred image. In (b), the starting image is a black image.
We input this modified image into the neural network to obtain a probability (see y-axis). First, the most important pixels
of the original image are inserted. Then gradually less important pixels are inserted. At each step, the network predicts the
probability of this modified image. The process ends with the complete original image and the original probability. The best
saliency map in the plots is determined by computing the area under the curve (AUC).

The results of both metrics can be visualized in a
confusion matrix. We take the average of the upper
triangular elements of the confusion matrix to obtain
a single value. Then the consistency for Pearson’s r is
defined as

ConsistencyCorr =
2

m(m−1)

m−1

∑
i=1

m

∑
j=i+1

rxix j

We define ConsistencyJSD in the same way.

3.2 Qualitative and Quantitative
Evaluation of Saliency Maps

In situations where saliency maps demonstrate sub-
stantial inconsistency among themselves, the selec-
tion of the most suitable saliency map for the specific
task becomes critical. Numerous metrics have been
proposed to assess the quality of these saliency maps
(Chattopadhay et al., 2018; Poppi et al., 2021; Fong
and Vedaldi, 2017; Petsiuk et al., 2018b; Gomez et al.,
2022; Zhang et al., 2016; Raatikainen and Rahtu,
2022), with the intent to discern which one is pre-
dicted to yield the best performance for a particular
dataset, or even across datasets.

Among the state-of-the-art metrics, two promi-
nent ones are ”Insertion” and ”Deletion”. These met-
rics will be utilized in our comparison analysis to
evaluate the saliency maps’ performance and deter-
mine their effectiveness.

Deletion and Insertion were proposed by (Fong
and Vedaldi, 2017) and (Petsiuk et al., 2018b). It is an
iterative process of pixel deletion or insertion within
the test image. The pixels are ordered by the impor-
tance given by the saliency map. For instance, the

deletion process initiates with the input test image,
and then sequentially masks the subsequent impor-
tant regions with a value of 0. Each modified image
is given to the neural network to produce a probabil-
ity. The first image is the original image and the last
image is a black image. This process can be visual-
ized by plotting the count of inserted or deleted pixels
(x-axis) against the probability of the target class (y-
axis). To summarize this plot into a scalar value, the
area under the curve (AUC) is calculated.

While these evaluation methods are sensible, they
have certain intrinsic limitations. They are not com-
prehensive measures, as they overlook critical fac-
tors such as the noise level in the saliency map and
the map’s degree of user-informativeness. Moreover,
these methods are influenced by their respective pa-
rameters. Frequently, they work based on conceal-
ing parts of the image that the neural network deems
significant. The process of obscuring these areas,
whether through blurring or masking, introduces an-
other parameter. The size of the blurring/masking ker-
nel or the number of pixels chosen for image modifi-
cation at each iteration can have a significant impact
on the metric’s result. An example can be seen in
fig. 2. Therefore, it is not enough to look only at the
metrics to prove that a particular saliency map reflects
the correct decision process of a neural network.

Thus, visual comparison of the results with ex-
pert annotations remains indispensable for verifi-
cation. Instead of comparing the attribution map
purely with previously mentioned metrics, we also
propose a comparison with manual feature annota-
tions. It is crucial to note that convolutional neu-
ral networks (CNNs) might select different image
features for decision-making than a human expert
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Figure 3: This plot illustrates the degree of similarity among all attribution maps. The matrices were computed by averaging
the individual metric results across all attribution maps in the wood identification dataset. Both similarity measures indicate a
weak agreement among the different maps.

would. Nonetheless, utilizing human annotations of-
fers a form of ”ground truth” that, while it may not
represent ”the” definitive decision-making process of
the CNN, at least provides ”a” valid process for this
classification problem.

Finally, it is also worthwhile examining the same
saliency map of different target classes. From the
perspective of a human expert, the highlighting of a
region in the saliency map signifies the presence of
a particular feature. Therefore, if a region appears
in the saliency maps of multiple classes, it suggests
that those classes share a common feature. However,
for a neural network, the decision-making process is
not solely based on the existence or absence of spe-
cific regions in the saliency map. Even a slight vari-
ation in the range of values at certain pixels can lead
to a change in the assigned class label. Therefore,
while observing features in the saliency map indi-
cates a more interpretable representation, it does not
guarantee an accurate mapping of the actual decision-
making process. The advantage of uniquely high-
lighted regions across multiple classes is that such a
saliency map method would resemble a more human-
like reasoning process.

4 EVALUATION

We perform our qualitative and quantitative analysis
on two datasets: (1) Wood identification (Nieradzik
et al., 2023): the dataset consists of high-resolution
microscopy images for hardwood fiber material. Nine
distinct wood species have to be distinguished. (2)
DND-Diko-WWWR (Yi, 2023): This dataset, ob-
tained from unmanned aerial vehicle (UAV) RGB im-

agery, provides image-level labels for the classifica-
tion of nutrient deficiencies in winter wheat and win-
ter rye. Classifiers are tasked with distinguishing be-
tween seven types of fertilizer treatments.

We trained CNNs for each of these datasets. The
ConvNeXt (Liu et al., 2022) architecture was selected
due to its good accuracy on real-world datasets as
demonstrated in the research by (Fang et al., 2023).
The same paper also shows that many architectures
that boast improved accuracy on ImageNet often fail
to replicate this performance on real-world datasets.
Further substantiating this choice, the study in (Nier-
adzik et al., 2023) demonstrated ConvNeXt’s supe-
rior accuracy in wood species identification, surpass-
ing other tested architectures, and performing on par
with human experts.

In terms of the fertilizer treatment dataset, we at-
tained approximately 75% accuracy, representing a
robust baseline for our experiments. This ensures that
our models are capable at identifying key features,
critical for evaluating the attribution maps, across
both datasets. Moreover, by submitting our predic-
tions with a slightly stronger model to the fertilizer
dataset’s competition, we achieved an accuracy >
89%, further validating the effectiveness of our mod-
els.

4.1 Consistency and Expert Annotation

4.1.1 Wood Identification Dataset

Expert wood anatomists annotated key features within
a carefully curated subset of 270 samples from this
dataset. These samples were selected for their dis-
tinct and easily discernible features. We suspect that

Challenging the Black Box: A Comprehensive Evaluation of Attribution Maps of CNN Applications in Agriculture and Forestry

487



Gradients SmoothGrad GradCAM

ScoreCAM SmoothGradCAM++ Original image

Figure 4: Visualization of different attribution maps for the fertilizer dataset of an individual image. Similar to the maps for
the wood identification dataset, they exhibit inconsistency in identifying what they consider important.

the neural network may also base its decision on these
features. All experiments were conducted using these
270 samples. Empirical tests confirmed that increases
in sample size did not affect the outcomes, thus estab-
lishing the statistical significance of the results.

For our initial experiment, we examine the con-
sistency among various attribution maps. As demon-
strated in fig. 3, there is only a marginal correla-
tion between different saliency maps. We obtained a
ConsistencyCorr of 0.17 and a ConsistencyJSD of 0.05.
Both measures similarly rank the consistency across
most methods.

Notably, only GradCAM and ScoreCAM demon-
strate a reasonably high level of agreement. This can
be attributed to the fact that both methods utilize the
pre-logit output feature matrix, whereas other meth-
ods depend on backpropagation from the output to the
input image. However, even in this case, the correla-
tion coefficient shows an agreement barely over 40%.
The visual display of attribution maps for an individ-
ual vessel, as depicted in fig. 1 on the front page, fur-
ther underscores this disparity.

This finding is surprising given that the task of
wood species identification is well-defined in terms
of expert consensus on important features. Hence, the
saliency maps’ behavior diverges from that of human
experts.

Upon considering the expert annotation, we ob-
serve that the Gradients method shows the highest
similarity with Pearson’s correlation coefficient, al-
beit the agreement falls short of 30%. Another less
apparent issue is the high noise level associated with
this method, which complicates the interpretation of

results. Conversely, GradCAM and ScoreCAM of-
fer more comprehensible visual explanations, as they
are not influenced by backpropagation through mul-
tiple distinct layers. In terms of JSD, GradCAM is
deemed the most similar to expert annotation, which
aligns more closely with expectations from visual in-
spection.

4.1.2 Fertilizer Treatment Dataset

Similar to the Wood identification dataset, we use
around 300 images for performing tests and comput-
ing the metrics.

Despite the fertilizer dataset comprising entirely
different images, it still exhibits similar inconsistency
patterns as witnessed in the previous dataset. With
our defined metrics, we measured a ConsistencyCorr
of 0.1 and a ConsistencyJSD of 0.06. The correlation
coefficient is even lower for this dataset. Both con-
fusion matrices have similar values as the one for the
wood identification dataset.

As demonstrated visually in fig. 4, all the attribu-
tion maps identify varying regions as significant. In
parallel with our earlier observations, we note a sub-
stantial amount of noise within the method Gradients.

4.2 Metrics and Feature Sharing

As seen in the previous section, attribution maps lack
consistency, underscoring the importance of selecting
the most suitable map for the task at hand.

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

488



Euca Popu

(a) GradCAM.

Euca Popu

(b) SmoothGrad.

Figure 5: Attribution maps are intended to visualize the most crucial regions influencing the decision for a specific class in a
given model. However, this image comparison reveals that both saliency maps highlight vastly different regions for each class,
even though we aim to visualize the same model and classes. SmoothGrad tends to highlight the same regions regardless of
the correct class (Euca), whereas GradCAM emphasizes distinct regions. This lack of consistency raises uncertainty about
which region the model truly deems most important, making it challenging to identify easily interpretable features for humans.

4.2.1 Wood Identification Dataset

We evaluated the maps using two metrics – ”Inser-
tion” and ”Deletion”, as seen in table 1.

Table 1: Evaluation of the attribution methods using ”Dele-
tion” and ”Insertion”. The metrics do not provide a conclu-
sive answer on which saliency map is best.

Attribution Method Deletion ↓ Insertion ↑
GradCAM 0.4622 0.9899
ScoreCAM 0.5302 0.9783
SmoothGradCAM++ 0.5885 0.9372

Gradients 0.2183 0.9099
SmoothGrad 0.2741 0.9552

Expert annotation 0.6868 0.8908

Interestingly, the metrics suggest differing ”best”
attribution methods: ”Deletion” points to Gradients
as superior, while ”Insertion” favors GradCAM. Fur-
thermore, neither metric rates the expert annotation
highly. This divergence might indicate that the neural
network is learning different features from those that
human experts would typically recognize.

However, an alternative explanation could be that
these metrics themselves may not be fully suitable
as evaluation measures. Ideally, we would employ a
”metric of a metric” that evaluates the effectiveness of
the evaluation metrics themselves. In absence of such
a measure, we find ourselves in a situation where ”In-
sertion” and ”Deletion” suggest different ”best” attri-
bution maps. Hence, visual inspection becomes ex-
tremely important when metrics alone cannot conclu-
sively guide the selection of an attribution map.

For this reason, we also explore the visualiza-
tion for incorrect classes. Figure 5 illustrates vessel
elements from two species: Eucalyptus and Popu-
lus. For each image, we provide visualizations for
both the correct and incorrect classes. As can be
observed from the images, the SmoothGrad saliency
map seems to highlight almost identical pixels in both
instances. While we cannot definitively determine
the correctness of the saliency map’s decision-making

process without knowledge of the ground truth, this
behavior makes it challenging to identify unique fea-
tures that distinguish between classes. When the same
regions are highlighted for two different classes, the
interpretation of results becomes more difficult.

From the perspective of a human expert, high-
lighted regions represent distinctive features that de-
termine the class. In this regard, GradCAM performs
more like a human expert. As observed in the fig-
ure, the image is partitioned into distinct areas. Al-
though certain regions may be highlighted multiple
times, there is a trend of assigning specific regions to
a single class, enhancing interpretability.

The behavior of ScoreCAM and SmoothGrad-
CAM++ closely aligns with GradCAM, as all three
methods are based on the last feature map. These
methods demonstrate a tendency to excel in identi-
fying unique features, mirroring human-like behav-
ior. On the other hand, Gradients exhibits a behavior
similar to SmoothGrad in that it assigns almost equal
importance to regions across different classes.

4.2.2 Fertilizer Treatment Dataset

We repeated the previous experiment for the fertilizer
dataset as can be seen in table 2.

Table 2: Evaluation of the attribution methods using ”Dele-
tion” and ”Insertion”.

Attribution Method Deletion ↓ Insertion ↑
GradCAM 0.201 0.674
ScoreCAM 0.274 0.573
SmoothGradCAM++ 0.32 0.48

Gradients 0.312 0.451
SmoothGrad 0.289 0.546

This time the two metrics are more consistent.
However, the reliability of these metrics remains
questionable, as their consistency varies across differ-
ent datasets. Additionally, it is important to establish
the efficacy of these metrics through rigorous mathe-
matical analysis, ensuring they perform as intended.
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Figure 6: Visualization of the incorrect (red) and correct class (green) for two saliency maps. The label ”NPK ” correspond
to different nutrient statuses: nitrogen, phosphorous, and without potassium. Similar to the wood identification dataset exper-
iment, GradCAM emphasizes distinct regions for each class, while full-backpropagation methods like Gradients tend to focus
on the same region for all classes.

Currently, the metrics rely primarily on intuitive rea-
soning and logical arguments, emphasizing the need
for further investigation to establish their soundness.

Figure 6 showcases the impact of visualizing the
saliency map for both incorrect and correct classes of
an image. In the case of the incorrect class assumption
where the plants were unfertilized, GradCAM pre-
dominantly emphasizes the soil. However, when as-
suming the plants are fertilized (correct class), Grad-
CAM shifts its focus towards the plants. On the other
hand, Gradients consistently highlights the plants for
both assumptions. This observation suggests that
Gradients may place greater importance on the dif-
ference in pixel value range between the two classes,
whereas GradCAM relies on distinct regions to de-
termine the class. Without knowing the ground truth
decision-making process, both approaches are possi-
ble.

5 DISCUSSION AND OUTLOOK

In this study, we conducted a comprehensive evalua-
tion of multiple state-of-the-art attribution maps using
real-world datasets from the agriculture and forestry
domains. Our analysis unveiled several crucial find-
ings that shed light on the challenges and limitations
of these methods.

Firstly, we discovered a significant lack of consis-
tency among attribution maps, both qualitatively and
quantitatively. Different methods often highlighted
different regions as important, resulting in inconsis-
tent region highlighting and excessive noise in certain
approaches. This inconsistency raises concerns about
the reliability and robustness of attribution maps for
interpreting neural network decisions in agriculture
and forestry tasks. We proposed two new metrics for
comparing the consistency of attribution maps: Pear-
son’s correlation coefficient and Jensen-Shannon di-
vergence. Both metrics indicated weak agreement

among the maps.
Furthermore, when we compared the attribution

maps with expert annotations in the wood identifica-
tion dataset, none of the maps showed high alignment
with expert annotations. This suggests that the neu-
ral network may learn different features from those
identified by human experts, highlighting a disparity
in the decision-making process. However, it is also
plausible that the maps themselves have limitations
in reflecting the true decision-making process of the
neural network.

Another important observation was the excessive
feature sharing across distinct classes in certain attri-
bution maps. This behavior can make it challenging
to interpret the results and uncover features that are
easily interpretable by humans. The ability to identify
unique features for each class is crucial for gaining a
better understanding of the decision-making process
of neural networks and providing meaningful expla-
nations.

Our evaluation of attribution maps using the met-
rics ”Insertion” and ”Deletion” showed certain lim-
itations. The parameters can have a significant in-
fluence on the results and the metrics are in general
not consistent across datasets. It is worth emphasiz-
ing that many CAMs (Wang et al., 2020a; Wang et al.,
2020b; Naidu et al., 2020) have asserted their superi-
ority based on the ”Insertion” and ”Deletion” metrics.
Given our findings, which highlight the unreliability
of these metrics, a question arises: Do these CAMs
genuinely demonstrate improvements compared to
GradCAM?

It is necessary to prove that the evaluation metrics
actually work. Otherwise, selecting the most suitable
attribution map for a specific task can only be based
on visual inspection and comparison with human an-
notation.

In conclusion, our research highlights the effec-
tiveness and reliability challenges of attribution maps
for wood species identification and fertilizer treat-
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ment classification in the agriculture and forestry do-
mains. The lack of consistency among attribution
maps and the disparity between the maps and expert
annotations underscore the need for further research
and development in this field. Future work should fo-
cus on developing improved attribution methods that
address the limitations identified in this study. Addi-
tionally, there is a necessity to find metrics that can
objectively evaluate the attribution maps, as current
metrics such as ”Insertion” and ”Deletion” may lead
to conflicting results. By addressing these challenges,
we can enhance the interpretability and trustworthi-
ness of neural networks in critical applications within
agriculture and forestry.
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Ancona, M., Ceolini, E., Öztireli, A. C., and Gross,
M. H. (2017). A unified view of gradient-based at-
tribution methods for deep neural networks. CoRR,
abs/1711.06104.

Chattopadhay, A., Sarkar, A., Howlader, P., and Balasub-
ramanian, V. N. (2018). Grad-CAM++: Generalized
gradient-based visual explanations for deep convolu-
tional networks. In 2018 IEEE Winter Conference on
Applications of Computer Vision (WACV). IEEE.

Desai, S. and Ramaswamy, H. G. (2020). Ablation-cam: Vi-
sual explanations for deep convolutional network via
gradient-free localization. In 2020 IEEE Winter Con-
ference on Applications of Computer Vision (WACV),
pages 972–980.

Englebert, A., Cornu, O., and De Vleeschouwer, C. (2022).
Poly-cam: High resolution class activation map for
convolutional neural networks.

Fang, A., Kornblith, S., and Schmidt, L. (2023). Does
progress on ImageNet transfer to real-world datasets?

Fong, R., Patrick, M., and Vedaldi, A. (2019). Under-
standing deep networks via extremal perturbations
and smooth masks. CoRR, abs/1910.08485.

Fong, R. and Vedaldi, A. (2017). Interpretable explanations
of black boxes by meaningful perturbation. CoRR,
abs/1704.03296.

Fu, R., Hu, Q., Dong, X., Guo, Y., Gao, Y., and Li,
B. (2020). Axiom-based grad-cam: Towards accu-
rate visualization and explanation of cnns. CoRR,
abs/2008.02312.
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