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Abstract: In this paper we present a novel approach that uses 3D point cloud sequences to integrate temporal informa-
tion and spatial constraints into existing 3D hand pose estimation methods in order to establish an improved
prediction of 3D hand poses. We utilize scene flow to match correspondences between two point sets and
present a method that optimizes and harnesses existing scene flow networks for the application of 3D hand
pose estimation. For increased generalizability, we propose a module that learns to recognize spatial hand
pose associations to transform existing poses into a low-dimensional pose space. In a comprehensive evalu-
ation on the public dataset NYU, we show the benefits of our individual modules and provide insights into
the generalization capabilities and the behaviour of our method with noisy data. Furthermore, we demonstrate
that our method reduces the error of existing state-of-the-art 3D hand pose estimation methods by up to 7.6%.
With a speed of over 40 fps our method is real-time capable and can be integrated into existing 3D hand pose
estimation methods with little computational overhead.

1 INTRODUCTION

3D human hand pose estimation is becoming increas-
ingly important especially in the fields of virtual or
augmented reality, as it enables an intuitive way for
a human-machine interaction and provides a realis-
tic user experience (Buckingham, 2021). In this way,
interaction possibilities such as the use of gesture lan-
guage (Nielsen et al., 2004) or object manipulation
(Buchmann et al., 2004) can be brought into appli-
cations. The use of 3D point clouds has the general
advantage of being more independent from the cam-
era setup, for example the data of multiple depth sen-
sors can be fused in a dense 3D point cloud (Hu et al.,
2021) and thus be used.

Earlier approaches attached gloves or additional
sensors to the user’s hand to obtain precise data for
estimating the hand pose (Wang and Popović, 2009;
Ma et al., 2011) with the disadvantage that this also
entails a restriction in the movement of a user. This
led to the development of purely image-based meth-
ods for hand pose estimation, which advanced sig-
nificantly with the progress of deep learning (Chatzis
et al., 2020). A successful but error prone approach is
to predict the pose of a hand at an individual point in
time (Zhang et al., 2020; Rezaei et al., 2023). While

performant, the largest remaining challenge for these
methods is to deal with frequently occurring self-
occlusions (Barsoum, 2016), which make it difficult
to determine the hand pose precisely and negatively
influence human-machine interaction.

The integration of temporal information is one
way to remedy this problem, as it enables to propa-
gate information from previous frames in which the
presently occluded parts were visible. Different ap-
proaches to determine temporal correspondences in a
scene already exist and are currently being actively
researched. Scene flow methods analyze the motion
of a scene given by a sequence of 3D point clouds
and enable a more comprehensive understanding of
the dynamics in the scene (Gu et al., 2019; Mittal
et al., 2020). While these methods can accurately esti-
mate point-wise correspondences, it remains unclear
and has not been investigated yet how 3D pose esti-
mation can benefit from scene flow.

We strongly believe that incorporating temporal
information to pose estimation methods in the form of
scene flow is a key to overcome the occlusion prob-
lem and achieve accurate pose predictions. Therefore
we propose, to our knowledge, the first network that
simultaneously estimates skeleton scene flow and 3D
hand poses. Given the frame-wise predictions of an
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arbitrary pose estimator, the key idea is to analyze
the motion of the bone structure between consecu-
tive points in time with a scene flow module to im-
prove the pose predictions of the estimator. Particu-
larly noteworthy is the independence of our method
in the choice of networks used to determine the scene
flow and to estimate the initial hand pose. Thus, it is
agnostic to a specific implementation choice, makes
use of pretrained models and can continue to bene-
fit from the future development of both fields by ex-
changing them against newer networks.

In the following, we briefly summarize the main
contributions of this work.

• Proposal of a new network that combines the in-
formation in a 3D point cloud sequence to im-
prove existing per-frame pose predictions. Once
trained, the network can be used out of the box to
improve new per-frame pose prediction methods.

• Proposal of a new module that learns spatial
pose relations and transfers poses into a lower-
dimensional space to increase the generalization
capabilities of a network.

• Introduction of a method that optimizes existing
scene flow prediction networks to track pose key-
points based on the flow.

• Exclusive evaluation on a publicly available hand
dataset to demonstrate the accuracy of our method
and to obtain new insights in 3D hand pose esti-
mation.

Besides the convincing qualitative results of our
method, we demonstrate its generalization capabili-
ties in a comprehensive evaluation and show that we
achieve significant improvements for 3D hand pose
estimation.

2 RELATED WORK

In this section we briefly summarize previous work
in the area of incorporating temporal information into
pose estimation, which is most related to this work.
3D Pose from Single Frames. Besides the methods
that employ depth maps (Moon et al., 2018; Xiong
et al., 2019), there are also some existing methods
that use 3D point clouds to estimate the hand pose
frame-by-frame. Some approaches use PointNet (Qi
et al., 2016) layers in a hierarchical structure to cap-
ture local and global features to regress the hand pose
(Ge et al., 2018b; Ge et al., 2018a). Another method
(Hermes et al., 2022) extends the hand point cloud by
support points to then extract features through graph
CNNs (Wang et al., 2018) to determine the hand pose.

A further approach to extract features in point clouds
are Residual Permutation Equivariant Layers (Li and
Lee, 2019). In their work, point-wise poses are pre-
dicted and then the final pose is determined by voting.
3D Hand Tracking. An existing 3D hand tracking
approach (Chen et al., 2022) regresses the hand po-
sition for a current hand point cloud by updating the
previous pose estimate. The previous pose is used to
determine a global hand pose based on which a trans-
formation of all point clouds in a canonical space is
performed. This, in turn, is used to extract features
and thus determine the current pose. Since this is a
tracking method, the main idea is to transform an al-
ready found previous pose to the currently available
data in the best possible way, which is different from
our goal to create an improved pose estimate based on
previous data.
Optical Flow-Based Pose Estimation. Other exist-
ing methods use the information extracted by optical
flow to achieve an improved pose estimate (Alldieck
et al., 2017; Liu et al., 2021). The computation of op-
tical flow is a well-established technique to estimate
the motion of pixels between consecutive frames in
an image sequence. By analyzing the displacement of
pixels, valuable information about the movement and
velocity of objects within the scene can be obtained.
An option is to use graph geodesic distances to es-
tablish correspondences between the 3D positions of
human joints (Schwarz et al., 2012). This spatial in-
formation is combined with the temporal information
that is extracted from intensity images using optical
flow in order to refine the detected landmarks and thus
to create a pose estimate by fitting a skeleton body
model. A two-way improvement of pose and opti-
cal flow estimation represents another method (Arko
et al., 2022). First, the pose is used to fine-tune the
optical flow estimation to better fit the human pose.
With this optimized flow an improvement of the pose
can be achieved in return. Since optical flow can only
be estimated on 2D grid data, the application of these
methodologies to 3D point clouds is not directly pos-
sible.
Scene Flow Estimation. One way to analyze the mo-
tion and dynamics of a scene given by 3D point clouds
is to estimate the scene flow. Scene flow methods
(Liu et al., 2019; Li et al., 2021; Wang et al., 2021)
predict the correspondences of the points of two 3D
point clouds captured at two successive points in time.
However, it has never been used in 3D hand pose es-
timation and it is uncertain until now how the pose
estimation can benefit from this information.
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Figure 1: Overview of the presented network. The previous estimate Pi−1 is extend by bone points and fed into a Spatial
Refinement module (SR) with the previous cloud. The result is fed into a Temporal Refinement module (TR) together with
both the current and previous point clouds Ci and Ci−1. After a consecutive spatial refinement, the final pose estimate is
generated in a weighting module.

3 METHOD

Pose tracking deals with the detection of specific key-
points, given a sequence of temporally consecutive vi-
sual data. In the 3D case, we assume the consecutive
acquisition of the object to be tracked at N ∈ N time
points t = {t1, ..., tN} which leads to a sequence of
point clouds C = {C1, ...,CN} with Ci ∈ RLCi×3. Fur-
thermore, we define tN as the current point in time,
thus the times ti with i < N have already passed. The
objective is to find the 3D positions of the keypoints
KN ∈RLK×3 at the current time tN , using the informa-
tion of the whole sequence:

KN = ϕ(C ). (1)

As we want to improve the estimation of an exist-
ing pose estimator, we further assume that an already
trained network ρ is available, which computes a pre-
diction of the keypoints, given a single point cloud
ρ(Ci) = Pi with P ∈RLK×3. Our network τ(CN−1,CN)
processes two consecutive frames at a time, allowing
the entire sequence to be processed by executing the
model sequentially.

Figure 1 shows a general overview of our model.
First, the previous pose estimate Pi−1 is extended by
points that are supposed to represent the bone struc-
ture by constructing a connection graph and defin-
ing equidistant points on the connections. The pose
data is then converted into a more plausible shape in
the Spatial Refinement (SR) module. The constrained
pose is transferred to the current point in time with ad-
ditional input of the current data within the Temporal
Refinement (TR) module. After penalizing unrealistic
poses again in another SR module, the pose to be out-
put is determined by confidence-based weighting of

the improved pose and the existing estimate. Concep-
tually, our network thus consists mainly of two mod-
ules, which are intended to establish spatial as well
as temporal correspondences to improve a given pose
estimate. Both modules will therefore be described in
more detail hereafter.

3.1 Spatial Correlation Regression

Many of the existing hand pose estimation methods
learn to determine keypoints without directly con-
straining the correlation between anatomically impor-
tant points. To address this issue, we present a Spatial
Refinement (SR) module which estimates an anatom-
ically reasonable pose, given any point cloud Ci with
an existing prediction Pi. Conceptually, the module is
based on the principle of Principal Component Anal-
ysis (PCA), extended by a confidence measure in or-
der to keep already good predictions. An overview
is shown in Fig. 2. The upper branch of the visual-
ization shows the generation of the anatomically rea-
sonable pose estimate. First, the local features of the
point cloud are extracted at the specific keypoints. As
in PointNet++ (Qi et al., 2017), the neighborhood in
the point cloud is determined for each keypoint and
the features of the local regions are extracted using
successive PointNet (Qi et al., 2016) convolutions.
In a next step, all keypoints are themselves defined
as neighborhoods for each individual keypoint and
translated into new features through further succes-
sive convolutions. This ensures to also capture global
features of the predicted pose. A subsequent abstrac-
tion layer outputs a single feature vector of the pose
which is used within multiple linear layers to estimate
weights for a given set of principal components. Mul-
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Figure 2: Overview of the Spatial Refinement module. 1.)
Given a point cloud Ci and 2.) the corresponding keypoint
predictions Pi, 3.) cloud features are generated using each
keypoints closest neighbors in the point cloud. 4.) The re-
sulting features are extended by a new dimension that con-
tains all other keypoint features, resulting in keypoint-to-
keypoint features after multiple convolutions. In a last step
these features are converted into weights which are mul-
tiplied with the principal components to output a suitable
pose Ψ. This pose is linearly interpolated with the existing
prediction using the weights from the Keypoint Confidence
module.

tiplying these weights with a set of the most important
principal components results in an anatomically plau-
sible pose estimate Ψ. By using only a subset of the
principal components the resulting pose is transferred
into a lower-dimensional pose space to avoid unnatu-
ral hand pose outliers.

The lower branch of the visualization shows the
generation of confidence values for the existing pre-
diction. As in the upper branch, the nearest neigh-
bors in the point cloud are determined for each key-
point in order to extract local features through subse-
quent convolutions. The local features are clamped
into confidence values between 0.01 and 1 by a lin-
ear layer. At this point, we prevent confidence val-
ues of 0 to avoid getting stuck in local extrema. The
confidence values are used for linear interpolation be-
tween the initially predicted keypoints Pi and the re-
fined pose Ψ, resulting in a final pose estimate Φ.

By transferring the existing pose into a lower di-
mensional space learned by PCA, a restriction of the
possible keypoint positions explicitly accompanies it.
In the definition of the loss function to be optimized,
we further restrict the space of possible poses and re-
quire that the bone structure of the resulting pose is
anatomically correct and that the 3D positions of the
keypoints match the ground truth.

Let P̂ ∈ RNK×3 be the ground truth
3D positions of the keypoints and further
B = {(h, j) | h, j ∈ 1, ...,NK with h ̸= j} a set of
index tuples for spanning a bone vector with
PBh

i
−PB j

i
. Then we define

Lbones(P, P̂) =
1
|B|

|B|

∑
i=1

∥(PBh
i
−PB j

i
)− (P̂Bh

i
− P̂B j

i
)∥2

2

(2)

as a bone loss function which enforces that the bone
vectors of the resulting pose correspond to the ground
truth without taking into account the correct position
in space. We further define

Lposition(P, P̂) =
1

NK

NK

∑
i=1

∥Pi − P̂i∥2
2 (3)

as position loss function that ensures that the 3D posi-
tions of a given prediction P are correct. This results
in the following loss function to be minimised for the
network:

Lspatial(Ψ,Φ, P̂) = αLbones(Ψ, P̂)+βLposition(Ψ, P̂)
(4)

+βLposition(Φ, P̂),

with the hyperparameters α,β ∈ R, that weigh the
bone loss against the spatially constrained pose esti-
mate Ψ and the interpolated resulting pose Φ.

3.2 Temporal Correlation Regression

One of the biggest difficulties with pose estimation
is the occlusion of important parts of the object.
This issue is particularly prominent in the determina-
tion of hand poses and constitutes a major challenge.
We present the Temporal Refinement (TR) module to
tackle this problem. If an important part of the ob-
ject is occluded at the current time tN , then we as-
sume that the part was visible at a previous point in
time. The aim of this module is to transfer the in-
formation from previous frames to the current time in
order to compensate for the missing information of
the hidden structure and to ensure a more precise de-
termination of the pose. An overview of the module is
visualized in Fig. 3. Given two successively captured
point clouds Ci−1 and Ci, as well as their correspond-
ing pose predictions Pi−1 and Pi, the module outputs
an improved pose estimate Θ that contains the tempo-
ral information of both points in time. This is based
on a scene flow network, which determines the corre-
spondences between the previous pose and the current
prediction, subject to a small error. To better represent
the skeletal structure of the object, we extend the pre-
vious pose Pi−1 by points that lie on the bone vectors.
Subsequently, the additional points are combined with
the point cloud and the scene flow is determined. The
scene flow can then be used to compute a new pose
estimate by adding Pi−1 and the corresponding flow
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Figure 3: Structure of the Temporal Refinement module that
receives two successively captured point clouds Ci−1 and Ci
as input and the corresponding pose predictions Pi−1 and Pi.
The predictions of the earlier captured cloud are extended
by points that lie on bone vectors and fed into the scene flow
network, together with both clouds. The scene flow net-
work in turn outputs the flow of the earlier point cloud and
a new pose estimate which is the addition of the flow and
the prediction Pi−1. The final pose estimate Θ is received
by linear interpolation between the new pose estimate and
prediction Pi, using the confidence values of the Keypoint
Confidence module. During training, a refined bone flow
F̃i−1 is computed that integrates the movement of the bones
of the object to be tracked. This process is visualized with
dashed lines.

subset. To prevent existing correct estimates from be-
ing discarded, we use estimated confidence values as
in the Spatial Refinement module to linearly interpo-
late between the existing prediction Pi and the new
pose estimate and receive a temporal refined pose es-
timate Θ.
Bone flow. A crucial part of the module is that
the scene flow network is optimized to recognize the
movement of the skeleton in particular. We there-
fore propose a bone flow refinement process during
the training, which is visualized by the dashed lines.
An existing method already optimizes optical flow us-
ing 2D body pose predictions and computing a pixel-
wise flow of a stick-man, which is integrated into the
ground truth optical flow (Arko et al., 2022). Since
we do not use camera data throughout the method and
thus no projected 2D predictions are available, the
method is not readily applicable. We therefore pro-
pose to extend the same methodology for 3D poses.

We assume that the predictions Pi can be used to
construct a bone-like graph consisting of bone vec-
tors. For each of these vectors we specify an anatomi-
cally suitable third keypoint to construct a coordinate
system using the cross product. For two predictions
Pi−1 and Pi we obtain the sets of bone vectors Bi−1
and Bi as well as the corresponding coordinate sys-

tems. Let the point cloud Ci−1 and the corresponding
ground truth scene flow F̂i−1 be given. The following
process produces a bone-motion specific flow F̃i−1:

1. For each point of the cloud Ci−1 find the closest
bone vector in Bi−1.

2. Translate each point to the current point in time i
by transferring it into the coordinate system that
belongs to the closest bone vector. Afterwards
transfer it back to world coordinate system but
using the coordinate system of the corresponding
bone vector from Bi.

3. Compute the bone flow as vectors from the points
towards their translated positions.

4. Linearly interpolate between the bone flow and
the ground truth flow F̂i−1, where the distances of
the points to the closest bone vectors are used to
compute weights for interpolation.

To accommodate this revised flow in training, a suit-
able loss function must be selected. The requirements
for a loss function to be optimized during training are
that the flow network outputs the improved flow, as
well as that the 3D positions of the keypoints of the
resulting pose Θ are correctly determined. We there-
fore define the loss as:

Ltemporal(Θ,F, P̂i, F̃) = Lposition(Θ, P̂i)+λL f low(F, F̃),

(5)

with the adjusting scalar λ∈R, the network’s pose es-
timate Θ, the estimated flow F , the ground truth key-
point positions P̂i and the refined bone flow F̃ . We
further define the flow loss as:

L f low(F, F̃) =
1
|F |

|F |

∑
i=1

1
3
∥Fi − F̃i∥1 (6)

The data terms Eq. (4) and Eq. (5) of the presented
modules lead to a convex optimization model to be
minimized during training.

4 EVALUATION

In this section, we provide a comprehensive analysis
of our method by conducting a quantitative evalua-
tion.
Dataset. To the best of our knowledge, the most
widely used datasets for evaluating per-frame 3D
hand pose estimation methods are NYU (Tompson
et al., 2014), MSRA (Sun et al., 2015), and ICVL
(Tang et al., 2014). Since the MSRA dataset is less
informative due to some erroneous annotations (Ge
et al., 2018b) and a saturation of average joint errors
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in the ICVL dataset (Wan et al., 2018), this evaluation
is limited to the NYU dataset. Moreover, the NYU
dataset contains more complex movements, making it
the most challenging of the three datasets (Chen et al.,
2018). It provides depth data of hands and ground
truth 3D positions of 42 keypoints of the hand. How-
ever, we stick to the common practice for hand pose
estimation methods and use only 14 keypoints (Wan
et al., 2018; Ge et al., 2018b; Hermes et al., 2022).
For training, 72K frames in 34 sequences are avail-
able and the evaluation is carried out on 8K frames
in 14 sequences. It should also be mentioned that we
do not use the depth data at any time, but only point
clouds with 1024 points extracted from it.
Implementation Details. For training of the modules
we constantly use the adjusting scalars α= β= λ= 1,
as well as an Adam (Kingma and Ba, 2014) opti-
mizer with an initial learning rate of 0.001. The Spa-
tial Refinement module was always trained indepen-
dently with initial learning rate 0.0001. Both mod-
ules were trained using a batch size of 16 for a total
of 40 epochs. During the tests we focus on a single
network for the calculation of the scene flow, in or-
der to be able to exclude the factor of different quality
grades in the scene flow determination. Therefore we
follow an existing work (Hermes et al., 2023) and se-
lect a pre-trained FLOT (Puy et al., 2020) network to
determine the scene flow, due to its ability to handle
deformations well. Furthermore, we refer to their ap-
proach and use the 42 keypoint positions to calculate
a ground truth scene flow. All trainings and evalua-
tions were run on a PC with a GeForce® GTX 1080
Ti GPU.
Metrics. As a measure of error, we consistently use
the widely used Average End Point Error (EPE) to
ensure comparability with previous work.

4.1 Impact of Scene Flow Refinement

In a first ablation study we investigate the influence
of the proposed bone flow refinement process. We
performed the following experiments on the NYU
dataset, using only a subset of the training set. As
per-frame pose prediction we used the results of the
support points-based method (Hermes et al., 2022),
that achieves an EPE of 9.44 mm.

Two successive point clouds with their corre-
sponding pose predictions were used as input to im-
prove the 3D keypoint positions of the temporally
more recent acquisition. Table 1 provides an overview
of the results. The trained FLOT network was used
as baseline to determine the scene flow of the con-
catenation of the point cloud and the predictions of
the previous frame. The addition of the previous pose

Table 1: Results of various experiments with the presented
bone flow refinement process. Training and testing was per-
formed on the NYU dataset using the support points-based
hand pose predictions. The trained scene flow network was
chosen as baseline without further optimization.

Method EPE [mm]
per-frame 9.48
common flow 9.92↑4.6%
refined flow 9.65↑1.8%
refined flow + distance weights 9.32↓1.7%
refined flow + learned weights 9.07↓4.3%

with the scene flow results in the new hand pose. This
methodology achieves an EPE of 9.92 mm and thus
even degrades the per-frame prediction by 4.6%.

Optimizing the scene flow network with the bone
flow refinement process improves the baseline results
by 0.27 mm, but still results in higher errors as the
per-frame predictions.

Assuming specific keypoints are estimated well,
only the improved keypoints should influence the re-
sulting pose. A weighted averaging between existing
and improved pose addresses this issue. One poten-
tial weighting method is based on the Euclidean dis-
tance of the keypoints to the point cloud, serving as
a measure of occlusion. This methodology achieves
an error of 9.32 mm and thus improves the per-frame
prediction by a small amount. Finally, we learned the
weights during training rather than determining them
algorithmically, yielding the lowest error and improv-
ing the existing per-frame prediction by 4.3%.

The experiments have thus shown that the pre-
sented bone flow refinement process improves the
usual scene flow for tracking a pose. Furthermore,
they show that scene flow is well suited for tracking
certain keypoints, especially occluded keypoints with
missing information. If enough information is avail-
able for the position of a keypoint, per-frame pose
prediction is superior.

4.2 Hand Pose Estimation on NYU
Dataset

This experiment shows the different contributions of
the presented modules of our network. We refer to
per-frame predictions of different methods for a quan-
titative evaluation and analyze the behavior of our net-
work in the presence of noisy pose estimates as inputs.
Furthermore, we check the behavior of our proposed
method when only little training data is available.

The different modules as well as the whole net-
work were trained using the predictions determined
by the support points-based network. Evaluation was
additionally performed on the pose predictions of P2P
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Table 2: EPE [mm] evaluation on the NYU dataset. The
training is based on the predictions from the support points-
based method, while evaluation was performed with the in-
formation of five frames using the predictions of various
hand pose estimation methods. The best results are high-
lighted.

Support P2P V2V
Per-frame 9.48 9.05 8.42
Ours-spatial 9.38↓1.1% 9.05↓0% 8.44↑0.2%
Ours-temporal 8.76↓7.6% 8.65↓4.4% 8.24↓2.1%
Ours-full 8.81↓7.1% 8.61↓4.9% 8.07↓4.2%

(Ge et al., 2018b) and V2V (Moon et al., 2018), both
of which yield state of the art per-frame results. The
EPE is listed in Tab. 2, based on consecutive execu-
tion of our network to process the information of five
frames.

An individual analysis of the SR module shows
that limiting to a spatial consideration does not sig-
nificantly improve the pose estimation. Bringing in
temporal information has a greater impact and im-
proves the per-frame predictions of the three consid-
ered methods. The combination of temporal informa-
tion and spatial correlations (Ours-full) continues to
improve the results for P2P slightly and noticeably
for V2V, but marginally worsens the results of the
support-based prediction. Since the estimated poses
of P2P and V2V were not part of the training, we in-
fer from the results that the SR module noticeably im-
proves the already good generalization ability of the
TR module. Additionally, it can be assumed that the
network adapted slightly too much to the predictions
in the training data during the training.

With p-values far below 0.05, a paired t-test
proves that the difference between the EPE means of
the per-frame predictions and the results of our net-
work is statistically significant. Furthermore, a run-
time of over 40 fps is achieved for the processing
of two point clouds, including the time for the scene
flow network, which demonstrates high computation-
ally efficiency and real-time capability.
Evaluation on Corrupted Input Poses. In real sce-
narios, external influences can always cause noise in
the pose detection. Since the incoming pose pre-
dictions are an important ingredient for our method,
we perform an evaluation with corrupted incoming
poses to investigate the behavior of our method with
noisy data. For this purpose, we applied Gaussian
noise with varying variance to the pose predictions
of the method based on support points. We used the
same network as in the previous experiment for fur-
ther evaluations, which was trained with non-noisy
pose predictions as input. The results of the evalu-
ation are shown in Fig. 4.

Figure 4: Error evolution of our method on ingoing pose
predictions corrupted with Gaussian noise of increasing
variance. The upper curve shows the EPE of the per-frame
predictions under the effect of the noise and the lower curve
shows the results of our network with the noisy pose pre-
dictions as input.

The upper curve shows the evolution of the EPE
of the noisy per-frame predictions as the variance of
the noise increases, and thus serves as a baseline for
this experiment. The lower curve shows the EPE of
our method, based on the respective noisy pose pre-
dictions as input. Both error curves increase linearly
with the increase of the variance of the noise, but the
slope of the curve of our method is significantly lower
and thus achieves a smaller increase of the EPE as the
baseline. These results show that our proposed net-
work can counteract the error of noisy poses.

4.3 Comparison with HandTrackNet

The already existing HandTrackNet method (Chen
et al., 2022) tracks hand poses using 3D point clouds.
Given the previous hand keypoint positions and the
current 3D hand point cloud, both inputs are trans-
formed into a canonical space, whereas the transfor-
mation is calculated using an initial hand pose and
the current 3D positions of the palm keypoints. Sub-
sequently, features are extracted on the basis of which
the previous pose is placed in the current hand point
cloud. The aim of this process is to transfer a previ-
ous pose into a current 3D hand point cloud in the best
possible way, whereas our method improves an exist-
ing pose estimate based on previous data. As these
objectives differ from each other, a direct comparison
is not readily possible. Nevertheless, we explore the
differences in these two approaches in a joint evalua-
tion.

For the evaluation, the already pre-trained Hand-
TrackNet was used and tested on the NYU (Tompson
et al., 2014) dataset. Since the procedure requires the
position of 6 palm keypoints, we extended the 14 key-
points by the 6 required palm keypoints that are also
part of the ground truth in the NYU dataset. The er-
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Figure 5: EPE average over the six exemplary sequences
of 40 frames. The pre-trained HandTrackNet was initial-
ized with the ground truth pose. Our trained network was
evaluated with the pose estimations predicted by the support
point-based method, P2P and V2V.

ror calculation was carried out on the 14 keypoints as
before.

As a first experiment, similar to the evaluation
setup in Sec. 4.2 we had HandTrackNet estimate the
hand poses based on five previous frames, using the
pose predictions of the support points-based method
as initial pose. This resulted in an EPE of 9.67 mm
which is worse than the per-frame predictions with
an error of 9.48 mm. Since the method only tracks
a pose and does not improve it, this result was to be
expected, because the initial pose was already faulty
and the tracking accumulated the errors.

In a second experiment, we initialized the Hand-
TrackNet on six exemplary sequences of 40 frames
each with a ground truth pose and tracked them con-
tinuously. On the same sequences, we evaluated our
from Sec. 4.2 trained network, using the different
pose estimators. The averaged EPE of the six eval-
uated sequences is depicted in Fig. 5, illustrating that
while HandTrackNet initially exhibits lower error due
to initialization with ground truth data, its errors ac-
cumulate over time, leading to a continuous increase
of the EPE. In contrast, our method can quickly re-
cover even after erroneous frames since new keypoint
predictions are consistently incorporated into the pro-
cess.

5 CONCLUSION

We propose a method for incorporating temporal in-
formation into hand pose estimation from a sequence
of 3D point clouds. To the best of our knowledge, we
are the first to utilize scene flow for an improved pose
estimation. In this context, we introduce a process
that optimizes arbitrary scene flow networks for the
application of pose estimation by focusing on the mo-

tion of the bone structure. This procedure is supple-
mented by a module that recognizes the spatial pose
correlations and transfers existing poses into a lower-
dimensional pose space in order to avoid unnatural
outliers and to improve the generalization capability.
In a comprehensive evaluation we demonstrate that
the proposed method significantly improves existing
frame-by-frame methods for 3D hand pose estima-
tion. We further show that the network is able to re-
duce the negative influence of noisy pose predictions.
As a future perspective, we are convinced that the in-
formation gained through scene flow will provide an
even greater advantage when directly integrated into
the pose estimation model.
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