
Virtual61850: A Model-Driven Tool to Support the Design and
Validation of Virtualized Controllers in Power Industry

Nadine Kabbara, Timothe Grisot and Jerome Cantenot
EDF R&D Paris Saclay, France

Keywords: Model-Driven Engineering, Metamodels, Eclipse EMF, OCL, IEC 61850, Interoperability, Power Systems.

Abstract: Model driven engineering (MDE) has seen a rising interest by the power industry particularly for supporting
application and standards developments. Modern power systems often still involve many manual, error-prone
configuration works. Examples include specification developments and configuration of communicating con-
trollers. Recently, new concepts such as virtualized controllers (deployed in virtual machines or containers)
have emerged. However, such a concept still remains rather new for power system experts where integrating
virtualized controllers into their existing engineered information systems is a non straight-forward task. This
study thus proposes to tackle some of the engineering and integration problems faced by this new concept
thanks to the benefits offered by MDE. Virtual61850 is an implementation of a model-driven tool for support-
ing the configuration of future virtualized controllers into the power industry’s information systems. It supports
basic industry requirements including platform independence, standardized legacy configuration languages
(IEC 61850 standard), modularity, and integrated testing and validation. The application was benchmarked
for scalable models creation, editing, and validations that are necessary for advanced industrial simulation and
field deployments of virtualized controllers.

1 INTRODUCTION

The exploitation of formalized models for the design
of software artifacts (e.g. source code, documenta-
tion, tests) is the core principle of Model-driven engi-
neering (MDE), a discipline in computer science. The
model-centric approach allows the specification and
design of software applications at a high level of ab-
straction, which can then be automatically validated
before any platform-specific code generation (Clark
et al., 2015).

Every model, in the context of MDE, can be
mapped to a higher ‘type model’ describing all the
knowledge of that model (i.e., elements, transitions,
connection types). The ‘type model’, otherwise
known as ‘meta-model’, aims to create an elegant lan-
guage for representing domain artifacts (abstract syn-
tax). Each syntax is associated with formally defined
meanings or semantics that represent the concepts of
a domain (composing a Domain-Specific Language
DSL) (Kent, 2002).

Meta-modeling is also particularly beneficial for
developing precise specifications of domain stan-
dards (e.g. systems engineering, telecoms, process
modeling) (Clark et al., 2015). It helps enhance

the standard’s comprehension and implementation by
the involved parties. In addition, meta-models pro-
vide consistent documentation generation and facil-
itate the standards’ development and maintenance.
These benefits were particularly observed by (Andren
et al., 2013) for the power industry domain as in the
case of the IEC 61850 standard (Communication net-
works and systems for power utility automation (IEC,
2020)).

The motivation for adopting MDE principles in
the power industry is driven by the increased inter-
est in smarter electrical grid developments. The high
reliance on complex information and communication
technologies necessitated utilizing standardized se-
mantics to maintain system-level interoperability of
the power grid information systems (Andren et al.,
2013).

Currently, there exists different power system
standards covering communication, control, or au-
tomation fields. They focus on data interoperability
in terms of i) data syntax, ii) semantics, iii) and pro-
tocols. However, existing tools that allow to config-
ure and manipulate the specified data are inconsistent
(Andrén et al., 2017). This thus constraints the stan-
dard’s complete adoption and integration by the in-

Kabbara, N., Grisot, T. and Cantenot, J.
Virtual61850: A Model-Driven Tool to Support the Design and Validation of Virtualized Controllers in Power Industry.
DOI: 10.5220/0012360600003645
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 12th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2024), pages 157-168
ISBN: 978-989-758-682-8; ISSN: 2184-4348
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

157

volved parties. Moreover, the heterogeneous tools of-
ten rely on non-formalized data which makes adopt-
ing an automated approach to manage the develop-
ment process more problematic.

A study from 2002 showed that over 22% of
human configuration errors were observed in con-
figured control devices that are crucial for protect-
ing the power grid in case of faults (Lundqvist and
Aabo, 2002). The errors primarily included missing
or wrong data settings. A more recent study in 2020
by (Resch et al., 2020) showed that despite the tech-
nological advancement (and the existing often propri-
etary editing tools), the power industry is still highly
reliant on many manual, time-consuming, and error-
prone engineering efforts.

The tedious efforts are still especially noticed in
the case of 1) specification developments, 2) config-
urations of communicating devices in substations, 3)
and data exchanges at the level of the grid control cen-
ter IT systems (Resch et al., 2020). Often, there is
a lack of inherent validations to identify early prob-
lems when configuring local control devices. More
specifically, validations can be acted upon at three
distinct levels: 1) basic file format level, 2) basic
data elements and naming level, and 3) semantic level
for rich data interpretation (Marcadet and Lambert,
2016). For example, trivial tests such as the config-
ured connections of human-machine interfaces and
basic reachability tests still constitute an important
sum of the total solution costs due to the dedicated
manual resources needed (Resch et al., 2020).

Motivated by these issues, we propose to fur-
ther enhance the engineering process for new power
and control systems developments (based on the IEC
61850 standard) by adopting an MDE approach. The
main contribution of the paper is the implementation
of a novel model-driven tool for the development of
virtualized power system control command applica-
tions that supports existing standard data models.

The rest of the paper is organized as follows: Sec-
tion 2 presents the state of art of MDE in different in-
dustries. Section 3 specifically introduces the power
industry domain and its data model needs. Section 4
explains the concept of virtualized intelligent devices.
Section 5 introduces a high level functional descrip-
tion of the Virtual61850 tool. Section 6 presents the
implementation details and general architecture of the
tool. Section 7 details the evaluation of Virtual61850
by the creation and editing of instances based on real
industrial substation configuration data models. Fi-
nally, section 8 concludes the study and its future
works.

2 STATE OF THE ART

Many researchers in various industries have previ-
ously studied the use of model-driven concepts for
improving application development efforts. The au-
thors in (Ledeczi et al., 2003) developed a modeling
framework based on a domain language for the sim-
ulation of embedded systems. The framework aims
to unify embedded application development by ab-
stracting the different tool formalisms and seman-
tics. (Ledeczi et al., 2003) developed metamodels
to capture the application design and dataflow (hard-
ware; functionality; mappings) where nonfunctional
requirements were added as model constraints using
the Eclipse Object Constraint Language (OCL) (OCL,
2023).

Similarly, (Corradini et al., 2022) proposed a
model-driven tool to reduce application development
efforts for heterogeneous Internet of things (IoT) plat-
forms. A graphical tool for the modeling and dynamic
management of Docker (Docker, 2023) containers
was developed by (Paraiso et al., 2016). The work
thus proposes a model-driven solution to abstract the
docker model and its execution environment based on
the Open Cloud Computing Interface (OCCI) (OCCI-
WG, 2023). Container topology is also validated with
Eclipse OCL constraints.

As for the power system industry, adopting a
model-driven approach based on the standardized
electrical grid data formats was argued by (Brédillet
et al., 2010) as a key enabler for the smart grid vi-
sion. Authors in (Neis et al., 2019) developed a survey
on model-driven practices for power system control
applications including the software design (source),
code format (target), and their transformation process
(source/target). (Neis et al., 2019) observed the dom-
inance of power system-specific modeling techniques
(e.g. control theory) and the need for a transparent,
explicit methodology to transform specifications into
executable functional software. Most work was inter-
ested in proposing a comprehensive framework that
includes a static and functional specification, espe-
cially for engineering control and automation appli-
cations.

3 DIGITAL ELECTRICAL GRID
DEVELOPMENTS AND
INFORMATION MODEL
NEEDS

The electrical grid is a cyber-physical system of sys-
tems with a hierarchy of control, monitoring, and

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

158

management. Its operation requires the streaming of
large amounts of data spread across distributed sens-
ing nodes (from large-scale power plants, distributed
energy resources (DERs), remote terminal units, etc.)
which must be accurately interpreted in real time. To
perform a seamless exchange of critical electrical grid
data, an equally complex information system is re-
quired. Currently, power system information systems
are managed by utilities and grid operators that most
often respect certain international standards.

However, correctly describing and configuring
the necessary data (e.g., process, controller, primary
asset data) by different tools becomes a complex
task. Adopting a system-level and standards-based
approach for power system developments is thought
to reduce their overall lifecycle and operational costs
by 20% compared to the traditional siloed approach
(2019, 2019). To respond to these needs, the IEC in-
troduced different standards semantically defined for
power systems: 1) IEC 61850 for power automation,
2) Common Information Model (CIM) for power sys-
tem operation and planning, and 3) IEC 62056 for me-
tering part (Marcadet and Lambert, 2016).

These standards aim to provide a more efficient,
reliable, and safer power system where informa-
tion can be exchanged without lock-ins from propri-
etary definitions (CENELEC, 2012). An information
model in the context of power systems is a repre-
sentational set of real-world physical or logical com-
ponents (e.g. physical primary equipment, logical
functional applications, functional parametrizations,
etc) that need to be communicated to other system
parties (e.g. another device, human operator) in an
easily comprehensible format. A library of domain-
specific information models has been elaborated in
each standard. The libraries include common seman-
tic names used by power system actors with self-
describing meta-data covering system topology, mea-
surement location, etc.

The specified information can then be transmitted
to multiple devices or hosts with no additional map-
ping of essential meta-data (e.g. value, unit, scale,
etc.). These communicating devices are known per
IEC 61850-5 (IEC, 2013) as intelligent electronic de-
vices IEDs and can be defined as: ”a device incorpo-
rating one or more processors with the capability to
execute application functions, store data locally in a
memory, and exchange data with other IEDs (sources
or sinks) over a digital link”.

VM1

Hypervisor

vIED

Bins/libs

Container1

vIED

Bins/libs

Guest OS

Bins/libs

Guest OS

VM2

Container
Engine

Compute Network Storage

vIED

Physical Server

IED

eth0

IEC 61850
Communication

Stack
Functional

Stack

eth1

Physical Server

IED

eth0

IEC 61850
Communication

Stack
Functional

Stack

eth1

Physical Server

IED

eth0

IEC 61850
Communication

Stack
Functional

Stack

eth1

Figure 1: Example of possible vIED architecture based on
virtual machines and containers.

4 VIRTUALIZATION OF IEDS

In the following subsections, the idea of IED virtu-
alization and the motivation for using MDE in vIED
developments are presented.

4.1 Context & Motivation

The traditional mode of deploying IEDs was on small
industrial physical servers. However, more recently,
the idea of virtualizing the IEDs and deploying them
in virtual machines (VMs) or containers has been a
rising research topic (seen in Figure 1) (Kabbara et al.,
2022). The advantages of such new deployment lie in
reducing the number of devices that need to be oper-
ated and managed and hence their capital and opera-
tional costs. Moreover, the well-established virtual-
ization environments and tools for Information Tech-
nology IT systems can be adjusted and reutilized for
virtual IEDs (vIEDs) management.

This includes remote accessibility and monitor-
ing, clones and backups, as well as redundancy and
recovery support. Also, the emulated environment of
VMs and containers provides the required conditions
to perform advanced simulations and tests of IEDs
including communication, data models, functionality,
etc. Despite these promising new features, the power
industry is often hesitant to integrate novel technolo-
gies that can easily scale into their existing (rather al-
ready functional and critical) information systems.

Moreover, power system engineers often have
limited knowledge of purely IT-based technology like
virtualization. Their knowledge of power system
communication and control also can’t be replaced by
IT experts on virtualization. This leads to more dif-
ficulties in coordinating the work of both parties as
in the case of vIEDs developments. Another concern
is the heterogeneity of the available tools that support
virtualization (e.g. VMWare (VMware, 2023), KVM
(RedHat, 2023), Docker (Docker, 2023), etc). The di-

Virtual61850: A Model-Driven Tool to Support the Design and Validation of Virtualized Controllers in Power Industry

159

versity of the different tools adds another layer of con-
fusion for power system experts trying to test vIEDs
where tool interoperability for large-scale information
systems becomes non-evident.

We claim that, up to our knowledge, there is still
no generic tool that supports the virtualization pro-
cess and configuration of virtual IEDs. The main nov-
elty of this study is in facilitating the development and
adoption process of IED virtualization by developing
a new tool based on MDE principles.

The tool characteristics are:

• Platform independence from any specific virtual-
ization technology

• Supporting the existing IEC 61850 configuration
language for IEDs

• Modularity to support cooperation between ex-
perts from different domains (Power systems, IT,
communications)

• Enhancing the testing and simulation process of
vIEDs by automating the generation of configura-
tion files necessary for vIED testing.

We note that the purpose of this study was not
to generate any application logic (low-level source
code); it is outside the scope of the described pro-
cess. Also, the initial focus was not on assuring or
benchmarking any real-time performance of the vIED
instances; the following study is limited to the data
modeling specification level.

4.2 Relevant MDE Advantages for
vIED Developments

The conformance of an instantiated model to a partic-
ular meta-model can be easily validated thanks to pre-
defined syntax (e.g. parsing) and semantic constraints
(based on domain rules). Another advantage pro-
vided by MDE is its separation between conceptual or
platform-independent models and platform-specific
models for implementations (code executables) (see
Figure 2). This separation, formally specified by the
Object Management Group (OMG) (Kleppe et al.,
2003; OMG, 2023), helps to increase application
portability and reduce development efforts and errors.

A seamless translation between platform-
independent and platform-specific models
(PIM/PSM) can be done by describing a set of
transformational rules with pre/post conditions. The
transformation target can itself be a model conform-
ing to an external (or the source) meta-model in the
case of a model-to-model transformation (M2M)
(QVTo, 2023) or can be a generated code in the case
of model-to-text transformation (M2T) (Czarnecki

and Helsen, 2006). There exists an open-source
community for MDE as part of the Eclipse foun-
dation, which has provided the Eclipse Modelling
Framework (EMF) Ecore (Eclipse-EMF, 2023) (im-
plemented in the Java programming language) with
several model transformation plugins (e.g. Acceleo
for M2T (Acceleo, 2023) and QVTo for M2M).

Ecore

QVTo Acceleo

Creation of meta-model

M2M
Transformation

M2T
Transformation

Figure 2: MDE principle and strengths.

5 APPLICATION
FUNCTIONALITIES

The main idea was to implement a tool to support the
design and validation of virtualized control devices
for power grids. The objectives and criteria defined
for Virtual61850 are described in Table 1. The overall
toolchain can be seen in Figure 3.

Mini-
DockerCompose

Services &
Networks

Virtualisation
M2M

Config File
Docker

Compose

Generation
M2T

SCL
Substation

Configuration
Language
IEC 61850

ResourceNode
Computational

Stack
TOSCA profile

NetworkNode
Internal

Network Stack
TOSCA profile

+ +

Wrapper

Simulated
networked

virtualized IEDs

Docker Engine

Physical Host
NIC

Compute Network Storage

vSwitch
vNIC vNIC

vBridgeL2 VLAN

Linux OS

Virtual
IED

Container Linux OS

Virtual
IED

Container

Figure 3: MDE tool chain for IED virtualization followed
in Virtual61850 application.

5.1 Virtual61850 Models Integration

The application references various models that are es-
sential to our work on IED virtualization, as listed be-
low in Figure 4. Our specific workflow (the virtual-

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

160

Table 1: Objectives and criteria of the Virtual61850 appli-
cation.

Item Description
Objectives

O1 Model navigation, editing support;
O2 Import/export existing specifications (i.e.,

IEC 61850) into/from a common root
model;

O3 Model validations of syntax and semantic
(business) constraints;

O4 Automated model transformations to gen-
erate platform-specific configurations;

O5 Support the simulation and testing of the
generated configuration topology on the
target platform;

O6 Reiteration to enhance the quality of the
utilized models and their representative in-
formation.

Criteria
C1 Ease of use with validated models;
C2 Modularity (partial) of the tool interface

to support new models and transformations
additions and modify existing ones;

C3 Scalability to support design and validation
of large model instances;

C4 Conformity to standard models.

ization of IEDs) requires dealing with several models:
SCL, ResourceNode, NetworkNode, and OpenAPI.
Thus, the user needs to manipulate several instances
related to different models.
• SCL (Substation Configuration Language): a

model published as part of the IEC 61850 stan-
dard (IEC, 2013). it includes the functional de-
scription of the IEDs;

• ResourceNode: a model describing the comput-
ing resources available for the virtualization pro-
cess;

• NetworkNode: a model allowing to define a vir-
tual network stack between the various virtualized
elements;

• OpenAPI: a model that describes an API and can
be referenced from the ResourceNode, based on
the OpenAPI standard (LinuxFoundation, 2023);

• Wrapper: serves as a root model that groups
instances of SCL, ResourceNode, NetworkNode,
and the OpenAPI models;

• Mini-DockerCompose: a model that is a simpli-
fied representation of the Docker Compose speci-
fication.
It is noted that both ResourceNode and Networ-

kNode models are solutions based on the existing

SCL
Sub-station Configuration

Language

IEC 61850

References

Resource Node
Virtualization Computing

Resource Definition

References

Network Node
Virtual Network Stack

Description

OpenAPI 2
Standard-based
API descriptor

Acceleo Transformation

Mini-DockerCompose
Simplified Interpretation of

Docker Compose spec.

References References
References

QVTo Transformation

References

Wrapper
Root model for user

operations simplification

YAML
Docker Compose
Configuration file

Figure 4: Models and transformations of the ”Virtualiza-
tion” process.

ETSI NFV TOSCA standard (ETSI, 2023). The ETSI
TOSCA models are specializations of the TOSCA
standard (OASIS, 2023) for network function virtual-
ization covering computing resource descriptors, in-
ternal and external connection points, links, and life-
cycle management and policy metadata. However, we
observed that the ETSI TOSCA model was too large
and complex to manipulate for our own needs.

The resource descriptors and virtual networking
elements were profiled and separated into individ-
ual smaller models (ResouceNode, NetworkNode).
The profiling was done manually by comparing the
IEC 61850 data model contents and filling the miss-
ing information that are critical for VM or container
deployments. This separation helped us better un-
derstand the TOSCA models and allowed us to jus-
tify some simplifications, eliminations, and power
domain-specific additions. For example, the elements
of the ETSI TOSCA model covering life-cycle man-
agement and policy were omitted. Also, the separa-
tion of virtual links and connections points CP into
internal and external ones was simplified to a single
generic link or CP. The relationship types were not ex-
plicitly modelled but represented within the inherent
model and meta-model relationships as per the unified
modelling language.

To simplify the handling of different instances,
it was decided to introduce a ”wrapper” model that
groups all the models within the same node. Using a
root model greatly simplifies references between el-
ements of various instances. It avoids the need for
inter-document references that are both hard to man-
age from a developer’s point of view, as well as the
source of possible misunderstanding and issues for
the user due to multiple file manipulations.

The first implementation targets the Docker plat-
form using Docker Compose specification (Docker-
Compose, 2023). Docker-compose was chosen as a
proof of concept implementation due to its ease of use
and support for scalability. However, the modular-

Virtual61850: A Model-Driven Tool to Support the Design and Validation of Virtualized Controllers in Power Industry

161

ity developed within Virtual61850 allows it to target
other virtualization platforms in the future. This con-
tributes to the achievement of objective O5 of Table
1.

5.2 Editor Behaviour

The application is built following the principles of a
classic editor. The user can load and save instances
of the various models from and to the file system, as
well as view and edit their contents. Model instances
are typically stored as XML files. The XML format,
although offers a robust structure, is difficult to ma-
nipulate by humans. Thus, it was decided that upon
opening a file containing an instance of a model, the
user would be shown a clean tree view that focuses
on the instance’s structure and makes it easily under-
standable.

Along that, when the user selects an element of
the tree, the element’s properties are displayed as a
form in a separate view so that he can view and edit
the attributes and references of the selected element.
Figure 5 shows a typical state of the application in-
terface as described above. These editor functionali-
ties correspond to objective O1 of Table 1. It is also
important to note that when editing a model instance
through the editor, the syntax conformity to the sup-
ported domain standards is automatically ensured by
construction, thus ensuring criteria C4 of Table 1.

5.3 Instances Import/Export
Mechanism

Instances of the Wrapper model can become quite
large as virtualization projects become more complex.
Also, users might want to transfer only relevant in-
formation to some experts (i.e., network information
to telecom expert). Thus, the application provides an
import/export mechanism; it is possible to import and
export instances of SCL, ResourceNode, NetworkN-
ode, and OpenAPI models into and from an instance
of the Wrapper model. This mechanism is related to
objective O2 of Table 1.

5.4 OCL Validation

Model instance validation plays an important role in
speeding up the development process as it reduces hu-
man errors at the design stage. Eclipse EMF makes
it possible to define both business rules and seman-
tic constraints directly in the model, which can then
be checked for every instance of the corresponding
model. These constraints are defined using OCL and
a tool is provided by EMF for validating instances.

The application thus embarks on the OCL valida-
tion functionality, meaning the user can select an in-
stance and validate it, that is, check all the business
rules on every object of the instance. The tool also
displays a report to the user so that he can obtain de-
tails on potential OCL rules violations, as well as ex-
port it to a text file if needed. An example of a val-
idation report produced by the application is shown
in Figure 5. This contributes to the achievement of
objective O3 of Table 1.

OCL validation is directly integrated into the ap-
plication. Each generated model code comes with a
special Java class called a validator, containing meth-
ods for validating objects related to all classes of the
model. When the user selects an object of an instance
and validates it, this object is validated as well as all of
its ”children”. The principle of the recursive strategy
is based on a depth-first search approach (Goodrich,
2023).

/ / Make s u r e p o r t s e t h nbs are un iq ue
s e l f . p o r t s−>f o r A l l (e1 , e2 | e1<> e2

i m p l i e s e1 . e th number<> e2 .
e th number)

/ / Max nb o f p o r t s per Connec t ionNode
p o r t s−>s i z e () < 12

/ / Only L2 or L3 Data v a l u e s a t t h e same
t i m e

s e l f . l 2 p r o t o c o l d a t a −>notEmpty ()
i m p l i e s s e l f . l 3 p r o t o c o l d a t a −>
i sEmpty ()

s e l f . l 3 p r o t o c o l d a t a −>notEmpty ()
i m p l i e s s e l f . l 2 p r o t o c o l d a t a −>
i sEmpty ()

/ / Only one a d d r e s s a t t h e same t i m e
a d d r e s s−>notEmpty () i m p l i e s g o o s e s e−>

i sEmpty () and smv−>i sEmpty ()
g o o s e s e−>notEmpty () i m p l i e s a d d r e s s−>

i sEmpty () and smv−>i sEmpty ()

Listing 1: Examples of OCL constraints on the Wrapper
model.

6 IMPLEMENTATION

To implement the various functionalities described
above, it has been decided to develop a heavy client
(also called rich client). Eclipse EMF provides
the Eclipse Rich Client Platform (RCP) framework,
which fits to our needs. RCP also relies on a model-
driven approach for building complete graphical in-
terfaces.

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

162

Properties of selected objectInstance tree view

Instance validation report

Figure 5: Interface of the Virtual61850 application.

6.1 General Architecture

The framework provides a context system coupled
with dependency injection to enhance the ability to
separate an application’s components into various
dedicated services. The use of such a framework
helps speed up the development of our proof-of-
concept application, and its native compatibility with
the various Eclipse tools simplifies implementation.

Models are designed using Ecore, a meta-model
that is the central component of EMF. Ecore is capa-
ble of generating model code for the Java language,
which can then be used in our application to easily
manipulate instances of various models. When gen-
erating model code, Ecore can also generate utility-
related classes like the Resource Factory that make
it possible to persist model instances to the file sys-
tem in the form of XML files and load these instances
back by parsing the XML content.

Our application needs to display information
about the instances the user wants to edit, that is, some
kind of view model or forms. Creating forms for edit-
ing an object’s properties can be a tedious task espe-
cially when models contain dozens of classes, with
each class potentially containing multiple attributes
and references. To speed up this process, EMF

provides the EMF Forms framework (Eclipse-EMF,
2023), which automatically generates view models
from the model definition file (an instance of the
Ecore meta-model) that can be customized using a
graphical editor.

Generated view models are compatible with mul-
tiple graphical libraries and can be easily integrated
into our Eclipse RCP application, as shown in the Ob-
ject Properties part of Figure 5. The following para-
graphs describe the implementation choices that allow
partial modularity and extensibility of the application
covering criteria C2 of Table 1.

6.2 Models and Transformations
Integration

The application needs to handle all parts of the root
Wrapper model. Internally, the application uses an
enumeration to keep track of all managed models.
This enumeration contains important fields related to
the model, such as the human-readable name, and the
root class of the model. Also, it contains the corre-
sponding object validator (used for OCL validation)
or the resource factory by generating or parsing the
data instances.

This system is a first step towards a fully modular

Virtual61850: A Model-Driven Tool to Support the Design and Validation of Virtualized Controllers in Power Industry

163

model integration as described in criteria C2 in Table
1. This contributes to the achievement of objective O4
of Table 1. It is possible to add new supported mod-
els, but this must be done manually, that is, by adding
an item to the corresponding enumeration. Any newly
added model is automatically compatible with the ed-
itor, that is, the application becomes fully capable of
opening instances of this model, validating instances
(if OCL rules are defined), and executing transforma-
tions that are compatible with it.

6.2.1 M2M Transformation

QVTo is a model transformation language that is in-
cluded in the EMF. It is used for specifying and
executing model transformations, which consists of
transforming an instance of a model into an instance
of another model, which is a process that is very fre-
quently used in the context of MDD. QVTo uses a
high-level declarative syntax for expressing transfor-
mation rules and is based on the OMG QVT specifi-
cation which ensures interoperability and consistency.

Every QVTo transformation starts by referencing
the models that it needs to handle. Then, we define
the signature of the transformation that is, its input
and output and its main entry point in the main func-
tion. The mapping function for creating Docker ser-
vices from a Wrapper model are seen in Listing 1.

Deployments are more complicated to determine
because we need to navigate in the NetworkNode in-
stance of the Wrapper in order to determine the vir-
tual connection points that are associated with our
ResourceNode image. For each connection point, we
create a container for the service by using the toDock-
erContainer mapping function.

mode l type WRAPPER ” s t r i c t ” u s e s wrapper
(’ . . . ’) ;

mode l type MINI DOCKER COMPOSE ” s t r i c t ”
u s e s miniDockerCompose (’ . . . ’) ;

mode l type RESOURCE NODE ” s t r i c t ” u s e s
r e s o u r c e N o d e (’ . . . ’) ;

mode l type NETWORK NODE ” s t r i c t ” u s e s
networkNode (’ . . . ’) ;

mapping r e s o u r c e N o d e : : Image : :
t o D o c k e r S e r v i c e () : S e r v i c e {

r e s u l t . name := s e l f . name ;
r e s u l t . v e r s i o n := ” 1 ” ;
r e s u l t . image := s e l f−>map

toDocker Image ()−>s e l e c t O n e (
miniDockerCompose : : Image) ;

r e s u l t . dep loymen t s := i n p u t .
r o o t O b j e c t s () [Wrapper] .
networkNode .
v i r t u a l C o n n e c t i o n P o i n t s−>
s e l e c t (vcp | vcp .
dep loyedImage = s e l f)−>map

t o D o c k e r C o n t a i n e r () ;
}
Listing 2: QVTo M2M transformation example from
Wrapper resourceNode to miniDockerCompose models.

An instance of the SCL model contains the def-
inition of the various IEDs installed in a substation.
Each of these IEDs must be virtualized, consequently,
we need to create a ResourceNode instance in which
we define a VM or container image for each IED. A
simple transformation that generates a pre-initialized
ResourceNode instance was created. Along with cre-
ating instances of the Image class, it also pre-fills in
some attributes to speed up development and help us
support scalability.

6.2.2 M2T Transformation

Acceleo is a M2T transformation language tool that
is used to generate textual artifacts such as source
code, documentation or configuration files from mod-
els. Acceleo allows you to define templates and rules
that specify how to transform model instances into
text output.

Automatically generating Docker Compose
YAML configuration files from an instance of the
Mini-DockerCompose model supports an iterative
development process, where models can be improved
based on feedback and testing. Changes to the models
can then be easily propagated by re-generating code,
for example. The principle of the transformation
mainly relies on generating the correct YAML tree
for Docker Compose configuration files with all
possible data found in the Compose instance. In
case the Mini-DockerCompose instance contains at
least one network, we write the networks’ top-level
element. Then, for each network, we add an entry
to this element which corresponds to the name
of the network. Eventually, we add another layer
with the properties of the corresponding network.
Similar code is used for defining Docker volumes and
configs.

[t e m p l a t e p u b l i c g e n e r a t e E l e m e n t (
compose : Compose)]

[comment @main /]

[i f (compose . ne tworks−>s i z e () > 0)]
n e t w o r k s :
[f o r (ne twork : Network | compose .

n e t w o r k s)]
[ne twork . name /] :
[f o r (p r o p e r t y : P r o p e r t y | ne twork .

p r o p e r t i e s)]
[p r o p e r t y . key /] : [p r o p e r t y . v a l u e /]

[/ f o r]
[/ f o r]

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

164

[/ i f]

Listing 3: Acceleo M2T transformation example from
miniDockerCompose models to .yml config file.

6.3 Internal Services Modularity

Various features of the application were implemented
using a service system, that is, an implementation
that is separated in a dedicated package. This is the
case for functionalities such as OCL validation, QVTo
and Acceleo transformations executors, instance per-
sistence, and the embedded program launcher. Each
service can be used in any part of the application by
using the dependency injection mechanism combined
with Eclipse context annotations. This contributes to
the achievement of objective O6 of Table 1.

Validation Severities
Highlighting System

Preferences
Service/Page

Preferences
Item

Item Serialization
Factory

Hidden Classes
Service

Hidden Classes
Page

Hidden Class Hidden Class
Serial. Factory

Interfaces

DIA
Service

DIA
Page

Default Identifier
Attribute

DIA
Serial. Factory

VSH
Service

VSH
Page

Validation Severity
Highlighting

VSH
Serial. Factory

U
se

r P
re

fe
re

nc
es

 E
nu

m
er

at
io

n Hidden Classes System

Default Identifier Attributes
System

Figure 6: User Preferences system overview.

6.4 Extensible User Preferences System

The application provides a simple user preferences
system so that the user can customize how the appli-
cation behaves. As shown in Figure 6, three prefer-
ences have been implemented: 1) the possibility to
hide certain classes in the instance tree view, 2) cus-
tomizing which attributes are used to display a name
in the instance tree view, and 3) how validation errors
and warnings are highlighted.

The RCP framework provides a way to persist
data across application launches called persisted state,
which our implementation uses to store user prefer-
ences. However, the only way to store data is by us-
ing key-value pairs, both the key and the value be-
ing strings. We could have decided to implement our

own user preferences persistence system, but using a
mechanism that is directly integrated within Eclipse
RCP was much simpler and less time-consuming.

In case one wants to store objects and not only
primitive types, it is thus necessary to implement a se-
rialization system. One important and useful aspect of
the Eclipse preferences system is the notion of scope.
The application uses two different scopes: the default
scope which is useful for providing a default initial
configuration, and the instance scope which contains
the actual user preferences. This system mainly re-
lies on one class and two interfaces that are described
below.

• Preferences Manager: This class is in charge of
providing a standard way to access, store, and
delete key-value pairs in the preferences. As the
Eclipse preferences system works using a node
tree, each preferences type stores its data in a spe-
cific and exclusive node. The class implements
three main methods: get, put, and remove. It is
capable of accessing both the default and instance
scope.

• Preferences Item Serialization Factory: This is
an interface that is used to implement the seri-
alization factory for each preferences item type.
This is where the programmer implements the se-
rialization mechanism. It defines three methods:
getInstance (this is intended to be a singleton),
serialize and unserialize.

• Preferences Item: This is an interface that is used
to implement all preferences items. It only de-
fines one method serialize that generally just
calls the serialize method from the correspond-
ing preferences item serialization factory.

6.5 Embedded Java Programs

Sometimes our users might need to use external tools.
In the case of our ”Virtualization” process, users may
need to use a Java program called ”Genconfig” pro-
vided as a *.jar file. This program is used to gen-
erate additional configuration files for the IEC 61850
communication of IEDs based on the SCL instances
(.scd files) (MzAutomation, 2023). The *.jar file
has been included in the application’s resources and
is executable by the user from the interface.

The application source code contains an enumer-
ation that holds items that reference each embedded
Java program. It contains all the information needed
to execute the program including its name and how to
retrieve the parameters from the user.

The application integrates a service, the Em-
bedded Program Launcher, that is responsible for

Virtual61850: A Model-Driven Tool to Support the Design and Validation of Virtualized Controllers in Power Industry

165

prompting the user for the various parameters re-
quired by the program (as defined in the enumeration
item) and then launching the execution of the program
using the provided parameters. A new separate pro-
cess is created alongside the application, which can
be interrupted at any time by the user. The service
also reports back any errors that might occur during
the program’s execution.

7 PoC EVALUATION

The Virtual61850 tool was first utilized for basic
testing purposes of different sets of instances. Vir-
tual61850 source code builds (Linux and Windows),
manuals, and test example public data have been
anonymously archived on the public Zenodo page.
We invite the reviewers to view and test our appli-
cation by following the tutorial found on Zenodo 1.

7.1 Instance Example

The stability and ease of use of the application as per
criteria C1 were observed. In general, we noticed a
very stable performance for the Windows build ver-
sion while the Linux build had some minor instability
(originating from Eclipse for Linux).

Figure 7 shows an example from the start to end
configuration file generated. The process starts by im-
porting an existing SCD file describing the communi-
cation interfaces and data model of the IED as per
IEC 61850. Both generic (non-real) SCD files and
real scd files from a digital substation commissioning
project were included. Each IED was mapped to an
image with its appropriate resource and network de-
scriptions within a Wrapper model.

The editor allows to perform a navigation of
the model thanks to a tree view. We note that in
real digital substations, a system topology with over
200 vIEDs can be needed. The time to create a
proper instance is hence significantly reduced com-
pared to manual manipulations. The M2M transfor-
mation maps each image to a service to be ran. Fi-
nally, an M2T transformation allows us to generate
the platform-specific configuration, which in our case
was a docker-compose YAML file, that can be used
by the power system engineer for further testing the
vIEDs’ environment and their performance.

1anonym. (2023). Virtual61850 application. Zenodo.
https://zenodo.org/records/10041282

7.2 Application Quantitative Analysis

In order to evaluate the performances of the devel-
oped application, we ran several benchmarks each re-
lated to a specific metric. Two major metrics were
identified including instance size and validation time.
These metrics can help us determine how well criteria
C1 from Table 1 is considered.

Each metric presented in Tables 2 and 3 is the
average of 10 samples. A sample is created by
launching the application, opening a specific file, and
eventually executing a transformation. All samples
were produced on a machine with a 1.60 GHz Intel
Core i5-8265U processor, 8 GB 1800 MHz DDR3
memory running on Windows 10 Enterprise version
10.0.19045 and OpenJDK 17.0.6.

7.2.1 Handling Large-size Instances

In the context of our motivating example, in-
stance files can become as large as a few hundred
megabytes in the case of large substation commis-
sioning projects. Thus it is interesting to evaluate
how our application behaves in these cases as per the
requested criteria C3 in Table 1. Table 2 below de-
scribes the results we obtained in terms of memory
consumption in various scenarios. For each scenario,
the application is either in an idle state or with a single
opened instance or file of the specified size.

These results show that as the manipulated in-
stance grows in size, the memory consumption grows
as well but in a more pronounced way (for instance,
opening a 1 MB instance uses 34 MB). This growing
factor seems to decrease as the instances become big-
ger: only 610 MB is used for a 50 MB instance, so
a factor of 12. In the case of files, the memory con-
sumption also increases although approximately half
as much as for instances. Again, as files become big-
ger, the memory consumption factor becomes smaller.

From a user point of view, manipulating large-size
instances should not be a real issue, as the memory
consumption stays at an acceptable level when edit-
ing instances of a few dozen megabytes. However, it
is argued that the benchmarking has only been con-
ducted for instances with limited and restricted model
sizes. Therefore, the current results are not yet gener-
alizable to larger instances.

7.2.2 Validation Time

Another challenge when dealing with large-size in-
stances is the duration of the OCL validation. As it
is a critical feature of our application, it is important
that it can stay usable when working with instances
of several hundred megabytes. Table 3 displays the

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

166

Mini-DockerCompose
generated

YAML configInitial Wrapper Model

M2M
Transformation

QVTo

M2T
Transformation

Acceleo

Figure 7: Instance example of Wrapper model transformed into miniDockerCompose through M2M and a .yaml config file
with M2T by importing an existing SCD file.

Table 2: Memory usage in typical scenarios.

Scenario Memory / Idle
Idle 225 MB //
1 MB instance 259 MB + 34 MB
18 MB instance 583 MB + 358 MB
50 MB instance 835 MB + 610 MB
1 MB file 237 MB + 12 MB
10 MB file 299 MB + 74 MB
100 MB file 864 MB + 639 MB

execution times measured in various scenarios with
instances of different sizes. In general, the validation
times are highly dependant on the number and time of
constraints under test. The results obtained were for
the Wrapper model with increasing number of con-
straints as the size of instance increases. We note that
the validation times are relatively acceptable for our
proof of concept study, but merit further optimization
to obtain a more rapid toolchain behaviour.

Table 3: OCL validation duration in typical scenarios.

Scenario Validation Time
1 MB instance 0.40 s
10 MB instance 2.02 s
18 MB instance 4.01 s
50 MB instance 6.61 s

8 CONCLUSION

This paper presented how a Model-Driven Engineer-
ing approach could be beneficial for facilitating the
adoption of virtualized controllers by the power in-
dustry. Virtual61850, a proposed tool for editing
and configuring virtualized power controller instances

was detailed and benchmarked based on some indus-
trial requirements. These requirements include plat-
form independence, legacy standards support, valida-
tion times and error reductions, as well as scalability
and support of large instances.

A graphical interface used as a proof-of-concept
tool editor for configuring virtualized controllers was
developed. It is based on Eclipse EMF and integrates
various models (61850 communication, resources,
and networking descriptors, OpenAPI) as well as val-
idation and transformation engines (based on OCL,
QVTo, and Acceleo technologies). The application
provides a set of functionalities that satisfy the var-
ious objectives regarding model editing, validation,
and transformations (O1..O6) initially set, and has
been designed to be easily extensible for future de-
velopments, following a modularity logic as specified
by criteria C2.

The validation by design capabilities can prevent
configuration errors from an early design stage of the
development process. This is highly useful when in-
tegrating and testing new concepts as virtualized con-
trollers within a well defined and iterative toolchain
process. Also, the possibility of supporting scalable
large instances was validated thanks to measuring
both memory consumption from the application and
validation time.

Future works include implementing a tool to syn-
chronize between the model environment and the
Docker Engine API so that the user can simulate the
virtualized controllers directly from the application.
Additional Model-to-Model transformations allowing
users to virtualize controllers using virtual machines
or other virtualization technologies can be added to
adapt to multiple platforms. Also, the multi-threaded
OCL validation mechanism can be reworked by im-

Virtual61850: A Model-Driven Tool to Support the Design and Validation of Virtualized Controllers in Power Industry

167

plementing a thread pool and load balancing system
to precisely adjust the number of threads and address
the unbalanced tree issue. Finally, it is possible to
support a mechanism that could convert instances cre-
ated using an old version of a model to instances com-
patible with the newest version of this model. This en-
courages even further the iterative development prin-
ciple.

REFERENCES

2019, I. E. R. (2019). Standards pour les smartgrids itech
edf r&d e. lambert.

Acceleo (2023). Acceleo. https://wiki.eclipse.org/
Acceleo/Getting_Started.

Andren, F., Strasser, T., Rohjans, S., and Uslar, M. (2013).
Analyzing the need for a common modeling language
for Smart Grid applications. In 2013 11th IEEE In-
ternational Conference on Industrial Informatics (IN-
DIN), pages 440–446, Bochum, Germany. IEEE.

Andrén, F., Strasser, T., and Kastner, W. (2017). Engineer-
ing Smart Grids: Applying Model-Driven Develop-
ment from Use Case Design to Deployment. Energies,
10:374.

Brédillet, P., Lambert, E., and Schultz, E. (2010). Cim,
61850, cosem standards used in a model driven inte-
gration approach to build the smart grid service ori-
ented architecture.

CENELEC (2012). Smart grid coordination group smart
grid reference architecture.

Clark, T., Sammut, P., and Willans, J. (2015). Applied
Metamodelling: A Foundation for Language Driven
Development (Third Edition). arXiv:1505.00149 [cs].

Corradini, F., Fedeli, A., Fornari, F., Polini, A., and Re, B.
(2022). X-IoT: a model-driven approach for cross-
platform IoT applications development. In Proceed-
ings of the 37th ACM/SIGAPP Symposium on Applied
Computing, Virtual Event. ACM.

Czarnecki, K. and Helsen, S. (2006). Feature-based survey
of model transformation approaches.

Docker (2023). Docker inc. https://www.docker.com/.
Docker-Compose (2023). Docker compose. https://

docs.docker.com/compose/.
Eclipse-EMF (2023). Eclipse emf forms. https://

eclipse.dev/ecp/emfforms/.
ETSI (2023). Etsi-nfv-sol001. https://forge.etsi.

org/rep/nfv/SOL001.
Goodrich, M. T. (2023). Depth-first search.

https://www.ics.uci.edu/˜goodrich/teach/
cs260P/notes/DFS.pdf.

IEC (2013). Communication networks and systems for
power utility automation – part 5: Communication re-
quirements for functions and device models.

IEC (2020). Communication networks and systems for
power utility automation – part 7-1: Basic commu-
nication structure – principles and models. In IEC TR
61850.

Kabbara, N., Nait Belaid, M. O., Gibescu, M., Camargo,
L. R., Cantenot, J., Coste, T., Audebert, V., and
Morais, H. (2022). Towards software-defined protec-
tion, automation, and control in power systems: Con-
cepts, state of the art, and future challenges. Energies.

Kent, S. (2002). Model driven engineering. In International
conference on integrated formal methods, pages 286–
298. Springer.

Kleppe, A., Warmer, J., and Bast, W. (2003). MDA Ex-
plained: The Model Driven Architecture: Practice
and Promise.

Ledeczi, A., Davis, J., Neema, S., and Agrawal, A. (2003).
Modeling methodology for integrated simulation of
embedded systems. ACM Transactions on Modeling
and Computer Simulation.

LinuxFoundation (2023). Openapi. https://www.
openapis.org/.

Lundqvist, B. and Aabo, Y. (2002). The cost benefit of mod-
ern Substation Automation in Electrical High Voltage
Installations, abb automation.

Marcadet, D. and Lambert, E. (2016). Riseclipse: Why
working at the model level is better for validating data
conforming to iec standards. In 2016 Power Systems
Computation Conference (PSCC).

MzAutomation (2023). lib61850. https://github.com/
mz-automation/libiec61850.

Neis, P., Wehrmeister, M. A., and Mendes, M. F. (2019).
Model Driven Software Engineering of Power Sys-
tems Applications: Literature Review and Trends.
7:177761–177773.

OASIS (2023). Oasis-tosca. http://docs.oasis-open.
org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.
html.

OCCI-WG (2023). Occi. https://
2020.standict.eu/standards-watch/
occi-12-open-cloud-computing-interface-%
E2%80%93-infrastructure.

OCL (2023). Ocl. https://projects.eclipse.org/
projects/modeling.mdt.ocl.

OMG (2023). Meta-modeling and the omg meta ob-
ject facility (mof). https://www.omg.org/ocup-2/
documents/Meta-ModelingAndtheMOF.pdf.

Paraiso, F., Challita, S., Al-Dhuraibi, Y., and Merle, P.
(2016). Model-Driven Management of Docker Con-
tainers. In 2016 IEEE 9th International Conference
on Cloud Computing (CLOUD). IEEE.

QVTo (2023). Qvto. https://projects.eclipse.org/
projects/modeling.mmt.qvt-oml.

RedHat (2023). Kvm. https://www.linux-kvm.org/
page/Main_Page.

Resch, J., Schuiki, B., Schöndorfer, S., Brandauer, C.,
Panholzer, G., Pröstl Andrén, F., and Strasser, T. I.
(2020). Engineering and validation support frame-
work for power system automation and control appli-
cations. (8).

VMware (2023). Vmware. https://www.vmware.com/
fr.html.

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

168

