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Abstract: Previous research has shown that, to a large-extend, deep feature representations of image-patches that belong
to the same semantic concept, lie in the same direction of an image classifier’s feature space. Conventional
approaches compute these directions using annotated data, forming an interpretable feature space basis (also
referred as concept basis). Unsupervised Interpretable Basis Extraction (UIBE) was recently proposed as a
novel method that can suggest an interpretable basis without annotations. In this work, we show that the
addition of a classification loss term to the unsupervised basis search, can lead to bases suggestions that align
even more with interpretable concepts. This loss term enforces the basis vectors to point towards directions
that maximally influence the classifier’s predictions, exploiting concept knowledge encoded by the network.
We evaluate our work by deriving a concept basis for three popular convolutional networks, trained on three
different datasets. Experiments show that our contributions enhance the interpretability of the learned bases,
according to the interpretability metrics, by up-to +45.8% relative improvement. As additional practical
contribution, we report hyper-parameters, found by hyper-parameter search in controlled benchmarks, that can
serve as a starting point for applications of the proposed method in real-world scenarios that lack annotations.

1 INTRODUCTION
A crucial finding of post-hoc explainable artificial
intelligence (XAI) in computer vision, is that, in
standard convolutional image classifier architectures
(Simonyan and Zisserman, 2015; Szegedy et al.,
2015; He et al., 2016), deep representations of im-
age patches corresponding to the same human under-
standable concept (e.g. image patches of a cat face, a
car window, or patches of a wall) lie on the same fea-
ture space direction (Szegedy et al., 2013; Kim et al.,
2018; Zhou et al., 2018). Furthermore, quantitatively,
this property is more explicit towards the top layers of
the networks (Alain and Bengio, 2016).

The conventional approach to discover concept di-
rections in the feature space of a pre-trained convolu-
tional neural network (CNN) requires annotated data
(Zhou et al., 2018; Kim et al., 2018). Each concept di-
rection is defined by a concept vector which coincides
with the normal of the hyperplane that separates rep-
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resentations of images (or image-patches) that depict
the concept from representations of images (or image-
patches) that depict other (negative) concepts. This
approach is applicable alike, whether the annotations
are available at the image-level (Kim et al., 2018) or
at pixel level (Zhou et al., 2018).

In (Zhou et al., 2018), the authors used the learned
set of concept vectors, to construct an interpretable
feature space basis (here also referred as concept ba-
sis). A concept basis can provide answers to sev-
eral questions regarding the CNN and its predictions
(Doumanoglou et al., 2023). For instance, it can be
used to explain the relationship between concepts and
filters (Fong and Vedaldi, 2018), to provide local ex-
planations by interpreting predictions of individual
examples (Zhou et al., 2018), or to provide global ex-
planations by quantifying the class sensitivity of the
CNN with respect to a concept (Kim et al., 2018).

Apart from the conventional approaches (Kim
et al., 2018; Zhou et al., 2018), recently a novel, unsu-
pervised, post-hoc, method was proposed that is able
to derive and suggest a concept basis without the need
of annotations (Doumanoglou et al., 2023). In that
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case, the search for a concept basis is guided based on
the explanation that the basis provides for deep repre-
sentations. In particular, it was shown that projecting
a representation to all the concept vectors of an inter-
pretable basis and hard-thresholding, leads to sparse
binary representations and the search for the concept
basis is guided by this criterion.

To suggest an interpretable basis, prior work
(Doumanoglou et al., 2023) exploits structure in the
feature population of the studied CNN. However, the
suggested concept vectors are not explicitly linked to
the prediction strategy of the studied network. Here,
we argue that an explicit link between the concept
vectors and the CNN classifier’s output has three ben-
efits. First, in case the network makes predictions
based on human interpretable features, the suggested
basis’ interpretability can be improved by this link.
Second, in case the network uses a concept that is not
known to humans, this link can reveal the use of this
new concept which can be understood by inspecting
dataset samples that maximally activate the concept
vector (Kim et al., 2018). And third, in case the net-
work is cheating through spurious correlations in the
data, this link can expose this malfunction. Overall,
linking the basis search with the CNN classifier’s out-
put produces a basis that can provide explanations re-
lated to the prediction strategy of the model. Eventu-
ally, the interpretation that this basis can provide can
be used to encourage trust to the model or debug it.

In this work, we make a simple, yet elegant, three-
fold impactful extensions to (Doumanoglou et al.,
2023). First, we empirically found that the number of
hyper-parameters of the Inactive Classifier Loss (ICL)
in (Doumanoglou et al., 2023) does not contribute
much to the interpretability of the learned bases and
thus, here we propose a simplification that reduces
their count. Second, and most important, we pro-
pose a loss term that guides the search of concept
vectors towards the directions that have stronger im-
pact on the CNN’s prediction outcomes and quanti-
tatively justify that the bases learned with this term
score better in the interpretability metrics. Third, we
provide indicative hyper-parameter values for the pro-
posed method, that were found by extensive hyper-
parameter search. Those values were experimentally
found to work best in our benchmarks (for which an-
notations are available for quantitative evaluation) and
may serve as a future reference for applying the pro-
posed method in real-world cases, when annotations
are absent. Finally, as a last contribution, inspired
from (Zarlenga et al., 2023), we propose an additional
basis interpretability metric which we also use for ba-
sis interpretability evaluation.

2 BACKGROUND

2.1 Problem Statement

Considering an intermediate layer of a pre-trained
CNN, let D ∈ N+ denote the dimensionality of its
feature space. Let X ∈ RH×W×D denote the rep-
resentation of an image in this layer, and xp ∈ RD

a spatial element of this representation at location
p = (x,y),x ∈ {0,1, ...,W − 1},y ∈ {0,1, ...,H − 1}.
Previous work (Alain and Bengio, 2016; Zhou et al.,
2018; Kim et al., 2018) has shown that, based on
their semantic label, deep representations (either X or
xp), especially for layers near the top, are - up to a
large extend - linearly separable. Based on this fact,
(Zhou et al., 2018; Doumanoglou et al., 2023) were
motivated to construct a feature space basis (referred
as interpretable basis or concept basis) where each
vector in the basis, points towards the direction of
the feature space where representations of a human-
understandable concept lies. Once an interpretable
basis is learned, it can be used to attribute human-
understandable meaning to intermediate representa-
tions xp, by projecting xp onto the interpretable basis.
In both approaches (Zhou et al., 2018; Doumanoglou
et al., 2023), the learned basis is extracted in a post-
hoc manner by analyzing feature populations, and re-
gards a specific layer of the pre-trained CNN image
classifier, while the weights of the CNN classifier it-
self, are kept frozen. In this work, we contribute so-
lution improvements to the problem of unsupervised
concept basis extraction, by suggesting simple and el-
egant, yet impactful, adjustments to (Doumanoglou
et al., 2023).

2.2 Supervised Approach to Concept
Basis Extraction

Let wi ∈ RD, i ∈ I , I = {0,1, ..., I − 1} denote a set
of I ≤ D, I ∈ N+ concept vectors that form a concept
basis for the previously mentioned feature space. In
the standard supervised approach to concept basis ex-
traction (Zhou et al., 2018), each concept vector wi is
learned by training a linear classifier {wi,bi},bi ∈ R
(also referred as concept detector (Bau et al., 2017;
Doumanoglou et al., 2023)) with the objective to sep-
arate representations of examples depicting a concept
(e.g. representations of patches depicting “car”) from
representations of examples depicting other (nega-
tive) concepts (e.g. representations of patches depict-
ing “wall”, “person”, “sky”, etc). For instance, after
successfully training a concept-detector for the con-
cept “car”, the vector wi, which coincides with the
separating hyper-plane’s normal, points towards the
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Figure 1: From left to right: a) An interpretable direction w points towards the representations of a concept in the CNN’s
feature space. The position of the separating hyper-plane delimits the subspace where those representations lie. b) UIBE
finds a rotation of the feature space {wi} along with the positions {bi} of the separating hyper-planes, such as, under the new
rotated basis, each feature representation is classified positively by just one (or a few) of the classifiers {wi,bi}. c) and d)
In this work we complement UIBE with an additional loss term that enforces the new basis to point towards directions that
maximally influence CNN’s predictions. An intermediate representation is manipulated towards the negative direction of the
basis vector that classifies it positively, in an amount sufficient to surpass the position of the classifier’s separating hyper-plane,
and require that under this manipulation the prediction of the CNN becomes maximally uncertain.

feature space direction where the representation of the
concept (“car”) lies. Thus, projecting an arbitrary xp
on wi measures how much car is contained in the rep-
resentation, while in that case, the bias bi, delimits
point zero, i.e. the minimum projected quantity that is
required in order to attribute the label “car” to xp.

For the supervised approach to work, the avail-
ability of a concept-dataset containing dense per-pixel
annotations is required. Correspondence between the
pixel-level annotations, which are provided in the im-
age input space, and the deep image representations
at the various spatial locations (x,y) is established via
calculations related to the receptive-field of each spa-
tial feature xp.

2.3 Unsupervised Approach to Concept
Basis Extraction

Unsupervised Interpretable Basis Extraction (UIBE)
(Doumanoglou et al., 2023), has been proposed as
a novel method to suggest a concept basis with-
out the need of expensive annotations. At its core,
UIBE utilizes the same concept detector model (bi-
nary classifiers {wi,bi}) as the supervised approach,
with the additional constraint that the vectors wi
form an orthonormal basis (for the reasons behind
this, the reader is advised to refer to (Doumanoglou
et al., 2023)). For each concept detector in the basis,
the sigmoid classifier rule yp,i = σ(si(wT

i xp − bi)) ∈
(0,1),si ∈R+, ||wi||2 = 1 classifies the representation
xp positively whenever yp,i > 0.5.

UIBE is learning a concept basis for a CNN’s in-
termediate layer, by analyzing the feature population
xp∀p in a concept dataset. During basis learning, and
due to the lack of annotations, the name of the concept
that each classifier can detect is unknown. This name
is going to be determined later, using a procedure to
label the basis, as described in Section 2.4. Since
annotations are absent, training individual concept-
detectors is impossible. Instead of that, UIBE takes a

holistic approach, by considering the set of concept-
detectors in entirety. The basis that UIBE suggests,
satisfies a sparsity property that an interpretable basis
meets (Doumanoglou et al., 2023). In particular, in
UIBE, basis search is driven by the observation that
the semantic label(s) of each image-patch is (are) just
one (or just a few) over a plethora of other possible
semantic labels. Under the assumption that the pre-
trained studied CNN, has managed to disentangle the
different semantic concepts, this implies that for the
representation xp of each image-patch, only a frac-
tion of the concept-detectors (binary classifiers) as-
sociated with the concept basis would classify each
xp positively for the presence of the basis’ concepts.
This implies sparsity on the L1-normalized vectors
yp = [yp,0,yp,1, ...yp,I−1]. For a graphical illustration
please refer to Figure 1.

To find a concept basis, UIBE utilizes four kinds
of losses. The first one, is the Sparsity Loss (SL)
which, for the reasons described above, dictates en-
tropy minimization on the L1-normalized yp,i,∀i.
The second one, is the Maximum Activation Loss
(MAL), which enforces the most dominant positive
classification j, ( j : yp, j > yp,i∀i ̸= j) to be the most
confident prediction in an absolute sense, i.e. yp, j →
1.0. SL together with MAL guide basis search to-
wards directions where each xp is attributed only
a small fraction of concept labels, compared to the
plethora of concept labels that the basis vectors are
associated with. The third one, is the Inactive Clas-
sifier Loss (ICL) which ensures that each one of the
concept-detectors in the basis, is actually meaning-
ful, by classifying positively a minimum amount of
xp in the concept dataset. Finally, the Maximum
Margin Loss (MML) minimizes si, and thus im-
poses the largest possible margin around the separat-
ing concept-detector’s hyper-plane. In the rest of the
paper we say that a pixel p is explained by the ba-
sis, when yp,i > 0.5 for at least one i. We also say
that a pixel p is not explained by the basis when
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yp,i < 0.5∀i, i.e. none of the concept detectors in the
basis classify pixel p positively, as a sample of a con-
cept. Finally, we only consider I = D (Sections 2.1,
2.2), leaving study and experiments for other values
of I for future work.

2.4 Basis Labeling

The term basis labeling refers to the process of at-
tributing a concept label name to each one of the vec-
tors in a concept basis. This process is applicable only
to the bases learned in an unsupervised way, since
for the bases that were learned in a supervised man-
ner, the label of each concept vector is known even
before training the respective concept-detector. In
cases where annotations are available, the basis label-
ing process can be accomplished in a systematic way.
Basis labeling methods (Bau et al., 2017; Mu and An-
dreas, 2020) can be used in tandem with an annotated
concept dataset, such as Broden (Bau et al., 2017) and
Broden Action (Ramakrishnan et al., 2019).

In this work we use (Bau et al., 2017) to label the
bases extracted with the proposed method. In particu-
lar, let φi(c,K ) ∈ [0,1] denote a metric score function
that is used to measure the suitability of the classifier
i ({wi,bi}) to accurately detect concept c in the anno-
tated concept dataset K . The basis vector i is assigned
the concept label c⋆, which is the label of the concept
dataset that maximizes φi(c,Ktrain), among all c, in
the training split Ktrain of the concept dataset. For the
choice of φ we use Intersection Over Union (IoU), as
originally proposed in (Bau et al., 2017) and also used
in (Fong and Vedaldi, 2018; Mu and Andreas, 2020;
Doumanoglou et al., 2023)

2.5 Basis Interpretability Metrics

To measure the interpretability of a basis, we actu-
ally need to measure how well each concept-detector
performs in classifying positively the concept’s repre-
sentations, and negatively, the representations of con-
cept counter-examples (Bau et al., 2017; Zhou et al.,
2018). Thus, an annotated concept dataset is re-
quired.

In (Doumanoglou et al., 2023) two basis inter-
pretability metrics were proposed that were based
on ideas from other previous approaches (Bau et al.,
2017; Losch et al., 2021). In this work, we use
those exact same metrics, which are, subsequently,
described briefly. Using the validation split of the
concept dataset Kval , each classifier {wi,bi} is as-
signed a validation score φi(c⋆i ,Kval), with c⋆i denot-
ing the concept label assigned to the classifier during
the previously mentioned basis labeling procedure.

Then the two interpretability scores S 1 and S 2 are de-
fined as:

S 1 =
∫ 1

0

I−1

∑
i=0

1x≥ξ

(
φi(c∗i ,Kval)

)
dξ (1)

S 2 =
∫ 1

0
ψ(ξ)dξ (2)

with 1(x) denoting the indicator function. The first
metric S 1, counts the number of concept detectors in
the basis with a validation score better than a thresh-
old ξ. In the second metric S 2, ψ(ξ) is defined as
ψ(ξ) = |{c⋆i |∃ i : φ(i,c⋆,Kval) ≥ ξ}|, i.e. the number
of unique concept detectors exhibiting performance
better than ξ (Bau et al., 2017). In both cases, we
make the scores, threshold agnostic, by integrating
across all ξ∈ [0,1], as it was proposed in (Losch et al.,
2021; Doumanoglou et al., 2023).

2.6 Other Related Work

The proposed approach belongs in the same area as
other concept-based, post-hoc explainability methods
that do not require annotations for the discovery of
concepts encoded by a network. Although our ap-
proach builds upon a certain line of research (Szegedy
et al., 2013; Alain and Bengio, 2016; Bau et al., 2017;
Zhou et al., 2018; Kim et al., 2018; Doumanoglou
et al., 2023), which studies concepts as directions in
a CNN classifier’s feature space, there are other, re-
cent, approaches that study concepts from different
viewpoints. For instance, in (Zhang et al., 2021), a
concept vector points to the concept cluster’s center
and (Vielhaben et al., 2022) uses spectral clustering
to find meaningful subspaces in the CNN’s feature
space. Other than that, (Achtibat et al., 2023) extends
(Bach et al., 2015), by effectively turning a pixel at-
tribution method, to a concept discovery method. Fi-
nally, (Chormai et al., 2022) discovers disentangled
concept subspaces by taking into account the rele-
vance of neurons to the CNN’s prediction outcomes.
Our work is faithful to finding concepts that are rele-
vant to the CNN’s prediction outcome. In that sense,
our work also shares common ground with (Achtibat
et al., 2023) and (Chormai et al., 2022) although ap-
proaching concept discovery in a different way.

3 PROPOSED METHOD

3.1 Inactive Classifier Loss (ICL)
Simplification

In UIBE, the Inactive Classifier Loss (ICL) was pro-
posed as a loss term that would enforce the concept
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Table 1: a) Hyper-parameter names, bounds, step and initial value that were used in hyper-parameter tunning. The table also
provides the best values (suggestions) returned by the optimizer. λs, λma, λic, λmm, and λcc are the loss weight parameters
for Sparity Loss, Max Activation Loss, Inactive Classifier Loss, Maximum Margin Loss and CNN Classifier Loss. τ refers
to the hyper-parameter of equation 3. b) Comparing interpretabilities of the natural feature space basis, the basis extracted
with UIBE and the basis extracted with the proposed method for the latent space of ResNet50. UIBE’s scores are set as
the reference scores against which relative percentage scores are calculated. The loss term introduced in this work leads to
learning a basis that is significantly more interpretable than the reference, across all metrics, and especially in terms of S2.

(a)
λs λma λic λmm τ λcc

Lower 1.0 1.0 1.0 0.1 0.5 0.05
Upper 10.0 10.0 10.0 10.0 1.0 0.5
Step 0.5 0.5 0.5 0.5 0.1 0.01
Init 2.0 5.0 5.0 0.5 1.0 0.2

ResNet18 / Places365
Best 2.6 2.8 4.8 0.6 0.9 0.25

VGG16BN / ImageNet
Best 3.7 6.7 5.0 1.0 0.95 0.05

(b)

ResNet50 / MiT
Basis S 1 (↑) S 2 (↑) S 3 (↓)

Natural 90.82 (-27.1%) 16.24 (-12.0%) 0.023 (+0.44%)
UIBE 124.73 (+0.0%) 18.47 (+0.0%) 0.0229 (+0.0%)

Proposed 131.73 (+5.61%) 26.94 (+45.8%) 0.0225 (-1.75%)

detectors in the basis to classify positively (Section
2.3) a non-trivial amount of xp. In ICL’s absence,
some of the concept detectors in the basis might point
towards directions where none of xp is classified pos-
itively, introducing redundancy and a less useful basis
suggestion, since SL can be easier be fulfilled when
yp,i → 0, for most i.

Experiments with UIBE have shown that the qual-
ity of the extracted bases are mostly insensitive to the
intuitive choice of hyper-parameters for ICL. Thus, in
this work, we opt to reduce the complexity of the ap-
proach and simplify ICL, by removing the notion of
partitions. Let τ ∈ (0,1] denote a percentage over the
number of pixels p in the concept dataset, implicitly
controlling the minimum amount of pixels to be ex-
plained by the basis (Section 2.3). Let also νi = τ/I
and γ > 1,γ ∈ R+ a sharpening factor.

For the inactive classifier loss we use the follow-
ing equation:

L ic =Ei∈I
[ 1

νi
ReLU

(
νi −Ep[yp,i

γ)]
)]

(3)

which is the same formula as in (Doumanoglou et al.,
2023) but with a different definition for νi, eliminat-
ing the hyper-parameters αµ,ωµ and the intermedi-
ate variables nµ. Essentially, under the marginal case
where yp,i is close to zero or one (as urged by the com-
bination of SL and MAL), L ic equals zero, when each
one of the concept detectors classify positively at least
νi percent of the pixels xp and equals one in the case
none of the concept detectors classifies positively any
of them.

3.2 CNN Classifier Loss (CCL)

The concept vectors in a basis derived with
(Doumanoglou et al., 2023) are not necessarily related
to the CNN’s predictions. However, as mentioned in
Section 1, this work proposes that such a link could
improve the suggested basis’ interpretability, reveal

new concepts exploited by the network, or aid model
debugging. Here we focus on the first benefit, while
leaving the study of the other two for future work.

The motivation of our second contribution is
based on the fact that, in the absence of annotations,
we may try to exploit the knowledge of concepts that
are encoded into the network, to aid the discovery
of interpretable directions. Our hypothesis is that,
in many cases, interpretable directions might maxi-
mally influence the classifier’s predictions. For in-
stance, the classification of an image as the scene
“park” might be influenced by the presence of con-
cepts “person”,“tree” and “bench”. Thus, the latent
representation of an image depicting a “park” could
have strong components across the directions of those
interpretable concepts. In that case, and as a conse-
quence, we would expect that if we manipulate the
representation of the “park” image by attenuating its
components across the previously mentioned concept
directions, the classifier would find it hard to classify
the image and thus its prediction would become very
much uncertain.

More formally, we introduce the CNN Classifier
Loss (CCL), as a complement to the losses of UIBE.
The principal idea behind CCL is to manipulate each
of the representations xp, in such a way, that the re-
sulting representation x′p is not explained by the ba-
sis (Section 2.3), i.e. y′p,i < 0.5∀i and require that
the CNN’s prediction for the manipulated image rep-
resentation X′ becomes maximally uncertain. Let
dp,i = wT

i xp − bi denote the signed distance of xp to
the i-th concept’s separating hyperplane. On the one
hand, if dp,i is positive, this means that xp is a sample
of concept i. Thus, according to our principal idea, we
need to attenuate the presence of this concept in xp by
manipulating the representation in the direction −wi
and for a distance equal to dp,i. On the other hand,
if dp,i is negative, this implies that the concept i is
not present in xp and we do not need to perform any
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manipulation to remove it. Let also αp,i = σ(s′dp,i)
a coefficient in (0,1) that approaches 1 whenever we
need to perform a manipulation in xp for concept i.
The hyper-parameter s′ ∈ R+ is considered fixed and
its meaning is similar to s that was defined in Section
2. The manipulation x′p is given by the following for-
mula:

x′p = xp −Wv (4)
with the columns of W being equal to the concept vec-
tors of the basis and v ∈ RD a vector with elements
vi = αp,idp,i. Let the function f+ denote the part of
the CNN after the layer of study. If f+(X′) ∈ (0,1)K

denotes the final vector of probabilities of the CNN,
the CNN Classifier Loss is defined as:

Lcc =−EX′H ( f+(X′)) (5)

with H denoting the entropy of the CNN’s prediction
vector for the K ∈ N+ classes. An illustration of the
procedure is provided in Figure 1.

3.3 Basis Impurity Score

Inspired from the Oracle Impurity Score (OIS) that
was introduced in (Zarlenga et al., 2023), and to save
computational time, this work proposes a third basis
interpretability metric, that complements the previ-
ous two metrics described in Section 2.5. This met-
ric aims to capture how distinguished is the suitabil-
ity of each classifier {wi,bi} in the basis, in detect-
ing the concept associated with its assigned label.
More formally, let A ∈ [0,1]I×C a matrix with ele-
ments ai,c = φi(c,Kval) with c ∈ C and C denoting the
set of concept labels in the annotated concept dataset.
Let P ∈ {0,1}I×C the matrix with elements pi,c = 1 if
c = c⋆i and 0 otherwise. The Basis Impurity Score is
defined as:

S 3 =
1√
I|C |

||P−A||F (6)

In eq (6) |C | denotes the number of concepts in C and
|| · ||F the Frobenius norm of a matrix. A value of
zero for S 3 implies that the concept detectors associ-
ated with the basis do not share suitability in detecting
concepts other than the concept of their assigned la-
bel, while values closer to 1 imply less exclusivity in
this suitability.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

Overall Evaluation Approach. We choose to eval-
uate the bases extracted with the proposed method

based on the three basis interpretability metrics that
were described in Sections 2.5 and 3. For the eval-
uation, we derive bases for the last convolutional
layers (after ReLU) of three different CNN mod-
els: ResNet18 (He et al., 2016) trained on Places365
(Zhou et al., 2017), VGG16BN (Simonyan and Zis-
serman, 2015) (VGG16 with batch normalization lay-
ers) trained on ImageNet (Deng et al., 2009) and
ResNet50 (He et al., 2016) trained on Moments in
Time (MiT) (Monfort et al., 2019). Overall, we
follow the evaluation approach that was described
in (Doumanoglou et al., 2023). First we learn the
bases using the training split of the respective con-
cept dataset. Subsequently, we use (Bau et al., 2017)
to label the bases using the training split of the same
dataset and finally we use its validation split to com-
pute concept detector scores and the basis evaluation
metrics. For the networks trained on Places365 and
ImageNet we used the Broden (Bau et al., 2017) con-
cept dataset, while for the network trained on MiT we
used Broden Action (Ramakrishnan et al., 2019).
Parameter Initialization. In all of our experiments
we initialize the basis vectors with the vectors of
the natural feature space basis (Doumanoglou et al.,
2023). We also deviate from (Doumanoglou et al.,
2023) regarding the parameterization of margin and
bias. In this work, we use exponential parameteriza-
tion (et ) for both margin M = 1/s and bias b (in the
standardized space). Both M and b, are initialized to
t = log(0.5). We experimentally found that the expo-
nential parameterization stabilizes learning.
Hyper-Parameters. The efficacy of the proposed
method, like UIBE’s, relies on minimizing the indi-
vidual loss terms with the right balance. The pro-
posed method linearly combines five individual loss
terms (SL, MAL, ICL, MML, CCL) with coefficients
λ. In order to evaluate the potential of the proposed
approach, we perform two hyper-parameter tunning
experiments, by exploiting the availability of anno-
tations in the concept datasets. For these experi-
ments we take the 70% of the Broden’s training set
and further split it in 70%-30% train/validation splits.
For the validation metric we use S 2. The hyper-
parameter tunning experiments regard bases learned
for ResNet18 and VGG16BN. We don’t perform any
hyper-parameter tunning regarding bases learned for
ResNet50. For hyper-parameter optimization we use
the Nevergrad (Rapin and Teytaud, 2018) optimiza-
tion platform. We perform tunning in steps. In the
first step, we use the Two Points Differential Evo-
lution (TwoPointsDE) algorithm with budget 100, to
tune all parameters except λcc which is set to zero.
(This is the same as tuning UIBE, with the modifica-
tion of the hereby proposed ICL loss). Subsequently,
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Table 2: Comparing interpretabilities of the natural feature space bases and the bases extracted with either UIBE or the
proposed method. We set the metric scores extracted with UIBE, as the references against which relative percentage scores
are calculated. According to all the metrics, the loss term introduced in the proposed work consistently leads to basis extraction
of improved interpretability compared to UIBE, both for bases extracted for ResNet18 trained on Places365 as well as for
bases extracted for VGG16BN trained on ImageNet.

ResNet18 / Places365 VGG16BN / ImageNet
Basis S1 (↑) S2 (↑) S3(↓) S1 (↑) S2 (↑) S3(↓)

Natural 35.52 (-41.7%) 18.26 (-35.6%) 0.0272 (+5.0%) 34.72 (-27.0%) 11.86 (+1.4%) 0.0271 (+2.2%)
UIBE 60.93 (+0.0%) 28.39 (+0.0%) 0.0259 (+0.0%) 47.58 (+0.0%) 11.69 (+0.0%) 0.0265 (+0.0%)

Proposed 69.43 (+13.9%) 31.53 (+11.6%) 0.0256 (-1.1%) 48.96 (+2.9%) 12.11 (+2.9%) 0.0264 (-0.3%)

Table 3: Comparing Network Dissection results for all bases of ResNet18 and ResNet50. Two numbers are reported for each
concept category. The first being the number of concept detectors that can detect a concept from the category, and second, the
number of (unique) concepts from the category that can be detected by the detectors.

ResNet 18 / Places365
Basis Object Part Scene Material Texture Color Action

Natural 116 / 45 10 / 7 261 / 121 2 / 2 50 / 26 0 / 0 -
UIBE 248 / 53 21 / 10 117 / 110 8 / 6 28 / 21 1 / 1 -

Proposed 174 / 46 11 / 8 258 / 135 7 / 6 33 / 25 1 / 1 -
ResNet50 / MiT

Natural 295 / 35 20 / 5 126 / 43 1 / 1 357 / 27 0 / 0 336 / 86
UIBE 289 / 39 49 / 4 332 / 42 8 / 3 665 / 39 99 / 3 140 / 73

Proposed 403 / 44 26 / 3 104 / 52 5 / 5 37 / 25 1 / 1 1082 / 120

we kept the rest of the hyper-parameters frozen from
step one and did an initial search for λcc with the
same optimizer and budget 60 using a broad range of
values in 0.5− 5.0. (We did this step only once for
ResNet18 - and not for VGG16BN - to have an indi-
cation of λcc’s magnitude). Finally, we used the One-
PlusOne optimizer in order to further fine-tune λcc in
the range 0.05 − 0.5 with a budget of 20 trials, for
both ResNet18 and VGG16BN. The exact details and
the best hyper-parameter values are given in Table 1.
In all experiments we set s′ = 5.0.
Basis Learning Details. We use the Adam optimizer
to learn the concept bases, and the learning lasts for
a maximum of 300 epochs. We use a learning rate
scheduler to reduce the learning rate by a factor of 0.1
when the loss term does not improve for 10 epochs
and enable early stopping with patience of 15 epochs
and absolute minimum delta of 0.01. For the batch
size, we use the maximum number allowed by the
available GPU memory. We use the Broden (Bau
et al., 2017) and Broden Action (Ramakrishnan et al.,
2019) concept datasets to collect CNN feature popu-
lations and extract the concept bases. We use the ICL
and CCL losses proposed in this work, in addition to
the other losses from (Doumanoglou et al., 2023). For
basis learning, we linearly combine the various loss
terms based on the values suggested by the hyper-
parameter search and learn the bases using the whole
training split of the respective concept dataset (as op-
posed to the 70% of the training split that we used for
hyper-parameter search). For ResNet50, we used the
hyper-parameters suggested by the hyper-parameter
search for ResNet18.

4.2 Evaluation Results

In evaluation, we compare against the natural feature
space basis and the basis extracted with UIBE. Com-
parison with the supervised approach (Zhou et al.,
2018) yields similar findings as the ones reported in
(Doumanoglou et al., 2023) and is omitted. In these
experiments we use the full set of labels available in
the concept datasets (i.e. labels from all categories:
object / part / scene / material / texture / color and ac-
tion - when applicable -). For the natural feature space
basis we use wi = ei and compute bi according to (Bau
et al., 2017). Tables 1, 2 depict basis interpretability
results for all cases. For all the three different net-
works, the bases suggested by the proposed method
are scoring higher than UIBE across all the inter-
pretability metrics. The most prominent case regards
ResNet50 and S 2, in which the proposed method sug-
gests a basis that is more interpretable than UIBE by
a relative factor of +45.8%.

Regarding ResNet18 and ResNet50, we find it in-
teresting to share statistics that are reported by Net-
work Dissection (Bau et al., 2017) for all the con-
cept detectors in the bases participating in the bench-
mark. Those statistics were obtained using a fixed
value of ξ = 0.04, which is the value that was pro-
posed in the respective paper. Two numbers are pro-
vided per concept category in Table 3. The first be-
ing the number of concept detectors that can detect
a concept from the category, and second, the num-
ber of (unique) concepts from the category that can
be detected by the detectors. We find noteworthy to
highlight that for ResNet18, the basis suggested by
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the proposed method, has more than twice as much
concept detectors in the category scene than the basis
suggested by UIBE. Additionally its concept detec-
tors are able to detect 25 scene concepts more than
the detectors of UIBE. For a network that is trained
to do scene classification this suggestion looks highly
plausible. An even more prominent result regards
ResNet50. Compared to UIBE, the proposed method
suggests a basis with 10 times more concept detec-
tors, for concepts in the action category. Addition-
ally, the respective basis’ concept detectors can detect
47 more action concepts than the detectors of UIBE.
This suggestion aligns better with the goal of a net-
work that is trained to perform action recognition.

5 CONCLUSION

In this work we proposed to complement previous
work (UIBE) with a novel loss term, that exploits
the knowledge encoded in CNN image classifiers and
suggests more interpretable bases. The proposed
method demonstrates up to 45.8% interpretability im-
provements in the extracted bases, when using opti-
mal hyper-parameters that were suggested for learn-
ing a basis regarding a different classifier trained on
another task. Future work may study applications of
the proposed method to debug and improve model
performance.
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