
A Revisited Branch and Bound Method for the Weighted Safe Set
Problem

Alberto Boggio Tomasaz a and Roberto Cordone b

Department of Computer Science, University of Milan, Italy

Keywords: Weighted Safe Set Problem, Branch and Bound.

Abstract: The Weighted Safe Set Problem requires to partition an undirected graph into two families of connected com-
ponents, respectively denoted as safe and unsafe, in such a way that each safe component dominates the unsafe
adjacent components with respect to a weight function. We introduce some improvements to an existing exact
approach that produce a significant reduction in the effort required to find the optimum or in the gap between
the optimum and the best solution obtained within a given time limit. The first improvement consists of a
relaxation that is weaker than the original one, but allows to adopt a more effective branching strategy and
stronger variable fixing procedures. The second one is the integration of a dedicated heuristic in the exact ap-
proach. The experimental results show a strong average reduction of the computational time and the number
of branching nodes. This also mitigates the anticipated termination of the algorithm due to the exhaustion of
the memory on the largest benchmark instances.

1 INTRODUCTION

The Weighted Safe Set Problem (WSSP) is the prob-
lem of finding a safe set of minimum weight on a
connected undirected graph G = (V,E) with weights
w : V → R+ defined over the vertices. To define a
safe set it is necessary to introduce some concepts.
The weight w(C) of a subset of vertices C ⊆ V is the
sum of the weights of all vertices in it. Two sub-
sets C1,C2 ⊆V are considered adjacent (and we write
C1 ./C2) if there is at least one edge (u,v) in the graph
such that u ∈C1 and v ∈C2. Given a set S⊆V of ver-
tices and its complementary set U = V \ S, CG(S) is
the collection of all maximal connected components
induced by S in graph G and CG(U) the correspond-
ing collection induced by U . If the weight of each
component of CG(S) is not smaller than that of each
adjacent component of CG(U), we denote S as a safe
set, the components in CG(S) as safe components and
those in CG(U) as unsafe components. Given a safe
component Sc and an adjacent unsafe component Uc,
we will refer to the condition that w(Sc) ≥ w(Uc) as
safety constraint.

The WSSP was first introduced in its unweighted
version (the weight of every vertex is 1) by Fujita et al.

a https://orcid.org/0000-0003-3334-6238
b https://orcid.org/0000-0002-5439-1743

(2014), while Bapat et al. (2016) defined the general
weighted version. The real-world applications pro-
posed in these articles concern the choice of buildings
or areas to be converted into temporary shelters in or-
der to host people from the adjacent dangerous areas,
and the identification of a critical community which
can control the totality of a social network.

The problem is NP-hard for both unweighted and
weighted versions (Fujita et al., 2016; Bapat et al.,
2016). Its parameterised complexity has been studied
by Àgueda et al. (2018) and Belmonte et al. (2020).
Exact algorithms for specific instances have been pro-
posed by Fujita et al. (2016), Àgueda et al. (2018)
and Cordone and Franchi (2023). Approximation al-
gorithms have been proposed by Bapat et al. (2018)
and Ehard and Rautenbach (2020). Heuristic ap-
proaches have been presented by Macambira et al.
(2019) and Boggio Tomasaz et al. (2023b). Finally,
exact (non-polynomial) approaches have been pre-
sented by Macambira et al. (2019), Hosteins (2020),
Malaguti and Pedrotti (2023) and Boggio Tomasaz
et al. (2023a). The last one solves instances up to 60
vertices in a time limit of one hour.

In this article we revisit the combinatorial branch
and bound algorithm presented in Boggio Tomasaz
et al. (2023a), introducing a relaxation that is theo-
retically weaker, but most of the time equivalent, and
allows more efficient branching rules and reduction

Boggio Tomasaz, A. and Cordone, R.
A Revisited Branch and Bound Method for the Weighted Safe Set Problem.
DOI: 10.5220/0012359400003639
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Operations Research and Enterprise Systems (ICORES 2024), pages 113-122
ISBN: 978-989-758-681-1; ISSN: 2184-4372
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

113

procedures leading to a simpler and faster algorithm.
We also discuss the contribution provided by a good
heuristic initialisation.

2 THE REVISITED ALGORITHM

Boggio Tomasaz et al. (2023a) present a combinato-
rial branch and bound algorithm for the WSSP with
the following main features. The algorithm builds a
binary branching tree. It progressively assigns the
vertices either to the safe set S or the unsafe one,
U , thus extending the current safe and unsafe com-
ponents or creating new ones. The branching tree
is explored with the best-bound strategy, that is, al-
ways visiting the open node with the minimum lower
bound. In fact, in any branching node, the algorithm
computes a lower bound through a sequence of relax-
ations that combine manipulations of the graph and of
an Integer Linear Programming formulation. More-
over, it applies logical reduction procedures to move
free (i.e. unassigned) vertices into S or U . The com-
putation of the lower bound requires that at most one
of the connected components of the current safe set
S have free adjacent vertices. The other safe compo-
nents must be completely surrounded by unsafe ver-
tices. This is a basic drawback of the approach for two
reasons. First, it limits the branching rule, since not
all vertices can be selected and assigned to S and U in
the two children nodes. Second, it hampers the logi-
cal reduction procedures, since they cannot be applied
when the result creates several safe components with
adjacent free vertices, violating the requirement. On
sufficiently sparse instances (with a threshold exper-
imentally identified between 0.1 and 0.2), these lim-
itations are so strong that it actually proves more ef-
fective to resort to a trivial lower bound (the weight
of the current safe set, or of the maximum weight of
a current unsafe component) in order to preserve the
remaining parts of the algorithm.

In each branching node, the algorithm also gener-
ates a heuristic solution compatible with the branch-
ing constraints. While these solutions are computed
very quickly, their quality is bad. This is another
drawback of the approach. On small instances, in
fact, the branching process is still fast enough to find
a provably optimal solution in short time. On large
instances, on the contrary, the time limit sometimes
expires when the best known solution is still far from
the optimum. Moreover, a bad upper bound implies
an increase in the number of open nodes during the
visit of the branching tree, possibly leading to exhaust
the available memory.

In this paper we revise the branch and bound al-

gorithm in order to alleviate its two main drawbacks.
To address the first issue, we introduce an additional
graph manipulation that in principle yields a further
relaxed problem, and therefore a weaker lower bound.
The empirical results, however, show that the down-
side is most of the time null or negligible, while the
possibility to select the branching vertex more freely
and to apply all reduction procedures gives a bene-
ficial contribution. Overall, this allows to simplify
the algorithm, avoiding the distinction between sparse
and dense instances, and to exploit the strengths of all
components of the algorithm at the same time. To
address the second issue, we apply a refined heuris-
tic before the branch and bound algorithm to obtain a
starting upper bound.

In the following section, we present the relaxation
proposed by Boggio Tomasaz et al. (2023a) and the
additional manipulation here introduced, discussing
its potential effects and the reasons that often make
them irrelevant. Section 2.2 describes the branching
rule and logical reduction procedures, focusing on the
more general applicability guaranteed by the new re-
laxation. Section 2.3 deals with the heuristic used to
initialise the search.

2.1 A Weaker but More Versatile
Relaxation

Any subproblem in the branching tree is characterised
by a partition (S,U,F) of the vertex set V into the
set S of fixed safe vertices, the set U of fixed unsafe
vertices and the set F = V \ (S∪U) of free vertices,
not already fixed. We also define the subset of free
vertices adjacent to both S and U :

F ′ := {v∈F | ∃s∈ S : (s,v)∈E∧∃u∈U : (u,v)∈E}
In this work we present and prove the following

new proposition, that allows to manipulate graph G in
order to obtain a relaxation of the given WSSP.
Proposition 1. Adding to graph G = (V,E) an edge
(u,v) with u,v ∈ S provides a relaxation of subprob-
lem (S,U,F).

Proof. We show that in the modified graph all feasible
solutions keep their value and remain feasible. Con-
sider two fixed safe vertices u,v ∈ S and a solution S̃
for subproblem (S,U,F). Two cases are possible:

1. u and v are in the same safe component in S̃:
in such a situation adding edge (u,v) does not
change the components and the value of S̃;

2. u and v are in different safe components in S̃:
by adding (u,v), the two safe components merge,
while all unsafe components and the value of the
objective remain unchanged.

ICORES 2024 - 13th International Conference on Operations Research and Enterprise Systems

114

Applying this proposition to all pairs of safe vertices
merges them into a single safe component. The fol-
lowing propositions, introduced and proved in Bog-
gio Tomasaz et al. (2023a), will be combined with the
previous one to further relax the problem.

Proposition 2. Removing from graph G = (V,E) an
edge (u,v) with u ∈ U and v ∈ F or both u,v ∈ F ′

provides a relaxation of subproblem (S,U,F).

Proposition 3. Replacing in graph G = (V,E) an
edge (u,v) with an edge (s,v) provides a relaxation
of subproblem (S,U,F) if s ∈ S, u ∈ F ′, v ∈ F \ F ′

and (s,u) ∈ E.

Notice that Proposition 3 has been slightly
rephrased in an equivalent form in order to adapt it
to the new context.

The three propositions above allow to manipulate
the graph as follows:

• connect all vertices in S to one another;

• remove all edges (u,v) with u,v ∈ F ′;

• remove all edges (u,v) with u ∈U and v ∈ F \F ′;

• for each vertex v ∈ F ′, remove all but one of the
edges (u,v) such that u ∈U ;

• replace every edge (u,v) with u ∈ F ′ and v ∈ F \
F ′ with an edge (s,v) with s ∈ S (if such an edge
already exists, just remove (u,v)).

The resulting manipulated graph, which we call Gm =
(V,Em), consists of: i) a clique S of fixed safe vertices;
ii) a collection of unsafe components CGm(U) with the
original internal edges; iii) an independent set F ′ of
vertices, which are linked to S by at least one edge,
to U by exactly one edge, to F by no edge; iv) the
remaining set of free vertices F \F ′ with the original
internal edges, disconnected from F ′ and U , but pos-
sibly connected with S. As a consequence, the unique
safe component can be enlarged including vertices in
F , whereas each unsafe component Ul ∈ CGm(U) can
be enlarged including only the vertices in F ′ that are
directly adjacent to Ul . These vertices form set:

F ′l := {v ∈ F ′ | ∃s ∈ S : (s,v) ∈ Em∧∃u ∈Ul : (u,v) ∈ Em}

Given the current subproblem (S,U,F) and the
manipulated graph Gm, we can introduce the follow-
ing Integer Linear Programming formulation. Let
xv = 1 when vertex v belongs to the solution, and
xv = 0 otherwise. The auxiliary variable σ represents
the weight of the free vertices assigned to the unique
safe component, while τl represents the weight of the
free vertices assigned to the unsafe component Ul .

min w(S)+σ (1a)
subject to:

w(S)+σ≥ w(Ul)+ τl Ul ∈ CGm(U) (1b)

σ = ∑
v∈F

wv · xv (1c)

τl = ∑
v∈F ′l

wv · (1− xv) Ul ∈ CGm(U) (1d)

σ,τl ≥ 0 Ul ∈ CGm(U) (1e)
xv ∈ {0,1} v ∈ F (1f)

where objective (1a) is the weight of the safe set and
constraints (1b) are the safety conditions between the
unique safe component and the currently known un-
safe ones. Constraints (1c) and (1d) define the aux-
iliary variables and constraints (1e) and (1f) the do-
mains of all variables. Since the safety constraints
(1b) neglect the components that the free vertices
could still form, Formulation (1) is a relaxation of the
subproblem (S,U,F).

Now, we replace constraints (1c), (1d) and (1f)
with:

τl ≤ w(F ′l) ∀Ul ∈ CGm(U) (2)

σ+ ∑
Ul∈CGm (U)

τl ≥ w(F ′) (3)

The former derives from majorising (1 − xv)
with 1 in (1d), the latter from summing con-
straints (1c) and (1d). This yields a relaxation of For-
mulation (1):

min w(S)+σ (4a)
subject to:

w(S)+σ≥ w(Ul)+ τl Ul ∈ CGm(U) (4b)

σ+ ∑
Ul∈CGm (U)

τl ≥ w(F ′) (4c)

σ≥ 0 (4d)

0≤ τl ≤ w(F ′l) Ul ∈ CGm(U) (4e)

which we solve with a simple readaptation of the al-
gorithm proposed in Boggio Tomasaz et al. (2023a).

With respect to the original relaxation, the new
approach provides a weaker bound, due to the fact
that forcing all safe vertices in the same safe com-
ponent generates new feasible solutions, that could
improve the value of the optimum. However, the
empirical results show that the branching nodes in
which the number of safe components is larger than
one are very rare, and that all benchmark instances
have a connected optimal solution. This can be ex-
plained in view of the properties of random graphs,
which asymptotically tend to become connected as
their number of vertices increases, as discussed in
Cordone and Franchi (2023).

A Revisited Branch and Bound Method for the Weighted Safe Set Problem

115

2.2 Reduction Procedures and
Branching Rule

Given a subproblem (S,U,F), suitable reduction pro-
cedures allow to assign some of the free vertices to
the safe or the unsafe set without affecting the value
of the optimum. The following propositions, proved
in Boggio Tomasaz et al. (2023a), guarantee the cor-
rectness of these procedures.

Proposition 4. Given a subproblem (S,U,F), if a
component Fl ∈ CG(F) is not adjacent to S and has
weight w(Fl) smaller than that of an adjacent unsafe
component, all its vertices can be assigned to U.

This proposition also allows to test the existence
of feasible solutions. In fact, after its application, sub-
problem (S,U,F) is feasible if and only if S∪F is fea-
sible. The best solution thus generated yields the up-
per bound in the original branch and bound approach.

The following proposition extends the test with an
implicit branching operation. We remind that the sign
./ represents the adjacency relation between subsets
of vertices.

Proposition 5. Given a subproblem (S,U,F), let C
be a component of CG(S∪F) and f a vertex of C∩F.
If

w(C)−w f < ∑
U j∈CG(U):

U j./{ f}

w(U j)+w f (5)

then vertex f can be assigned to S.

Finally, another implicit branching operation fixes
vertices into the safe or the unsafe set, based on a
comparison with the currently best known value.

Proposition 6. Let (S,U,F) be a subproblem, f ∈ F
a free vertex and S̄ the best known feasible solution.
If

w(S)+w f ≥ w(S̄)

then vertex f can be be assigned to U. If

∑
U j∈CG(U):

U j./{ f}

w(U j)+w f ≥ w(S̄)

then vertex f can be be assigned to S.

Notice that moving free vertices into S can create
new safe components. This was forbidden in the orig-
inal algorithm, thus curtailing its performance. On the
contrary, the new relaxation is compatible with all the
operations listed above. Since they reduce the size of
the problem and this can eventually increase the lower
bound, adopting the weaker relaxation is not necessar-
ily disadvantageous.

Similarly, the branching mechanism of the origi-
nal approach is simplified and extended by the new

relaxation. The basic idea of the branching rule is to
select the free vertex of maximum weight (and maxi-
mum degree as a tie breaker), since moving it into ei-
ther S or U is very likely to increase the lower bound
by the maximum amount. However, such a choice in
general creates new safe components, which was pre-
viously forbidden. The branching rule was therefore
restricted to select the free vertex of maximum weight
adjacent to S or (in case none exists) the free vertex of
maximum weight adjacent to U . In sparse instances,
this restriction was particularly limiting. By contrast,
the new relaxation allows to apply the more effective
basic selection rule.

2.3 Heuristic Procedure

Proposition 4 allows to compute feasible solutions
during the exploration of the branching tree. How-
ever, the quality of these solutions can be very poor,
especially at the beginning, when the number of free
vertices is high. To overcome this issue, we can feed
the algorithm with an initial upper bound generated
by a heuristic procedure in order to amplify the effect
of the pruning.

The state-of-the-art heuristics for the WSSP are
the ones presented by Boggio Tomasaz et al. (2023b).
The most promising one is the Simple Delayed Ter-
mination (SDT). This can be explained as a sort of
Large Neighbourhood Search which first builds a fea-
sible solution and then alternatively enlarges it with
redundant vertices and reduces it to a minimal feasi-
ble subset.

The algorithm starts with an unfeasible empty set
S = /0 and iteratively extends it with vertices in V \S.
The choice of the vertex to insert is randomised ex-
ploiting a Restricted Candidate List (RCL) mecha-
nism that favours the vertices with many adjacent ver-
tices in V \ S. Once a feasible solution is found, in-
stead of stopping, the algorithm further enlarges S
delaying its termination for a certain number of it-
erations, proportional to the size of the instance. In
this phase, the insertion deterministically selects the
vertex of minimum weight (and maximum degree to
break ties) adjacent to S. Moreover, a destructive pro-
cedure is applied to every feasible solution S found, in
order to compute a minimal feasible solution S′ ⊆ S.
Starting from S′ = S, the destructive heuristic consid-
ers each vertex and tries to erase it. If the resulting
set is unfeasible, the vertex is reinserted in S′; other-
wise, it remains discarded. The vertices are processed
in non-increasing order of weight (and increasing or-
der of degree as a tie breaker). The computational
complexity of the SDT heuristic is O(|V |2(|V |+ |E|))
(Boggio Tomasaz et al., 2023b).

ICORES 2024 - 13th International Conference on Operations Research and Enterprise Systems

116

Since the initial phase is randomised, the heuristic
is restarted several times and returns the best feasible
solution found among all the attempts.

3 COMPUTATIONAL RESULTS

In this section we report the results obtained by the
computational experiments conducted on the revisited
branch and bound algorithm, that in the following we
will denote as RevBB. All the experiments are con-
ducted on a Linux server, with processor Intel Xeon
E5-2620 2.1 GHz and 16 GB of RAM, that is the same
machine used in Boggio Tomasaz et al. (2023a). The
algorithm is coded in C99 and compiled with GNU
GCC 8.3.0, and runs in a single thread.

The instances are the ones presented in the litera-
ture by Macambira et al. (2019) and the ones added
by Hosteins (2020) and extended in Boggio Tomasaz
et al. (2023a). They can be found at this link: https:
//homes.di.unimi.it/cordone/research/wssp.html. The
graphs are randomly generated in accordance with the
Erdős-Renyi model. In the former set the number
of vertices progressively rises from 10 to 30 and the
number of edges is |E|= δ ·|V |·(|V |−1)/2, where the
density parameter assumes values δ ∈ {0.3,0.5,0.7}.
There are weighted instances with random weights
extracted from a uniform distribution in {1, . . . ,100}
and unweighted instances with weights uniformly set
to 1. This benchmark consists of 21 · 3 · 2 = 126 in-
stances. In the latter set, the number of vertices is
|V | ∈ {20,25,30,35,40,50,60} and the density pa-
rameter assumes values δ ∈ {0.1,0.2,0.3,0.4}. For
each combination of |V | and δ there are 5 weighted
instances with random uniform integer weights be-
tween 1 and 10 and 5 unweighted instances, that is
7 ·4 ·5 ·2 = 280 instances overall.

3.1 Effect of the Revised Relaxation

In this section we compare the computational results
of the revisited algorithm with those reported in Bog-
gio Tomasaz et al. (2023a) for the original branch and
bound within the time limit of one hour. Tables 1
and 2 provide in the first two columns the density δ

and the size |V | of the instances. The following four
columns show the gap (formatted as a percentage), the
number of solved instances in each group, the com-
putational time in seconds (CPU) and the number of
branching nodes (BN). Each value is averaged over
the 5 instances with the density and size indicated
in the corresponding row. The gap is computed as
(UB−LB)/LB, where UB and LB are the best upper
and lower bounds found by the algorithm. The last

four columns contain the same information for algo-
rithm RevBB. The computational times and the num-
bers of branching nodes marked with ∗ point out that
the exhaustion of memory anticipated the termination
on some instances. The symbol OM indicates that all
5 instances of a group went “out of memory”.

In the weighted case (see Table 1), the revisited al-
gorithm leaves only 2 unsolved instances out of 140,
instead of 5. One of the newly solved instances was
previously terminated because it exceeded the avail-
able memory. The two remaining unsolved instances
strictly improve both the upper and the lower bound:
the residual gap is about one third of its original value.
The computational time and the number of branch-
ing nodes is roughly halved, except for the instances
in which the memory is no longer exhausted and the
computation can proceed for a longer time.

Considering the unweighted instances (see Ta-
ble 2), the unsolved ones decrease from 21 to 16 out
of 140. The ones with an out-of-memory termination
decrease from 11 to 10. On average, the gaps of the
16 unsolved instances are more than 2 times smaller,
with the exception of the instances with δ = 0.2, for
which there is a moderate increase. In this specific
case, the weaker lower bound is not completely coun-
terbalanced by its advantages, leading to an over-
consumption of memory. The comparison between
the computational times and the number of branch-
ing nodes still shows an improvement, in particular
for the denser instances, but less pronounced than in
the weighted case. The instances with |V | = 60 and
δ ∈ {0.1,0.2} are difficult to compare from this point
of view because of the anticipated termination.

3.2 Effect of the Initial Heuristic

In this section we present the results obtained by
exploiting the SDT heuristic presented in Bog-
gio Tomasaz et al. (2023b) as an initial incumbent
for the RevBB algorithm. Tables 3 and 4 share the
same structure of Tables 1 and 2, but show the re-
sults obtained by RevBB and SDT+RevBB. Since the
RevBB algorithm solves to optimality the instances
with |V | ≤ 35 in few seconds, we do not consider
those instances in the comparison. The time limit for
SDT+RevBB is one hour, to obtain a fair comparison
with the original branch and bound. The computa-
tional time for the SDT heuristic is set to 0.1 seconds
for |V | = 40, 1 second for |V | = 50 and 10 seconds
for |V | = 60. The aim is to keep into account the
longer time required by each iteration as the size of
the instance grows, but also to slightly increase the
number of iterations, that is in the range of a few
thousands. The heuristic runs with the same parame-

A Revisited Branch and Bound Method for the Weighted Safe Set Problem

117

Table 1: Comparison between the algorithm in Boggio Tomasaz et al. (2023a) and RevBB over all weighted instances of the
benchmark.

Boggio Tomasaz et al. (2023a) RevBB
δ |V | gap solved CPU BN gap solved CPU BN

0.1 20 - 5 0.001 485 - 5 0.003 466
25 - 5 0.009 2453 - 5 0.007 1830
30 - 5 0.046 8773 - 5 0.037 6394
35 - 5 0.147 23993 - 5 0.109 16155
40 - 5 4.306 518719 - 5 2.788 299276
50 - 5 237.366 19445646 - 5 111.651 8102922
60 4.52% 4 2274.268* 133230523* - 5 1199.706 62877972

0.2 20 - 5 0.009 1570 - 5 0.004 724
25 - 5 0.138 19199 - 5 0.042 6154
30 - 5 0.803 84500 - 5 0.113 12504
35 - 5 6.127 495403 - 5 1.225 105793
40 - 5 21.879 1417253 - 5 3.997 277123
50 - 5 1072.342 49478072 - 5 307.728 14711729
60 6.94% 1 3043.631 97237260 1.82% 3 2290.738 74773767

0.3 20 - 5 0.013 1947 - 5 0.004 609
25 - 5 0.114 12616 - 5 0.040 4637
30 - 5 0.481 39254 - 5 0.218 18706
35 - 5 3.133 204212 - 5 1.084 74413
40 - 5 10.821 576087 - 5 4.898 266300
50 - 5 90.217 3195695 - 5 47.728 1665147
60 - 5 1362.553 32921438 - 5 743.674 17805962

0.4 20 - 5 0.016 2119 - 5 0.008 1152
25 - 5 0.088 8404 - 5 0.046 4509
30 - 5 0.465 32787 - 5 0.220 15963
35 - 5 2.151 119618 - 5 1.210 66598
40 - 5 4.239 181951 - 5 2.059 89991
50 - 5 50.748 1405504 - 5 27.720 773785
60 - 5 461.939 8411394 - 5 271.408 5005143

ter tuning suggested by the experiments described in
Boggio Tomasaz et al. (2023b).

With respect to the weighted problem (see Ta-
ble 3), the number of unsolved instances remains 2
out of 60, but one instance improves both the lower
and the upper bound. The improvements on the com-
putational time and the number of branching nodes
are less marked and uniform than in Table 1. In
general, they decrease, but the denser instances with
|V |= 40 and |V |= 60 show a moderate increase.

As for the unweighted problem (see Table 4), the
number of unsolved instances decreases from 16 to
15. The average gaps sharply decrease on the sparse
instances, where both the lower and the upper bounds
improve. For δ ∈ {0.1,0.2}, the computational times
and the branching nodes significantly decrease. For
δ = 0.3, however, they decrease slightly, whereas for
δ = 0.4 they undergo a moderate increase, as in the
weighted case. In short, the heuristic initialisation
gives a useful contribution mainly on the sparser in-
stances, that are the harder ones for the exact algo-

rithm.

3.3 Comparison with the State of the
Art

Currently, the best performing exact algorithm for the
WSSP is the combinatorial branch and bound by Bog-
gio Tomasaz et al. (2023a), except for the sparsest
instances (δ = 0.3) introduced by Macambira et al.
(2019), on which the branch and cut by Malaguti and
Pedrotti (2023) requires lower computational times.
The machine used by the latter algorithm is an In-
tel i7-4790 processor running at 3.60 GHz and en-
dowed with 32 GB RAM. It is roughly comparable,
but probably faster than the one used by the branch
and bound. Table 5 reports the running times required
by the two algorithms to solve to optimality each in-
stance of this benchmark, rounded to the first deci-
mal digit, as in Malaguti and Pedrotti (2023). The
values for |V | = 10 are missing in the original refer-
ence. Label MP denotes the branch and cut algorithm,

ICORES 2024 - 13th International Conference on Operations Research and Enterprise Systems

118

Table 2: Comparison between the algorithm in Boggio Tomasaz et al. (2023a) and RevBB over all unweighted instances of
the benchmark.

Boggio Tomasaz et al. (2023a) RevBB
δ |V | gap solved CPU BN gap solved CPU BN

0.1 20 - 5 0.020 6034 - 5 0.022 5964
25 - 5 0.042 10326 - 5 0.048 11280
30 - 5 0.189 32846 - 5 0.199 34788
35 - 5 3.943 551247 - 5 3.262 410217
40 - 5 107.544 12642269 - 5 44.817 4778665
50 57.91% 0 1716.793* OM 1.25% 4 2165.374 152910911
60 142.42% 0 1258.089* OM 68.40% 0 2193.231* OM

0.2 20 - 5 0.034 6582 - 5 0.014 2751
25 - 5 0.434 57475 - 5 0.139 18431
30 - 5 1.801 189567 - 5 0.614 67147
35 - 5 20.079 1759531 - 5 11.266 1040831
40 - 5 55.688 3775550 - 5 47.749 3390965
50 - 5 2500.817 124134933 - 5 1974.602 100802247
60 23.67% 0 3252.847* 122036862* 33.90% 0 2024.438* OM

0.3 20 - 5 0.016 2378 - 5 0.010 1604
25 - 5 0.193 22433 - 5 0.114 13614
30 - 5 1.069 90049 - 5 0.622 54952
35 - 5 6.962 488122 - 5 4.799 348552
40 - 5 29.723 1612367 - 5 14.626 837818
50 - 5 873.641 34062285 - 5 480.459 18963773
60 9.60% 0 3600.000 89662194 4.29% 0 3600.000 94802520

0.4 20 - 5 0.020 2655 - 5 0.013 1823
25 - 5 0.166 16999 - 5 0.110 12119
30 - 5 0.820 60469 - 5 0.388 30495
35 - 5 5.449 331489 - 5 2.933 180731
40 - 5 17.279 788391 - 5 5.800 270571
50 - 5 214.247 6238868 - 5 56.295 1689201
60 0.69% 4 2734.279 53504023 - 5 710.371 13912611

Table 3: Comparison between the RevBB algorithm without and with an initial heuristic solution over all the weighted
instances of the benchmark.

RevBB SDT+RevBB
δ |V | gap solved CPU BN gap solved CPU BN

40 - 5 2.788 299276 - 5 2.549 258594
0.1 50 - 5 111.651 8102922 - 5 99.890 7073450

60 - 5 1199.706 62877972 - 5 874.839 43777463
40 - 5 3.997 277123 - 5 3.421 222507

0.2 50 - 5 307.728 14711729 - 5 249.368 11734634
60 1.82% 3 2290.738 74773767 1.07% 3 2160.774 68785511
40 - 5 4.898 266300 - 5 4.524 235375

0.3 50 - 5 47.728 1665147 - 5 45.325 1541978
60 - 5 743.674 17805962 - 5 694.451 16086338
40 - 5 2.059 89991 - 5 2.272 94113

0.4 50 - 5 27.720 773785 - 5 24.890 676289
60 - 5 271.408 5005143 - 5 320.006 5558855

SDT+RevBB the revised branch and bound initialised
with a very short run of the SDT heuristic (0.001 sec-
onds). Many of the reported times are too short to

allow a meaningful comparison (0.0 stands for val-
ues < 0.05). However, on the denser instances the
combinatorial approach confirms to be order of mag-

A Revisited Branch and Bound Method for the Weighted Safe Set Problem

119

Table 4: Comparison between the RevBB algorithm without and with an initial heuristic solution over all the unweighted
instances of the benchmark.

RevBB SDT+RevBB
δ |V | gap solved CPU BN gap solved CPU BN

40 - 5 44.817 4778665 - 5 25.922 2718502
0.1 50 1.25% 4 2165.374 152910911 - 5 1342.176 100049161

60 68.40% 0 2193.231 OM 14.40% 0 3032.005 186290447*
40 - 5 47.749 3390965 - 5 24.351 1804663

0.2 50 - 5 1974.602 100802247 - 5 1234.439 65906293
60 33.90% 0 2024.438 OM 10.40% 0 3600.000 129482857
40 - 5 14.626 837818 - 5 13.193 786002

0.3 50 - 5 480.459 18963773 - 5 442.337 18425442
60 4.29% 0 3600.000 94802520 4.29% 0 3600.000 94782363
40 - 5 5.800 270571 - 5 5.236 249147

0.4 50 - 5 56.295 1689201 - 5 59.519 1827820
60 - 5 710.371 13912611 - 5 900.183 17445371

Table 5: Comparison between the branch and cut of Malaguti and Pedrotti (2023) and the RevBB algorithm initialised by the
SDT heuristic on the benchmark by Macambira et al. (2019).

Weighted Unweighted
δ = 0.3 δ = 0.5 δ = 0.7 δ = 0.3 δ = 0.5 δ = 0.7

|V | MP SDT+ MP SDT+ MP SDT+ MP SDT+ MP SDT+ MP SDT+
RevBB RevBB RevBB RevBB RevBB RevBB

10 0.0 0.0 0.0 0.0 0.0 0.0
11 0.0 0.0 0.1 0.0 1.4 0.0 0.0 0.0 0.2 0.0 19.6 0.0
12 0.0 0.0 0.1 0.0 7.3 0.0 0.0 0.0 0.1 0.0 4.3 0.0
13 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 27.5 0.0
14 0.0 0.0 0.1 0.0 2.7 0.0 0.0 0.0 0.2 0.0 38.8 0.0
15 0.0 0.0 0.1 0.0 2.6 0.0 0.0 0.0 0.3 0.0 10.1 0.0
16 0.0 0.0 0.2 0.0 7.2 0.0 0.0 0.0 0.8 0.0 33.1 0.0
17 0.0 0.0 0.1 0.0 4.3 0.0 0.0 0.0 1.5 0.0 455.9 0.0
18 0.0 0.0 0.5 0.0 2.8 0.0 0.0 0.0 2.6 0.0 80.7 0.0
19 0.0 0.0 0.4 0.0 5.8 0.0 0.0 0.0 0.5 0.0 24.9 0.0
20 0.0 0.0 0.2 0.0 25.4 0.0 0.0 0.0 0.8 0.0 93.3 0.0
21 0.0 0.0 0.5 0.0 9.6 0.0 0.0 0.0 0.7 0.0 140.0 0.0
22 0.0 0.0 0.1 0.0 1.9 0.0 0.0 0.0 1.0 0.0 52.1 0.0
23 0.1 0.0 0.7 0.0 12.0 0.0 0.0 0.0 3.7 0.0 418.1 0.0
24 0.0 0.0 1.6 0.0 7.2 0.0 0.0 0.0 0.2 0.1 311.0 0.0
25 0.1 0.0 1.2 0.0 13.3 0.0 0.1 0.1 0.5 0.1 80.7 0.1
26 0.1 0.1 1.4 0.1 58.4 0.0 0.1 0.1 6.5 0.1 878.8 0.0
27 0.1 0.1 1.6 0.1 26.6 0.1 0.0 0.1 3.6 0.1 2 416.3 0.1
28 0.0 0.0 0.4 0.1 14.7 0.0 0.1 0.2 3.6 0.2 111.2 0.0
29 0.0 0.2 0.8 0.3 65.9 0.2 0.1 0.2 11.1 0.2 2 418.2 0.5
30 0.2 0.2 0.1 0.3 46.8 0.3 0.1 0.5 11.1 0.4 439.1 0.0

nitude faster than the branch and cut. On the sparser
instances, the two approaches are now equivalent for
the weighted instances, while the branch and cut ap-
proach is still faster on the unweighted ones.

Table 6 reports the results for the benchmark in-
troduced by Hosteins (2020). For the branch and cut
algorithm, it provides the average execution time in
seconds, the average residual gap and the number of

solved instances after one hour of computation. Since
the combinatorial branch and bound solves all in-
stances within one hour, we report only the average
computational time. The SDT heuristic for the initial-
isation phase runs for 0.001 seconds on the instances
up to 35 vertices, 0.1 seconds for |V | = 40, 1 second
for |V | = 50 and 10 seconds for |V | = 60. The ra-
tionale is that the smaller instances could be solved

ICORES 2024 - 13th International Conference on Operations Research and Enterprise Systems

120

Table 6: Comparison between the branch and cut of Malaguti and Pedrotti (2023) and the RevBB algorithm initialised by the
SDT heuristic on the benchmark by Hosteins (2020).

Weighted Unweighted
MP SDT+RevBB MP SDT+RevBB

|V | δ CPU gap solved CPU CPU gap solved CPU
20 0.1 0.8 - 5 0.0 1.3 - 5 0.0
25 0.1 4.9 - 5 0.0 5.2 - 5 0.0
30 0.1 20.1 - 5 0.0 32.4 - 5 0.1
35 0.1 55.0 - 5 0.1 469.4 - 5 1.8
40 0.1 1 244.2 2.2% 4 2.5 2 976.1 19.0% 1 25.9
50 0.1 3 600.0 22.7% 0 99.9 3 600.0 37.6% 0 1 342.2
20 0.2 0.3 - 5 0.0 0.6 - 5 0.0
25 0.2 1.9 - 5 0.0 4.9 - 5 0.1
30 0.2 10.6 - 5 0.1 45.2 - 5 0.4
35 0.2 195.3 - 5 1.2 2 825.1 7.7% 2 7.1
40 0.2 1 207.8 - 5 3.4 3 116.9 29.2% 0 24.4
50 0.2 3 600.0 33.1% 0 249.4 3 600.0 45.8% 0 1 234.4
20 0.3 0.2 - 5 0.0 0.2 - 5 0.0
25 0.3 2.3 - 5 0.0 12.5 - 5 0.1
30 0.3 22.5 - 5 0.2 174.3 - 5 0.4
35 0.3 326.6 - 5 1.0 3 141.5 10.5% 1 4.2
40 0.3 2 400.3 2.1% 3 4.5 3 368.4 30.3% 0 13.2
50 0.3 3 600.0 24.1% 0 45.3 3 600.0 43.2% 0 442.3
20 0.4 0.5 - 5 0.0 1.1 - 5 0.0
25 0.4 5.1 - 5 0.0 40.8 - 5 0.1
30 0.4 34.2 - 5 0.2 256.6 - 5 0.4
35 0.4 404.6 - 5 1.2 3 486.8 9.8% 1 2.9
40 0.4 1 367.2 - 5 2.3 3 600.0 26.6% 0 5.2
50 0.4 3 600.0 17.8% 0 24.9 3 600.0 39.6% 0 59.5

very quickly even without an initialisation, whereas
the time for the larger ones is tuned so as to slightly
increase the number of iterations of the SDT heuris-
tic as the size of the instance grows. On this bench-
mark the original algorithm was already faster than
the branch and cut for all classes of instances. As dis-
cussed in the previous section, the revised algorithm
further reduces the time in most cases. Even when
the time increases, however, the comparison with the
branch and cut remains favourable to the combinato-
rial approach.

4 CONCLUSIONS

In this article we presented a revised branch and
bound algorithm for the Weighted Safe Set Problem.
Its main strength lies in a theoretically weaker, but
more versatile, relaxation, which allows to exploit a
more efficient branching rule and reductions. The
new algorithm outperforms the previous one on the
vast majority of instances in the literature, solving to
optimality instances with up to 60 vertices. The use
of an existing heuristic to initialise the search is rather

useful on the largest instances (60 vertices), but hardly
necessary on the smaller ones (up to 35 vertices). On
denser instances, however, the additional effort asso-
ciated to the initialisation is not always justified. A
finer tuning of this aspect, therefore, seems a promis-
ing development.

REFERENCES

Àgueda, R., Cohen, N., Fujita, S., Legay, S., Manoussakis,
Y., Matsui, Y., Montero, L., Naserasr, R., Ono, H.,
Otachi, Y., Sakuma, T., Tuza, Z., and Xu, R. (2018).
Safe sets in graphs: Graph classes and structural pa-
rameters. Journal of Combinatorial Optimization,
36(4):1221–1242.

Bapat, R., Fujita, S., Legay, S., Manoussakis, Y., Matsui, Y.,
Sakuma, T., and Tuza, Z. (2016). Network majority on
tree topological network. Electronic Notes in Discrete
Mathematics, 54:79–84.

Bapat, R. B., Fujita, S., Legay, S., Manoussakis, Y., Matsui,
Y., Sakuma, T., and Tuza, Z. (2018). Safe sets, net-
work majority on weighted trees. Networks, 71(1):81–
92.

Belmonte, R., Hanaka, T., Katsikarelis, I., Lampis, M.,
Ono, H., and Otachi, Y. (2020). Parameterized com-

A Revisited Branch and Bound Method for the Weighted Safe Set Problem

121

plexity of safe set. Journal of Graph Algorithms and
Applications, 24(3):215—-245.

Boggio Tomasaz, A., Cordone, R., and Hosteins, P. (2023a).
A combinatorial branch and bound for the safe set
problem. Networks, 81(4):445–464.

Boggio Tomasaz, A., Cordone, R., and Hosteins, P.
(2023b). Constructive–destructive heuristics for the
safe set problem. Computers & Operations Research,
159:106311.

Cordone, R. and Franchi, D. (2023). The safe set problem
on particular graph classes. In Proceedings of the 19th
Cologne-Twente Workshop on Graphs and Combina-
torial Optimization (CTW), Garmisch-Partenkirchen,
Germany.

Ehard, S. and Rautenbach, D. (2020). Approximating con-
nected safe sets in weighted trees. Discrete Applied
Mathematics, 281:216–223.

Fujita, S., MacGillivray, G., and Sakuma, T. (2014). Bor-
deaux graph workshop: Safe set problem on graphs.
https://bgw.labri.fr/2014/bgw2014-booklet.pdf.

Fujita, S., MacGillivray, G., and Sakuma, T. (2016). Safe
set problem on graphs. Discrete Applied Mathematics,
215:106–111.

Hosteins, P. (2020). A compact mixed integer linear for-
mulation for safe set problems. Optimization Letters,
14(8):2127–2148.

Macambira, A. F. U., Simonetti, L., Barbalho, H., Silva, P.
H. G., and Maculan, N. (2019). A new formulation
for the safe set problem on graphs. Computers and
Operations Research, 111:346–356.

Malaguti, E. and Pedrotti, V. (2023). Models and algorithms
for the weighted safe set problem. Discrete Applied
Mathematics, 329:23–34.

ICORES 2024 - 13th International Conference on Operations Research and Enterprise Systems

122

