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Abstract: Osteoporosis is characterized by increased bone fragility due to a decrease in thickness of the cortical layer 

CTh and the development of internal porosity in it. The assessment of bone models that simulate the state of 

osteoporosis causes difficulties due to their complex and multi-layered structure. In the present work, the 

possibility of using machine learning approaches to determine internal porosity using the ultrasonic data 

obtained by scanning bone models was researched. The bone models were represented as sets of PMMA 

plates with gradually varying CTh from 2 to 6 mm. A stepwise progression of porosity from 0 to 100% of 

CTh was set by increasing the thickness of the porous layer PTh in steps of 1 mm. The evaluation method 

was based on the results of the supervised multi-class classification of the raw ultrasonic signals and their 

magnitude of the DFT spectrum with PTh used for labeling. Ultrasonic data was split into training and testing 

datasets while preserving the percentage of samples for each class. The results of the experiments 

demonstrated the potential effectiveness of the PTh classification, while optimization of the datasets and 

additional signal processing may contribute to the improvement of the results. 

1 INTRODUCTION 

Osteoporosis is a systemic skeletal disease 

characterized by low bone density and 

microarchitectural deterioration of bone tissue with a 

consequent increase in bone fragility. The 

cornerstone of diagnosis is the measurement of bone 

mineral density (WHO, 2003). The condition of 

cortical bone and the development of osteoporosis are 

determined by many mechanical, microstructural, 

and macrostructural bone properties, such as 

hardness, porosity, and cortical thickness. 

For several years, there has been progress in the 

development of axial transmission quantitative 

ultrasound (QUS) technologies for the evaluation of 

long bones using a variety of acoustic wave modes 

(Laugier, 2008). QUS has the potential to predict 

fracture risk in several clinical settings and has 

multiple advantages. It is non-ionizing, cost-

effective, portable, and has the potential to become an 

effective complement or alternative to 

osteodensitometry (DXA), which is currently the 

“gold standard” for diagnosing osteoporosis. 

 

a  https://orcid.org//0000-0002-2267-4220 
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However, neither existing bone QUS nor DXA are 

able to reliably distinguish between changes 

associated with the thinning of the bone cortex and 

the increase of intracortical porosity, which are the 

main factors of bone fragility. Thus, differentiation 

between a thin healthy bone and an osteoporotic one 

is problematic. Recent approaches focus on the 

analysis of guided wave propagation at multiple 

frequencies, which provides extensive information on 

bone structure and properties (Tatarinov et al., 2014). 

Nevertheless, discrimination of factors of interest 

such as intracortical porosity and thickness of cortical 

layer against the background of effects surrounding 

soft tissue requires advanced data processing 

(Sisojevs et al., 2023). 

In the field of deep machine learning, there is a 

growing interest in recurrent neural networks 

(RNNs), which have been used for many sequence 

modeling tasks. They have achieved promising 

performance improvements in multiple technical 

applications such as speech recognition, human 

activity recognition, medical signal evaluation, and 

many other sequence classification tasks (Graves, 

Chuchalina, M., Sisojevs, A. and Tatarinov, A.
Determination of Factors of Interest in Bone Models Based on Ultrasonic Data.
DOI: 10.5220/0012358500003654
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2024), pages 281-287
ISBN: 978-989-758-684-2; ISSN: 2184-4313
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

281



2012; Li et al., 2020; Murad & Pyun, 2017). The 

reason for their effectiveness in the solution of 

sequence-based tasks is their ability to use contextual 

information and learn the temporal dependencies of 

the input data (Murad & Pyun, 2017). However, a 

lack of research related to the determination of 

cortical bone thickness and/or porous layer thickness 

in ultrasound data using machine learning approaches 

was observed. 

The purpose of this study was to explore the 

possibility of determining one of the factors of 

interest - intracortical porosity against the 

background of changes in cortical thickness using 

ultrasonic data in bone models. Ultrasonic signals 

were obtained by axial scanning synthetic phantoms 

of cortical bone simulating changes in cortical 

thickness and progression of intracortical porosity. 

The raw data was presented by sets of ultrasonic 

signals acquired stepwise by surface profiling of the 

bone phantoms in the pitch-catch mode (Sisojevs et 

al., 2023). Both raw ultrasonic signals in the time 

domain and signals processed by discrete Fourier 

transformation (DFT) were used as input data in 

separate experiments for machine learning tasks. DFT 

is one of the recognized methods of signal analysis 

that transforms signals from time to frequency 

domains (Stone, 2021). A multi-metric approach was 

implemented to evaluate the results obtained in both 

experiments. This included not only the precise 

classification of samples, but also the evaluation of 

their neighbor’s predictions. This is due to the 

complexity and volume of the input data, as well as 

the need to gain a better understanding of 

classification accuracy. 

2 PROPOSED APPROACH 

Intracortical porosity was specified by the thickness 

of the porous layer PTh, which increased discretely 

from the inner (lower) surface of the bone phantom to 

the outer (upper) surface. The proposed approach for 

evaluating PTh was based on supervised machine 

learning methods.  To perform multi-class 

classification, two types of ultrasonic data in bone 

models were prepared for machine learning tasks, 

data and label arrays were created and split into 

training and testing sets, and training and testing were 

performed to assess the performance of the approach.  

 

2.1 Input Data Acquisition and 
Pre-Processing 

The bone models or phantoms were represented as 

sets of bi-layer acrylic plates with gradually varying 

total thicknesses simulating the bone cortical 

thickness CTh from 2 to 6 mm with a step of 1 mm. 

The effect of intracortical porosity, progressing from 

the bone canal, was mimicked by regularly bottom-

drilled holes. A step change in porosity in the 

phantom volume from 0 to 100% CTh was set by 

increasing the thickness of the porous layer PTh in 

increments of 1 mm. The phantoms were covered 

with soft tissue with thicknesses of 0, 2 and 4 mm. 

Ultrasonic signals were acquired using a custom-

made scanning device by stepwise profiling the upper 

surface of the phantoms covered with soft tissue. The 

profiling step was 3 mm. In total, the 24 obtained 

signals formed the so-called ultrasonic 

spatiotemporal wave profiles. The profiles contained 

complex information about the temporal (velocity) 

and energetic (attenuation) characteristics of different 

types of ultrasound propagation. (Sisojevs et al., 

2023). A total of 1800 samples of the ultrasonic signal 

were acquired. One signal frame with a duration of 1 

ms contains the responses of three ultrasonic 

excitation regimes: high frequency (500 kHz), low 

frequency (100 kHz) and chirp mode (from 50 to 500 

kHz). In this frequency range, different modes of 

ultrasonic guided waves are manifested. For 

comparison purposes, 2 sets of data – raw signals and 

DFT-processed signals, were created. In regard to 

DFT processing, each of the discrete signals was 

transformed into a spectral signal that described the 

magnitude spectrum. 

 𝐴𝑘 = ∑ 𝑎𝑚𝑒−2𝜋𝑖
𝑚𝑘

𝑁𝑁−1
𝑚=0  (1) 

where: 

𝑎 – signal at 𝑚 = 0… 𝑁 − 1; 

𝑒−𝑖
2𝜋

𝑁  – Nth root of unity. 

𝑀𝐴 = √(𝑟𝑒𝑎𝑙(𝐴))2 + (𝑖𝑚𝑎𝑔(𝐴))2 (2) 

where: 

𝑟𝑒𝑎𝑙(𝐴) – real component of the spectral signal; 

𝑖𝑚𝑎𝑔(𝐴)  – imaginary component of the spectral 

signal. 

Informative regions were extracted for use in 

machine learning tasks, thus creating a set of features 

that characterize the signals. In our case, a single 

feature corresponded to one discrete sample of the 

ultrasonic signal in the selected informative region.  

These regions consisted of 3000-5000 features for the 

raw dataset and 750 features for the DFT-transformed 

dataset. The values in signal datasets were 
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normalized. The vector of class labels for multi-class 

classification represented by an integer was converted 

to one-hot encoding, which represented the 

categorical variables as a binary vector. The values in 

the binary vector are denoted by 0 except for the 

integer index, which is denoted by 1. It should have 

also been taken into account that the number of 

samples for each of the classes is not equal due to the 

nature of the acquired ultrasonic data. The largest 

number of samples is at PTh <= 2, while the smallest 

is at PTh = 6.  

2.2 Machine Learning Methods 

The proposed machine learning methods included the 

bidirectional Long Short-Term Memory (BLSTM) 

deep neural network model, which is a type of RNN 

specifically designed to process sequential data and is 

able to capture long-term dependencies in it, as well 

as classical machine learning algorithms for 

supervised multi-class classification. 

 

 

Figure 1: Schematic diagram of the LSTM memory unit 

(Aggarwal, 2023; Sun, J. et al., 2019).  

 

Figure 2: Structure of the deep BLSTM network (Zhang et 

al., 2021). 

The architecture of the applied artificial neural 

network is illustrated in Figure 1 and Figure 2, where: 

𝑋𝑡 – input time step; ℎ𝑡 – output; 𝐶𝑡 – cell state; 𝑓𝑡 – 

forget gate; 𝑖𝑡  – input gate; 𝑂𝑡  – output gate; �̂�𝑡  – 

internal cell state. 

The model utilized a softmax activation function 

that converts a vector of values into a probability 

distribution that can be interpreted as class 

membership probabilities. The elements of the output 

vector are in the range (0, 1) and sum to 1. 

σ 𝑥𝑛 =
𝑒𝑥𝑛

∑ 𝑒𝑥𝑚𝐾
𝑚=0

 (3) 

where: 

𝑥 – input vector; 

𝑒 – Euler's number; 

𝑛 – index of the value for which the exponent is 

calculated; 

𝐾 – number of probabilities in the probability 

distribution. 

In conjunction with the softmax activation 

function, cross-entropy, which computes a score that 

summarizes the average difference between the actual 

and predicted probability distributions for all classes, 

was used as the loss function for multi-class 

classification tasks. The function requires the output 

layer to be configured with n nodes, where n is the 

number of classes. The experiments within the given 

work involved 7 classes corresponding to 7 possible 

thicknesses of the porous layer PTh varying from 0 

mm to 6 mm. 

The classical machine learning algorithms 

provided by the machine learning framework enabled 

simultaneous testing of different machine learning 

models and were used as part of the study to evaluate 

and compare the results, verifying the performance of 

the proposed approach.  

2.3 Evaluation Methods 

To evaluate the results obtained during the 

experiments, a multi-metric approach was 

introduced, which included the interpretation of the 

precise classification of samples, as well as the 

assessment of their neighbors’ predictions. The latter 

enabled a more granular method for the examination 

of the results taking into consideration the complexity 

and volume of the input data.  

Accuracy metric was used to define the ratio of 

correctly classified samples to the total number of 

samples. 

𝐴𝑐𝑐 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

where: 

𝑇𝑃 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) – number of correct matches; 

𝑇𝑁 (𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) – number of correct 

mismatches; 

𝐹𝑃 (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) – number of incorrect 

matches; 
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𝐹𝑁 (𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) – number of incorrect 

mismatches. 

Recall metric TPR was used to define the ratio of 

correctly classified positive samples to the total 

number of positive samples. 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

where: 

𝑇𝑃 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) – number of correct matches; 
𝐹𝑁 (𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) – number of incorrect 

mismatches. 

Precision metric PPV was used to define the ratio 

of correctly classified positive samples to the total 

predicted number of positive samples. 

𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

where: 

𝑇𝑃 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) – number of correct matches; 

𝐹𝑃 (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) – number of incorrect 

matches. 

Loss metric was used to summarize the mean 

difference between the actual and predicted 

probability distributions for all classes in the machine 

learning tasks, while F1-score displayed model 

performance. 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (7) 

where: 

𝑇𝑃 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) – number of correct matches; 

𝐹𝑃 (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) – number of incorrect 

matches; 

𝐹𝑁 (𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) – number of incorrect 

mismatches. 

Accuracy and related metrics alone are not 

sufficient to fully evaluate model performance results 

in a given classification context. Due to the 

significant complexity of the data structure of 

ultrasonic signals, slight deviations from the ideal 

prediction were acceptable. To obtain a more 

complete perspective, additional custom metrics were 

implemented in scope of the present work to evaluate 

the neighbors of the classified classes. The result can 

be considered satisfactory if most of the classes were 

predicted correctly and most of the neighbors that are 

deviations from the ideal result are within a range that 

does not exceed the specified limit ∆𝑎𝑐𝑐 <= 2 mm. 

Based on the actual and predicted classes, a custom 

so-called accuracy_2 metric was developed. Its 

purpose was to show how often each of the classes 

had deviations for each deviation value in 

millimeters. Parameter's ∆𝑎𝑐𝑐 of accuracy_2 metric 

value was calculated as the modulus of the difference 

between the actual and predicted values and ranged 

from 0 to 6 millimeters, respectively. 

∆𝑎𝑐𝑐 = | 𝑐𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑐𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  | (8) 

where: 

𝑐𝑎𝑐𝑡𝑢𝑎𝑙 – actual class value in millimeters; 

𝑐𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 – predicted class value in millimeters. 

After calculating the values of ∆𝑎𝑐𝑐 and writing 

them into the array D, the number of differences in 

the specified range for each of the classes was 

determined and written into the matrix A. 

𝑎𝑖𝑗 = #{𝑥 | (𝑙 = 𝑖, 𝑙 ∈ 𝐿) ∧ (𝑑 = 𝑗, 𝑑 ∈ 𝐷)} (9) 

where: 

𝑥 – element that satisfies the condition; 

𝑖 – row index of matrix A; 

𝑗 – column index of matrix A; 

𝐿 – array of actual class values; 

𝐷 – array of ∆𝑎𝑐𝑐 values. 

An additional metric accuracy_2(%) based on 

accuracy_2 that takes into account the ratio of the 

number of samples of each class was introduced. For 

each 𝑖 - class in its row, 𝑗 - the ratio of its ∆𝑎𝑐𝑐 value 

to the total number of ∆𝑎𝑐𝑐 values for that class is 

calculated, which is then multiplied by 100 to obtain 

a percentage value.  

𝑎𝑖𝑗(%) =
𝑎𝑖𝑗

∑ 𝑎𝑖𝑚
𝐾
𝑚=0

 (10) 

where: 

𝑎 – matrix A element; 

𝑖 – row index of matrix A; 

𝑗 – column index of matrix A; 

𝐾 – the number of values in the 𝑖-th row of matrix A. 

The results were then rounded using the largest 

remainder method. 

During the process of interpretation of the 

accuracy_2(%) metric, attention was paid to the 

elements located on the left side of the resulting heat 

map. A bigger number of elements on the left side of 

the heatmap signified better performance of the 

trained model. A range of colors from green to red 

was used for visualization, with green indicating the 

biggest number of elements and red indicating the 

smallest number of elements. 

3 EXPERIMENTS  

As part of the validation of the proposed approach, 

experiments were carried out to determine PTh using 

labeled raw and DFT-transformed sets of data 

separately. In the experiments, various BLSTM 

model configurations (1, 2 and 3 hidden layers) and 
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hyperparameter sets were assessed to observe their 

impact on the performance of the model. A 

hyperparameter optimization framework was utilized 

to determine the optimal set of hyperparameters. The 

top performance results were achieved with the batch 

size = 32 and learning rate = 0.001, as well as 80% 

training and 20% test dataset ratio. 

Both the deep neural network and several classical 

machine learning models implemented in the 

machine learning framework, such as 

ExtraTreesClassifier, AdaBoostClassifier, 

RandomForestClassifier, etc., failed to effectively 

classify the thickness of the porous layer PTh of the 

bone models.  

Classical machine learning models demonstrated 

21.67 – 29.17% accuracy, 0.2057 – 0.2929 F1-score 

for each soft tissue layer separately and 25.28% 

accuracy, 0.2316 F1-score for all the soft tissue layers 

together.  

The BLSTM model struggled to determine 

dependencies among large arrays of raw ultrasonic 

data features (Figure 4 - 6), reaching ~26% accuracy 

(Figure 3), 0.23 precision, 0.26 recall and 0.23 F1-

score. Thus, the experimental results for raw 

ultrasonic signal data were considered unsatisfactory. 

Experiments with DFT-transformed ultrasonic 

signals showed better results than experiments with 

raw signals.  

Classical machine learning models, such as SVC, 

KNeighborsClassifier, ExtraTreesClassifier, 

LGBMClassifier, etc., demonstrated 70.83 – 75.83% 

accuracy, 0.6949 – 0.7611 F1-score for each soft 

tissue layer separately and 68,61% accuracy, 0.6823 

F1-score for all the soft tissue layers together.  

The BLSTM model achieved better results with 3 

hidden layers (Figure 8 - 9) and showed ~56% 

accuracy (Figure 7), 0.57 precision, 0.56 recall and 

0.55 F1-score. Examination of the rest of the 

predictions using the custom accuracy_2 and 

accuracy_2(%) metrics (Figure 10) revealed that most 

of them are nearest neighbors of the exact predictions 

in the range of ∆𝑎𝑐𝑐<=2 mm and are concentrated on 

the left side of the heatmap with a few exceptions as 

demonstrated in Figure 10. Classes with the largest 

number of samples in the dataset were predicted best 

at PTh<=3, with the predictions getting progressively 

worse as the number of samples in the dataset 

decreased. 

Both machine learning approaches showed that a 

smaller amount of features in the case of DFT-

transformed ultrasonic signal data (750 inputs) 

contributed to a more accurate classification of the 

thickness of the porous layer PTh. 

Upon evaluation of the BLSTM model’s 

performance, an overfitting problem was observed, 

despite the introduction of Dropout and 

EarlyStopping to prevent it. This indicates the need 

for further optimization of the dataset and model. 

Classical machine learning methods achieved better 

results with each value of the soft tissue layer 

thickness separately, whereas the deep neural 

network worked better with all soft tissue layer 

thickness values together. 

The following computer system was used to 

implement the experiments: Intel Core i7-12700H, 

Nvidia RTX 3070 Ti, 8GB with 5888 CUDA cores, 

RAM 32.0 GB, JetBrains PyCharm 2022.3.2 IDE, 

Anaconda virtual environment with Python 3.10, 

CUDA Toolkit 11.2.2 and CuDNN 8.1.0. 

Experiments were run utilizing the GPU 

computing power for model training and testing. With 

all the prerequisites complete, TensorFlow in 

conjunction with Keras enabled transparent GPU 

usage without explicit code configuration, thus 

facilitating operations to be run on GPU by default. 

Considering the above, CuDNN is automatically used 

with the LSTM layer, starting with Tensorflow 2.x. 

Nvidia CUDA parallel computing platform and 

CuDNN library for deep neural networks gave an 

increase of more than 90% in system performance. 

 

Figure 3: Model accuracy with raw ultrasonic data. 
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Figure 4: Model loss with raw ultrasonic data. 

 

Figure 5: Confusion matrix with raw ultrasonic data. 

 

Figure 6: Accuracy_2(%) distributions with raw ultrasonic 

data. 

 

Figure 7: Model accuracy with DFT ultrasonic data. 

 
Figure 8: Model loss with DFT ultrasonic data. 

 

Figure 9: Confusion matrix with DFT ultrasonic data. 
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Figure 10: Accuracy_2(%) distributions with DFT 

ultrasonic data. 

4 CONCLUSIONS 

The results of the experiments demonstrated the 

potential effectiveness of the proposed method in 

machine learning tasks for determining the thickness 

of the inner porous layer PTh of the bone cortex as 

the factor of interest in osteoporosis diagnostics using 

ultrasonic data. The results were obtained in the 

presence and disrespectfully of surrounding soft 

tissues up to 4 mm thick that is one of the main 

artefacts in bone QUS. The use of the DFT-processed 

ultrasonic signals as inputs for machine learning 

provides higher accuracy of classification as opposed 

to the raw ultrasonic signals. The present dataset does 

not allow to have higher model performance, 

however, experiment outcomes indicate a potential 

for accuracy improvements with expansion and 

optimization of the datasets, as well as additional 

signal processing, which may contribute to the 

representativeness of the datasets.   
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