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Abstract: Switzerland is home to the sources of major European rivers. As the thermal regime of rivers is crucial for
the environment, the Federal Office for the Environment has been collecting discharge and water temperature
data at 81 river water stations for several decades. However, despite diligent collection 30% of the water
temperature data is missing due to various reasons. These missing data are problematic in many ways – for
instance, in predicting water temperatures based on different models. To tackle this problem, we propose to
use LSTMs for water temperature imputing. In particular, we introduce three different scenarios – depending
on the available input data – to impute possible data gaps. Then, we propose several methods for each scenario.
For our empirical evaluation, we engineer a novel dataset (with ground truth) by artificially introducing gaps of
sizes 2, 10, 30 and 60 days in the middle of 90-day sequences. A rather simple interpolation baseline achieves
a competitive RMSE on gaps of two days. For larger gaps, however, this simple method clearly fails, and the
novel, far more sophisticated models significantly outperform both interpolation and the current state of the
art in this application.

1 INTRODUCTION

The thermal regime of rivers is important for several
chemical and biological processes (Caissie, 2006).
Moreover, due to the complexity and dependence
of meteorological events, projections of future wa-
ter temperature is both crucial and challenging (Pic-
colroaz et al., 2016). Improving the performance of
predictive models is a crucial step of the overall sim-
ulation capabilities, especially when facing climate
change.

Switzerland has a ubiquitous landscape of wa-
ter bodies that consists of four major rivers (Rhine,
Rhône, Inn, Ticino) with their corresponding tribu-
taries. In the high alpine regions there are glaciers,
snow fields and hydroelectric power plants. Within
the lowlands there is agriculture, a multitude of
medium and large cities as well as various lakes. All
this substantially influences the water network and es-
pecially the temperature of the water bodies.

For instance, if inflowing water stays for a long
time in a lake, the outflowing water corresponds to
the surface layer of the lake. This layer is more af-
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fected by atmospheric exchange rather than the in-
flowing water (the solar radiation is absorbed by par-
ticles in the water, then converted into heat and finally
exchanged with the water). Large cities (as a second
example of influence) can warm up on sunny days and
act as a boiler for rain water, which is then routed into
the nearest body of water.

Furthermore, we have other effects such as ground
water inflow or snow melt. Last but not least, on the
water surface there is a direct exchange with the sur-
rounding air. Hence, the water temperature is heav-
ily dependent on the air temperature. All in all, we
observe a fascinating network of water bodies with a
high complexity.

The present paper researches the important and
complex problem of water temperature imputation in
case of missing data. The topic of water tempera-
ture imputing has been approached with diverse mod-
els such as spatiotemporal varying coefficients (Li
et al., 2017), or by remotely sensed Land Surface
Temperature (McNyset et al., 2015). In the present
paper we propose to combine Deep Learning with
the problem of imputing missing data in water tem-
perature sequences. To this end, we use Long short-
term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) networks for data imputation. LSTMs have
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shown promising results in the related task of water
temperature prediction (Qiu et al., 2021; Jia et al.,
2021).

LSTMs are a special type of a recurrent neural net-
work (RNN) (Sherstinsky, 2020). An RNN in turn is a
neural network that is applied to a time series on every
time step. In addition to a standard RNN, an LSTM
keeps track of a hidden state and a memory state, two
vectors which are fed as inputs to the next time step
and will be altered by the LSTM.

This paper is a continuation of the work on the
Swiss River Network dataset where diverse open
challenges have been presented (Fankhauser et al.,
2023). In this previous publication, water tempera-
tures are predicted by means of LSTMs on the basis
of a graph based data structure. However, this predic-
tion is – at least in past – based on incomplete data.
We belief that improving data quality is an important
part for any water temperature prediction model (and
this is where the present work comes in).

The remainder of this paper is organized as fol-
lows. In Section 2, we describe the Swiss River Net-
work and its missing data in more detail. In Section 3,
we present several LSTM based methods to impute
missing water temperature data. The proposed mod-
els mainly differ in the amount of input variables they
actually use. These methods are then thoroughly eval-
uated in Section 4. Finally, we draw conclusions in
Section 5.

2 THE SWISS RIVER NETWORK

The Federal Office of the Environment of Switzer-
land has been collecting water temperature and dis-
charge data for more than half a century. For bet-
ter monitoring of the climate change, about 30 addi-
tional water stations have been built during the period
of 2002 to 2010 (see Fig. 1 for an overview of the
Swiss River Network and the placement of the water
stations). In the context of this project, we have also
access to atmospheric measurements like the air tem-
perature which is provided by air stations (operated
by MeteoSwiss).

Recently, a graph structure has been introduced
which represents the connectivity of both water and
air stations (Fankhauser et al., 2023). The basic idea
is to use information from neighboring air stations
to make predictions for several target water stations.
In the present paper, we reuse this connectivity but
focus on the task of imputing missing data (rather
than pure water temperature predictions). Similar
to (Fankhauser et al., 2023) we work on temperatures
of daily averages and we do not use data prior to 1980

Figure 1: Overview of the Swiss River Network. Every blue
line is a body of water. 81 water stations measure the water
temperature and discharge (shown as black dots).

(due to the hydrological climate regime shift (Reid
et al., 2016; Woolway et al., 2017)).

2.1 Missing Data

Sensor failure, scheduled maintenance or problems
in the communication system are common causes for
missing data in real world applications. In our par-
ticular application, dirt can clog the tube where the
temperature sensor is placed in. Furthermore, tem-
perature sensors are affected by drift and have to be
calibrated regularly. A special case of missing data in
our case is the time before construction of the water
station: the water has been there but was not mea-
sured.

In our dataset we observe three types of missing
data.

• Gaps in air temperature data. In our dataset,
air temperature is nearly complete with only 1%
missing data.

• Gaps in discharge data: For discharge data, 6%
of the data is missing. Most water stations mea-
sured discharge before they were upgraded with a
temperature sensor.

• Gaps in water temperature data. Overall, 30% of
the data is missing.

In the present paper, we focus exclusively on the
third category of missing data.

For a more detailed analysis of the missing data in
the water temperature data, we show the frequencies
of different gap sizes with histograms (see Fig. 2).
We distinguish short gaps (up to 61 days), medium
gaps (from 62 to 729 days), and long gaps (730 days
or more). Short gaps are mostly due to unexpected
events, while long gaps, on the other hand, are more
likely due to operational decisions.

Regarding the histograms, it becomes clear that
the most common gap size is two days (with more
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than 100 observations in total). Next, we observe sev-
eral gaps ranging from 30 days to 6000 days. Of in-
terest are ten gaps of exactly 365 days. Since they all
occur in the same year, we suspect an artificial rea-
son behind them. Furthermore, we observe relatively
many gaps, which are larger than 6,000 days. These
gaps correspond to the days before the construction
of the newer stations, which were put into operation
between 2002 and 2010.

3 METHODS FOR IMPUTING
MISSING DATA

In this section, we present seven methods to impute
missing water temperature data on the Swiss River
Network. The methods are grouped by the number of
input variables they have available (resulting in three
groups). Each of the three groups represents a differ-
ent scenario.

1. In the first scenario, we assume to have access to
the water temperature of the target station only
(i.e. the station with the gap). Water temperature
data is available before and after the gap.

2. In the second scenario, we assume to have ad-
ditionally access to air temperature data dur-
ing the gap to use traditional models like
Air2Stream (Toffolon and Piccolroaz, 2015).

3. In the third scenario, we assume to have access to
all available input variables. Namely, we use the
discharge data as well as the graph structure of the
Swiss River Network to obtain water temperature
measurements of neighboring stations.

The left side of Fig. 3 illustrates the three scenarios
and in particular, which data the scenarios have at
their disposal.

Before describing the individual methods of the
three scenarios in more detail (in Sections 3.2, 3.3,
and 3.4) we briefly describe the generalized architec-
ture of the underlying model.

3.1 General Architecture

The available data is split into a part before the gap,
auxiliary variables during the gap and a part after the
gap. In general, each of the three parts are inputted
to their own LSTM and then combined together. The
LSTM working on auxiliary variables is used for esti-
mating the values in the gap and thus called the main
network. The right side of Fig. 3 shows the three pos-
sible LSTMs.

If a certain model has a ”Pr” in its identifier it
uses an LSTM to encode the water temperature be-
fore the gap as initial state for the main network. The
main network estimates the missing values of the gap.
Its input depends on the scenario and is also imple-
mented as an LSTM. If the data after the gap is used as
well we add an additional LSTM and convert the main
network into a bidirectional configuration (in this case
the identifier of the model contains a ”Po”).

Note, however, that only two methods stemming
from the first scenario make use of the water tem-
perature data after the gap (since they have the least
amount of information available). In theory, every
method with the Pr-LSTM could be extended to the
bidirectional setting to make use of the data after the
gap. Yet, we focus on the unidirectional way for
our methods as this allows the methods to fill gaps
where only one side of the temporal direction is avail-
able, namely estimates in future or before construc-
tion time.

3.2 Scenario 1: Water Temperature
Based Methods

The first group of methods has only access to the wa-
ter temperature of the target station before and after
the gap. We propose three methods.
Interpolation. The first method consists of a simple
linear interpolation, i.e. the convex combination of the
temperature of the last day before and the first day
after the gap.
Pr2Gap. The second method is termed Pr2Gap and
trains an LSTM on the water temperature before the
gap in order to predict the missing values in the gap.
During the gap, the LSTM is invoked and predicts
each day of the gap as a day in future. Note that this
method does not make use of the water temperature
after the gap.
PrPo2Gap. The third method is termed PrPo2Gap
and can be seen as an extension of the second method
in a bidirectional configuration. It uses an LSTM on
the water temperature before the gap and a second
LSTM on the water temperature after the gap in op-
posite direction.

3.3 Scenario 2: Air Temperature Based
Methods

In many real world scenarios, we have access to data
of a near by air temperature station during the gap.
Hence, the second group of methods has – in theory –
access to the water temperature before and after the
gap, as well as to neighboring air temperature sta-
tions. We propose two different methods (note that
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Figure 2: The distribution of gaps of different length in the water temperature data from 1980 to 2021 of the Swiss River
Network. We observe that small gaps occur more frequently, but gaps of the medium and large category contribute much
more to the overall 30% of missing data.

Figure 3: Overview of the three scenarios: On the left we see the data around the gap. Scenario 1 only uses water temperature
from before and after the gap. Scenario 2 has additionally access to the air temperature during the gap and Scenario 3 might
use all available data (i.e. additionally data from neighboring stations and discharge data). To the right we have the generalized
architecture of the seven methods.

the identifiers of these methods now include the ab-
breviation A for air temperature).
A2Gap. The first method is termed A2Gap and mod-
els the air to water temperature relationship in the
same way as Air2Stream (Toffolon and Piccolroaz,
2015) or corresponding LSTM versions (Qiu et al.,
2021). The model uses the air temperature during the
gap to estimate each day of the gap individually. No
water temperature is taken into account (neither be-
fore nor after the gap), making this model indepen-
dent of the gap size.
PrA2Gap. The second method is termed PrA2Gap
and is similar to the A2Gap method but adds an ad-
ditional LSTM to encode the previous water temper-
ature. This encoded state is then fed to the A2Gap
model as first initial state in order to make use of the
available water temperature before the gap.

3.4 Scenario 3: Neighbor Based
Methods

In this third scenario, we make use of all available
data of the Swiss River Network. Additional to the
previous two scenarios, we add discharge and use the
Swiss River Network to determine neighboring sta-
tions. In particular, we use the water temperature of
neighboring stations as input and refer to it as neigh-
bor temperature. Note that the abbreviations of these
methods now include a Q (for discharge) and an N
(for neighbor temperature).
AQN2Gap. The first method of this group is the ex-
tension of the A2Gap method but uses more input
variables. In particular, it has access to the air tem-
perature, discharge and neighbor temperature during
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the gap. However, this method does not use water
temperature before or after the gap.
PrAQN2Gap. The second method of this group uses
an additional LSTM to encode the water temperature
before the gap. This encoded state is then used as
initial state for the main network.
FCN-AQN2Gap. The third method is employed to
compare the LSTM performance against a fully con-
nected neural network (FCN). As we will use gaps
of fixed size in our experiment, we can train an FCN
fitting precisely the size of the gap and thus replace
the LSTM of the main network with an FCN. It uses
the same input data as the AQN2Gap model. This
means it only relies on auxiliary variables during the
gap. This method is interesting in practice as a trained
FCN-AQN2Gap model for a gap size of k′ can be used
to fill any gap of size k as long as k ≤ k′. Moreover,
a gap of size 2k can be interpreted as two consecutive
gaps of size k.

4 EXPERIMENTAL EVALUATION

4.1 Experimental Setup

As we do not have ground truth values for the actual
gaps in the water temperature time series, we simulate
artificial gaps in our experiment. To this end, we se-
lect gap-free sequences of 90 days and artificially in-
troduce water temperature gaps in the middle of each
sequence. In total, we select 412,436 sequences from
55 water stations for our evaluation. The sequences
overlap in time. The inserted gaps are of length 2, 10,
30, and 60 days. We split the resulting sequences into
disjoint sets for training, validation and testing (64%,
16% and 20% of the data, respectively). For each pair
of method and station, we run a grid search over width
and depth of the networks and the learning rate. The
validation set is used to determine the best hyperpa-
rameters. The presented results are obtained on the
untouched test set sequences.

For quantitative comparison we use the root mean
square error (RMSE), formally defined by

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 , (1)

where yi is the ground truth value at the i-th position
in the gap and ŷi is the value estimated by the model.
Obviously, the lower the RMSE the better the model.

Our code will be made publicly available for re-
search purpose on the Git Repository of our research
group1.

1https://github.com/Pattern-Recognition-Group-

4.2 Results and Discussion

For each method and water station we report the
RMSE of the best model on the untouched test set.
This results in 55 data points per method. Fig. 4
shows the results as box-plots diagram for all four gap
sizes (2, 10, 30, and 60 days). In particular, the box-
plots show the median RMSE for all eight methods
with a horizontal line, the interquartile range (IQR),
and the whiskers pointing to the smallest and largest
elements still within 1.5 times the IQR (we also show
possible outliers with circles).

For a gap size of two days, the results of linear in-
terpolation are compatible to the best models. How-
ever, with larger gaps the performance of this rather
simple method substantially deteriorates. The same
holds for the other two methods of the first scenario.

The methods based on other auxiliary variables,
which are accessible during the gap, namely air tem-
perature, discharge and neighboring water tempera-
ture, maintain a constant performance independent of
the size of the actual gap. The only exception is the
FCN based method, which deteriorates slightly with
increasing gap size.

Adding neighboring water temperatures and dis-
charge as input to the model, outperforms more tradi-
tional methods solely based on air temperature. The
Pr-based variants, which encode the available wa-
ter temperatures before the gap, constantly improve
their counterparts that have no access to this infor-
mation. Replacing the main network LSTM of the
AQN2Gap model with a fully connected neural net-
work decreases performance in our experimental set-
ting.

The worst model is Pr2Gap, which performs
poorly on all gap sizes and generally has the largest
RMSE. Vice versa, we can report that on all tested
gap sizes the PrAQN2Gap model achieves the best
performance. This particular model is based on all
available data (air and discharge data as well as water
temperature of the neighboring stations) and achieves
an RMSE of 0.47, 0.52, 0.54, and 0.55 on the data
with gaps of 2, 10, 30, and 60 days, respectively.

5 CONCLUSIONS

After revisiting the hydrological data of the Swiss
River Network (Fankhauser et al., 2023), we find that
this real world application suffers from missing data
(up to 30% of the data). Ignoring these gaps in the
data is an unsatisfactory solution for both practition-
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(a) Gap size 2. (b) Gap size 10.

(c) Gap size 30. (d) Gap size 60.

Figure 4: Results of the experimental evaluation. Reported is the RMSE on the untouched test set sequences. The scale is cut
off at a value of 2 in order to not distort the visual comparison.

ers as well as data analysts. For this reason, we ad-
dress the task of data imputation in this paper.

We assume three different scenarios that could oc-
cur in real-world applications. That is, depending on
the circumstances of the gap, one of the three intro-
duced scenarios might occur. For each scenario differ-
ent model architectures are proposed and researched.
The different models differ primarily to the extent that
they make use of different data (such as water temper-
ature data before the gap or air temperatures or water
temperatures of neighboring stations during the gap).

In order to evaluate the methods we run an exper-
iment on a novel dataset with artificially created gaps
of different sizes (2, 10, 30, and 60 days). The maxi-

mal gap size is rather small, but the stable results and
constructions independent of the gap size allow us to
extend our conclusions to larger gap sizes. In partic-
ular as some of the proposed techniques, viz. A2Gap,
AQN2Gap, FCN-AQN2Gap, give consistently good
results irrespective of the gap size.

Considering the results obtained, we can draw the
following three main conclusions.

1. For small gaps of two days the interpolation
method is performing well in respect of its sim-
plicity, and we can recommend to use it.

2. For any gap size larger than ten days, however,
more sophisticated models are necessary. The

Impute Water Temperature in the Swiss River Network Using LSTMs

737



model PrAQN2Gap performs the best in general.
With an average RMSE close to 0.55 it outper-
forms current state of the art methods which are
based solely on air temperature. To be fair, their
experimental setup is slightly different and we in-
troduce the A2Gap method as representable com-
petitor.

3. In an ablation experiment, we replace the LSTM
of the main network with a fully connected net-
work. As the results of this particular model de-
teriorates with increasing gap size, we conclude
that LSTMs seems to be beneficial for our task.

In future work we plan to impute missing data in
discharge data and research the impact of the artifi-
cially created gap free dataset on water temperature
prediction models. Another direction of work is to
retrospectively investigate the measured data to find
undetected outliers.
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