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Abstract: In this paper we aim to investigate whether the use of dry electrodes to detect multimodal workload could be 
a viable way forward in the future. Therefore, we did a comparative study with gel (6 subjects) and dry 
electrodes (2 subjects) and analysed the data using the Task Load Index (TLI) and the power spectrum of 
different frequency bands. The results show that the TLI is significantly increasing for higher workload 
condition (p < 0.04) and expected changes in the frequency bands are significant for both gel and dry 
electrodes in subject-specific frequency bands. In conclusion, the results look promising, and it is worthwhile 
to conduct another study with more subjects using dry electrodes. 

1 INTRODUCTION 

To know the overall workload level of a person 
during a certain task is helpful in different areas. For 
the prevention of mental disorders as, for example, 
burnout due to permanent stress and overload, it is an 
advantage to know the overall workload level of a 
person (Greif & Bertino, 2022), as the tendency 
towards mental disorders increased in the past (World 
Health Organization, 2023) and this must be avoided 
as much as possible. Safety-critical environments in 
particular need to be better monitored in terms of 
workload to protect the people who work in them. In 
space flight, for example, it is important to know the 
workload level of each astronaut, since a higher level 
of workload is related to a higher risk to make 
mistakes (Morris & Leung, 2006) and this can quickly 
end fatally. Further, microgravity on ISS and in space 
(ESA, 2023) will likely have an impact on the overall 
workload since astronauts are not used to it in general. 
The Multiple Resource Model by Wickens (2008) 
defines different dimensions influencing workload. 
Objects that are in microgravity behave significantly 
differently than those in Earth gravity. As a result, 
visual processing and special activities consume more 
resources because the objects astronauts see behave 
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differently than they would expect. Thus, 
investigation of the adaption of workload under 
different gravitational conditions is important.  

The literature shows that workload can be 
determined based on different physiological signals 
(Fairclough & Mulder, 2011; Singh, Ponzoni 
Carvalho Chanel, & Roy, 2021; Volden, Alwis, de 
Viveka, & Fostervold, 2018; Ding, Cao, Duffy, 
Wang, & Thang, 2020). 

Different modalities can be investigated to 
estimate workload under different gravitational 
conditions. The following modalities are of special 
interest for our future research:  

• Electroencephalogram (EEG),  
• Eye Tracking (ET),  
• Electrocardiogram (ECG) and  
• Respiration (RESP) 

EEG and ET are very common parameters for 
workload estimation. ECG and RESP are very 
interesting for space applications, since different 
gravity conditions have an impact to the 
cardiovascular system of a person (Schlegel, et al., 
1998) as well.  

The aim of this paper is to see, if a measuring 
system with dry electrodes in form of a headset could 
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be used for EEG measurement, since one big 
advantage of such a device is that every person could 
set this up on their own in a few seconds (Trampler, 
Tabie, Rotonda, Heere, & Kirchner, 2021) which 
would be required under conditions such as space 
exploration with few persons and time available. To 
test this, we conducted a study with both, a gel and 
dry electrode system. Subjects had to solve the same 
cognitive demanding tasks. To verify, which of the 
systems is better suited for our aim, we looked at the 
data measured during an N-back task (Kirchner W. 
K., 1958). 

The remainder of the paper is structured as 
follows. In the next section, we provide an overview 
about the EEG parameters that change due to 
different workload conditions. In section 3, we 
introduce the experimental setup of the study and 
discuss the used methods. Afterwards, we explain the 
results of the EEG analysis and discuss them in 
section 5. In section 6 we give a conclusion about the 
outcome. 

2 WORKLOAD DETECTION 
BASED ON THE 
ELECTROENCEPHALOGRAM 

This section provides information about the EEG and 
the expected changes caused by “lower” and “higher” 
workload. “Lower” workload was evoked by a clearly 
simpler task with less demand on working memory. 

The EEG measures brain activity with very high 
time resolution by measuring the potential difference 
between two electrodes (Berger, 1934). Some 
parameters in the EEG are reported in literature that 
change with different levels of workload.  

For features in the time domain Pergher et al. 
(2018) reported a higher P300 amplitude for lower 
workload and the highest at the electrodes Fz, Pz and 
Cz. A reduced amplitude of the P3a in an N-back task 
was found as well (Putze, Mühl, Lotte, Fairclough, & 
Herff, 2018). Kirchner et al. (2016) showed a reduced 
P3b for high task load, i.e., workload caused by a task.  

For features in the frequency domain a lot more 
literature can be found in context to N-back tasks and 
workload in general. Klimesch (1999) and Andreassi 
(1995) reported that theta and alpha oscillations are 
sensitive to task difficulty. Some groups reported a 
change in the alpha band power over parietal sites 
(Ding, Lu, Lin, & Tseng, 2016; Ewing, Fairclough, & 
Gilleade, 2016). Ding et al. (2016) reported in detail 
that they found a stronger alpha 1 (8-10 Hz) activity 
in insula but a weaker alpha 2 (10-12 Hz) activity in 

the anterior cingulate cortex for higher workload after 
source reconstruction, compared to lower workload. 
Ewing et al. (2016) calculated the frequency bands for 
every subject individually and reported a decrease in 
lower alpha band power (7.5-10 Hz) in the right 
hemisphere. For upper alpha band power (10.5-13 
Hz) they reported a decreasing power with increasing 
demand. 

The theta band power (4-8 Hz) was shown to 
change during an increase of workload, while the 
theta band power in the frontal sites does increase 
(Bagheri & Power, 2020; Ewing, Fairclough, & 
Gilleade, 2016; Shou & Ding, 2013). Nowak et al. 
(2021) showed that an increase in theta band power at 
frontal electrodes leads to better results in N-back 
tasks. Ding et al. (2020) reported this especially for 
the Fz electrode. Another group showed a stronger 
theta activity in temporal regions 335 ms after the 
stimulus onset (Ding, Lu, Lin, & Tseng, 2016). 

Two groups showed an increase in beta band 
power (13-25 Hz) for higher workload compared to 
lower workload. Matthews et al. (2017) explained 
that they would interpret the higher beta band power 
as a direct expression of attentional overload or as an 
indirect product of cognitive self-regulation. Singh et 
al. (2021) found the higher beta band power mostly in 
the fronto-central, temporal and occipital sites. 

Changes in gamma band (25-45 Hz) are also 
dependent on workload. Singh et al. (2021) showed 
an increase in gamma band power for higher 
workload, compared to lower workload in the brain 
areas in which changes in beta activity were found. 

To define the level of workload of a person, it is 
also common to use the ratio of frequency band 
powers of certain electrodes. For example, the Task 
Load Index (TLI) is defined as the ratio between the 
averaged power of the theta band at Fz and the 
averaged power of the alpha band at Pz (Smith, 
Gevins, Brown, Karnik, & Du, 2001). 

3 METHODS 

This section contains information about the dataset in 
general, the experimental setup and procedure, the 
data recording and pre-processing and the EEG 
analysis. 

3.1 Data 

The data were recorded in two separated studies but 
with the same experimental setup. The data for dry 
electrodes and detailed information about the headset 
are already published (Trampler, Tabie, Rotonda, 
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Heere, & Kirchner, 2021). These data were originally 
recorded to explore the fit of the headset with five 
subjects. The headset and its layout can be seen in 
Figure 1.  

 

Figure 1: A: Dry electrode headset with integrated 
electrodes; B: layout (Trampler, Tabie, Rotonda, Heere, & 
Kirchner, 2021). 

The data with gel electrodes were afterwards 
recorded with six subjects to compare dry electrodes 
with gel electrodes. 

The particular challenges of dry electrode systems 
are both the signal quality and the wearing comfort 
for the subjects, especially during longer 
measurements. The electrodes must be placed on the 
skin with a certain amount of pressure in order to 
establish contact between the electrode and the scalp 
with the appropriate impedance and to ensure good 
signal quality. However, the pressure must not be too 
high, as the test subjects would otherwise suffer pain. 
This can be influenced by the flexibility of the 
headset. The number of pins per electrode also has a 
further influence on wearing comfort, as the pressure 
is distributed over a larger area with more electrodes 
and has no influence on the impedance (Fiedler, et al., 
2018). 

3.2 Participants 

EEG and ET data from eight healthy subjects (6 male, 
average age = 29,8 ± 6,8) were included in this study. 
All subjects gave their written informed consent and 
were told that they could stop the experiment at any 
time without consequences. The studies were 
approved by the local Ethical Committee of the 
University of Bremen. Subjects received a monetary 
compensation of 10€ per hours. 

3.3 Experimental Setting 

Throughout the experiment, every subject executed 
three sets with four different tasks each, always in the 
same order. After every task the subject had to answer 
the NASA-TLX questionnaire (Hart & Staveland, 

1988). There was a 60-seconds break between every 
task. After each set there was a break of five minutes. 
The difficulty of the tasks increased with each set. 
The experimental design can be seen in Figure 2.  

The first task was a mental rotation task 
(Shephard & Metzler, 1971) where subjects had to 
decide which of the shown objects are the same but 
rotated.  

The second task was a visual N-back task 
(Kirchner W. K., 1958). The easiest level was N=1, 
the middle level N=2 and the most difficult N=3. 
Square figures, as shown in Figure 2, were shown to 
the subjects. Subjects were instructed to press a 
button if the stimulus was a target. The number of 
targets were between 20 and 30 and the number of 
non-targets between 160 and 248 for every subject. 
This difference in the number of stimuli is due to the 
experimental design. Subjects had a time limit for the 
task and had to process as many stimuli as possible. 
The presentation time for each figure was 500 ms and 
the inter-stimulus interval 2000 ms. 

The third task was an arithmetic task in which the 
subjects had to perform an addition or subtraction 
with two numbers. The time limit was ten seconds for 
each level of difficulty. 

The last task was the Stroop test (Stroop, 1935). 
Here, the levels of difficulty were always the same as 
this task was a control task for workload conditions. 

For the purpose of this paper only the EEG-data 
from the N-back task are important and used for 
evaluation. 

 

Figure 2: Experimental design. 

3.4 EEG Recording and Pre-Processing 

Before the experiment started, each subject was 
prepared with the Pupil Core Eye Tracker from Pupil 
Labs (https://pupil-labs.com/products/core/) with a 
sampling frequency of 200 Hz @ 192x192px and an 
accuracy of 0.60°.  
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Subjects were also prepared with the EEG  
system. ANT eego myLab (https://www.ant-
neuro.com/products/eego-mylab) with a sampling 
rate of 500 Hz was used. Six of the subjects (WK76, 
RR09, JR48, AA70 VA13 & BS09) were prepared 
with 64-channel Ag/AgCl active gel electrodes, 
positioned according to the 10-20 system with 
reference at FCz. The other two subjects (FW00, 
SD50) were prepared with a 24-electrode tailor-
developed headset with dry electrodes also according 
to the 10-20 system, where each electrode is 
positioned by an arch that adjusts its pressure to the 
appropriate force (for more detailed information see 
(Trampler, Tabie, Rotonda, Heere, & Kirchner, 
2021)). The 24 electrodes used were defined as the 
optimal minimum before the headset was built. As 
explained in Trampler et al. (2021), three other 
subjects were measured with the dry electrode 
headset, but we were unable to record an EEG signal 
because the electrode cap did not fit properly. The dry 
electrode headset was tailor-developed to fit subject 
FW00 perfectly. 

During the experiment, both EEG and ET were 
measured the entire time.  

Pre-processing was done with the MNE python-
library. The data were down-sampled to 256 Hz and 
a bandpass filter between 0.1 and 40 Hz was applied.  

3.5 EEG Analysis 

To analyse the EEG data, the N-back task data were 
segmented into epochs of 15 seconds without any 
overlap and without consideration of the 
target- / non-target-events. Power Spectral Density 
(PSD) in µV2/Hz was computed for the different 
frequency bands using the multitaper method. The 
frequency bands were defined for every subject 
individually.  

The peak was determined in a fixed frequency 
band using the frequency ranges (Samima & Sarma, 
2019), which are showed in Table 1. Peaks were 
detected using Brain Vision Analyzer 2.2 (Brain 
Products GmbH, Gilching, Germany). 

The electrodes were chosen based on the expected 
changes with different levels of workload in the 
individual brain areas (see Sec. 2). For beta and 
gamma FCz electrode was used for active electrodes 
and T7 for dry electrodes, since the FCz electrode was 
set to GND and cannot be recalculated (see Figure 1). 
T7 was chosen instead, since beta and gamma 
changes can also be detected in temporal brain 
regions (Singh, Ponzoni Carvalho Chanel, & Roy, 
2021). The peak detection was done for both, low and 
high workload conditions in the predefined frequency 

band. Afterwards, the average of both peak frequency 
values was calculated to obtain a value for defining 
the frequency band.  

Table 1: Used frequency ranges for peak detection. 

Frequency Range (Hz) Electrode 
Theta 4.0 – 8.0 Fz 
Alpha 8.0 – 13.0 Pz 
Beta 13.0 – 25.0 FCz / T7 

Gamma 25.0 – 45.0 FCz / T7 

To determine the final individual frequency band, 
we used a 2 Hz frequency band for theta and alpha 
with the average values as the centre. For beta and 
gamma, we used a 4 Hz frequency band around the 
average values, also using them as the centre.  

After all individual frequency bands were 
determined, the average power within this range was 
determined for each epoch individually. This was 
done for all electrodes in the respective relevant brain 
areas. In Table 2 the used electrodes are listed. FCz 
was not used for the analysis, in contrast to peak 
detection, of beta and gamma bands, because for the 
dry electrode data it does not exist and the used 
electrodes for analysis should be the same for all data. 

Table 2: Electrodes used for analyses of different frequency 
bands. 

Frequency bands Used electrodes 
Theta F3, F4 
Alpha P3, Pz, P4 

Beta/Gamma 
F3, Fz, F4, C3, Cz, C4, 

T7, T8, O1, O2 

For statistical analysis, it must be checked 
whether the data are normally distributed. Hence, the 
Kolmogorov-Smirnov test was applied. Since it 
turned out that the data are not normally distributed, 
the Wilcoxon signed-rank test was used to check for 
statistical significance. If frequency bands were 
significantly different, the absolute values were used 
to see if the conditions (e.g., alpha power for N=1 > 
N=3) were fulfilled (see Figure 4 for an example). 

Also, the TLI was calculated for each subject 
individually, using the average power over all epochs 
for theta band of Fz electrode and the average power 
over all epochs for alpha band of Pz electrode. 
Although the N-back task is not a typical task for task 
load, the frequency bands considered for workload 
are very similar. The TLI can therefore be a first 
indication of whether a subject’s workload level is 
changing. In addition, a specific task was performed 
during the N-back task, which affects the workload. 
Also, a study by Hamann et al. (2023) showed the 
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sensitivity of the TLI for workload. Normal 
distribution was again tested using the Kolmogorov-
Smirnov test. Since there was no normal distribution 
of the data, the Wilcoxon signed-rank test was used 
to test statistical significance to see, if the TLI is 
significant higher for N=3 in comparison to N=1. The 
TLI was used to show in the first step whether a 
significant difference in the frequency bands could be 
seen at all for individual subjects within the different 
levels of workload before the individual frequency 
bands were analysed. The TLI was used, since it is 
often used for workload estimation, even if ratios of 
frequency bands should be used with caution 
(Boumann, Hamann, Biella, Carstengerdes, & 
Sammito, 2023). It can be used in this study because 
the subjects have to actively perform a task, to which 
the workload condition is linked. 

4 RESULTS 

The following section presents the results of the EEG 
analysis in the frequency domain. 

4.1 Task Load Index 

The Wilcoxon signed-rank test showed a significant 
increase of workload between the lowest (N=1) and 
highest (N=3) task level (p < 0.04) over all subjects 
measured with the gel electrodes. When looking at the 
individual subjects, a difference in TLI can be seen 
for all subjects (see Figure 3). For subjects with dry 
electrodes the TLI was also calculated. However, the 
sample size is not large enough for a statistically 
significant statement regarding TLI.  

 

Figure 3: TLI for subjects with gel electrodes for different 
workload levels. 

4.2 Single EEG Bands 

We compared the power of the individual EEG 
frequency bands under different workload conditions 
(N=1 and N=3) for each subject individually.  

For the theta band power, we analysed the F3 and 
F4 electrodes. We could show a significant increase 
in the power for four subjects with gel electrodes 
(p < 0.003). For the dry electrodes one subject 
showed a significant increase (p < 0.001). The results 
can be seen in Table 3.  

For the alpha band power, we used the electrodes 
P3, Pz and P4 and could show a significant decrease 
in power (p < 0.03) for four subjects, but not for the 
same subjects as for theta power. For the subjects 
with dry electrodes, we could show a decrease in 
power of the alpha band for one subject (p < 0.01). 
For subject FW00 the difference between the band 
power of N=1 and N=3 was significant, but alpha 
power increased from the lower workload condition 
to higher workload condition, which can be seen in 
Figure 4. This value is marked with an asterisk. For 
individually results of all subjects see Table 3. 

 

Figure 4: Averaged PSD values for alpha band power of 
subject FW00 under different workload conditions. 

For beta and gamma band power we used the 
electrodes F3, Fz, F4, C3, Cz, C4, T7, T8, O1 and O2. 
For beta band power we could show a significant 
increase in power for one subject with gel electrodes 
(p < 0.05) and for one with dry electrodes (p < 0.001). 
For four of the other subjects the difference between 
the beta band power was significant, but the power 
for N=3 decreased in comparison to N=1, instead of 
increasing. In Table 3, these values are marked with 
an asterisk as well. 
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Table 3: p-values for each subject from Wilcoxon signed-
ranked test. 

Subject θ α β γ
WK76 <0.001 <0.001 <0.001* n.s. 
RR09 <0.001 <0.03 <0.05 <0.01 
JR48 <0.001 <0.001 n.s. n.s. 
AA70 <0.003 n.s. <0.001* n.s. 
VA13 n.s. n.s. n.s. <0.001 
BS09 n.s. <0.001 <0.003* <0.001 

FW001 <0.001 <0.001* <0.004* <0.004 
SD501 n.s. <0.009 <0.001 <0.001 

*Significantly different, but power does not change in the 
direction as expected 
1Subjects measured with dry electrodes 

For gamma band power we could show a 
significant increase in gamma band power for three 
subjects with gel electrodes (p < 0.01) and for both 
subjects with dry electrodes (p < 0.004). The results 
for beta and gamma band power can also be seen in 
Table 3. 

5 DISCUSSION 

The main objective of this study was to investigate, if 
an EEG headset system with dry electrodes is suitable 
for determining workload levels of humans. To test 
this, we did a study with gel and dry electrodes. Dry 
electrodes were placed in a custom-made headset 
optimized to fit a specific person. For this 
comparison, subjects had to do an N-back task with 
three conditions (low (N=1), medium (N=2) and high 
(N=3) workload). For the analysis we only looked 
into the low and high workload data and compared 
them with each other. 

For data analysis objective measures were used. 
We did a frequency analysis, because if we find more 
workload-related and relevant features, these could 
also be used in addition to the time domain features 
for machine learning. First the TLI was calculated. As 
can be seen in Figure 3 a change in TLI, which 
basically means a change in the ratio between theta 
band power in Fz electrode and alpha band power in 
Pz electrode can be seen for all subjects with gel 
electrodes. The difference is also statistically 
significant (p < 0.04).  

Unfortunately, we cannot provide statistics 
regarding TLI with dry electrodes because the sample 
size of two subjects is too small. For this, more 
subjects must be measured with dry electrodes. This 
was not possible, since the dry electrode headset is 
customized to fit one person, as mentioned above, and 
would not fit very well to other subjects. We tried to 

measure more subjects, but if the size of the head is 
too small, we could not get any results, because there 
is no contact between the electrodes and the head 
surface. If the size of the head is too big, subjects 
would easily get a headache because of too much 
pressure. This is definitely a disadvantage of dry 
electrode headsets compared to gel electrode caps, as 
already discussed in Trampler et al. (2021), although 
they are easily to put on by the users themselves. 

For the analysis of the power of the frequency 
bands we used different electrodes for the bands, 
since the changes of power are detected in different 
brain areas (Ding, Lu, Lin, & Tseng, 2016; Ding, Cao, 
Duffy, Wang, & Thang, 2020; Singh, Ponzoni 
Carvalho Chanel, & Roy, 2021). For beta and gamma 
frequency we used F3, Fz, F4 and C3, Cz, C4 instead 
of FC1 and FC2 for fronto-central region, since the 
dry electrode headset does not have these electrodes 
and we want to have comparable results. 

Based on the analysis, it can be said that the 
frequency bands have different significance for the 
analysis of workload. According to the results from 
Table 3, it can be seen that theta and alpha band power 
are significant for most of the subjects. At least one 
of these two frequency bands is significant for all 
subjects except VA13. For the subjects WK76, RR09 
and JR48 even both power changes are significant. 

Beta band power has less significance in relation 
to theta and alpha. Its changes are just significant for 
two subjects, whereas one was measured with gel 
electrodes and one with dry electrodes. 

Gamma band power changes are significant for 
five subjects in total, but it is hard to interpret since it 
is a really high frequency band and its changes could 
also be affected by muscle activity from frontalis 
and/or temporalis muscles (Goncharova, McFarland, 
Vaughan, & Wolpaw, 2003). 

Overall, based on our analyses we can state that 
changes in frequency bands regarding different 
workload conditions are very subject-specific. This is 
also important for machine learning, as it makes 
features very subject-specific as well. 

Results from dry electrodes show that there are 
significant changes in the power of frequency bands. 
For the subject FW00 we found a significant change 
in the power of alpha and gamma frequency bands. 
For subject SD50 we could find significant changes 
in the power of all frequency bands except alpha. For 
both subjects we could see a very similar behaviour 
for dry electrodes compared to gel electrodes. 

For future work, the other modalities presented in 
the introduction (ET, ECG, RESP) should be included 
to increase the likelihood of the data being useful if 
the EEG data cannot be recorded properly. The 
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presented modalities also promise a good analysis of 
the current workload. In addition, the headset must be 
adapted in terms of cross-subject fit and comfort so 
that a study with more than two subjects of good data 
quality can be conducted. 

6 CONCLUSION 

In this study, we investigated whether the use of dry 
electrodes to detect workload could be a viable way 
forward, particularly using a headset that can be very 
easily self-fitted. Our results suggest that dry 
electrodes are a promising alternative for the 
detection of workload if the headset fits the subject. 
As a next step a study with a larger sample of subjects 
is needed. However, the adaptability of the dry 
electrode headsets is significantly less than that of gel 
electrode caps. To improve this, either better suited 
subjects with very similar head shapes can be selected 
or better fitting headsets must be built. 
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