
An Efficient Approximate Dynamic Programming Approach for
Resource-Constrained Project Scheduling with Uncertain Task Duration

Alireza Etminaniesfahani1 a, Hanyu Gu1 b, Leila Moslemi Naeni2 c and Amir Salehipour3 d

1School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, Australia
2School of the Built Environment, University of Technology Sydney, Sydney, Australia

3The University of Sydney Business School, The University of Sydney, Sydney, Australia

Keywords: Approximate Dynamic Programming, RCPSP, Priority Rule, Uncertainty.

Abstract: The resource-constrained project scheduling problems (RCPSP) with uncertainties have been widely studied.
The existing approaches focus on open-loop task scheduling, and only a few research studies develop a dy-
namic and adaptive closed-loop policy as it is regarded as computationally time-consuming. In this paper, an
approximate dynamic programming (ADP) approach is developed to solve the RCPSPs with stochastic task
duration (SRCPSP). The solution from a deterministic average project is utilised to reduce the computational
burden associated with the roll-out policy, and a parameter is introduced in the roll-out policy to control the
search strength. We test the proposed approach on 960 benchmark instances from the well-known library
PSPLIB with 30 and 60 tasks and compare the results with the state-of-the-art algorithms for solving the
SRCPSPs. The results show that our average-project-based ADP (A-ADP) approach provides competitive
solutions in a short computational time. The investigation of the characteristics of the instances also discloses
that when resources are tight, it is more important to intensify the search in the roll-out policy.

1 INTRODUCTION

In past decades, significant attention has been devoted
to scheduling projects under resource constraints.
In 1969, Pritsker et al. introduced the Resource-
Constrained Project Scheduling Problem (RCPSP)
(Pritsker et al., 1969), which involves determining
the optimal scheduling of tasks subject to precedence
constraints and resource limitations over time.

While the RCPSP has many practical appli-
cations, it has limitations in addressing uncertain
real-world problems, such as inaccurate estimations,
new or dropped tasks, and unforeseen conditions.
This has led to the development of a new research
area focusing on the stochastic resource-constrained
project scheduling problem (SRCPSP), which ex-
tends the RCPSP to include projects with stochas-
tic task duration and aims to minimise the expected
makespan(Schwindt and Zimmermann, 2015; Bruni
et al., 2009).

a https://orcid.org/0000-0002-9780-8262
b https://orcid.org/0000-0003-2035-2583
c https://orcid.org/0000-0002-2577-3611
d https://orcid.org/0000-0003-4866-1396

Most of the literature on the SRCPSP focuses its
attention on the development of heuristics and meta-
heuristics (Cai et al., 2024; Guo et al., 2021). Since
the task duration is random in the SRCPSP, the so-
lution to the problem is not a fixed schedule but a
scheduling policy, which determines which task to
start next at each decision point. A set of policy
classes is defined in (Chen et al., 2018). The policy
serves a similar function to the Schedule Generation
Scheme (SGS) in the RCPSP(Kolisch and Hartmann,
1999) and is used as a scheduling rule in a multi-stage
decision process for the project’s execution.

Most of the available approaches for solving SR-
CPSP are considered open-loop policies, which pro-
vide an order of all tasks at the start of the time hori-
zon and have limited capabilities to adapt to new in-
formation in the decision process. The alternative ap-
proach is dynamic programming (DP), which allows
decision-makers to utilise new information that arises
between decision points (Li and Womer, 2015). These
methods are called the closed-loop policy (Bertsekas,
2007). The closed-loop policy is computationally
more challenging than the open-loop policy since an
optimisation problem needs to be solved at each deci-
sion point.

Etminaniesfahani, A., Gu, H., Naeni, L. and Salehipour, A.
An Efficient Approximate Dynamic Programming Approach for Resource-Constrained Project Scheduling with Uncertain Task Duration.
DOI: 10.5220/0012356200003639
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Operations Research and Enterprise Systems (ICORES 2024), pages 261-268
ISBN: 978-989-758-681-1; ISSN: 2184-4372
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

261

It has been reported in (Stork, 2000) that a simple
policy based on the solution of the so-called average
project works well in most cases. The average project
is a deterministic RCPSP model in which each task
has the mean value as task duration. Since the deter-
ministic RCPSP is solved only once, the approach is
very efficient compared to the closed-loop approach.
However, the performance of this approach deterio-
rates when uncertainties are significant. This study
aims to develop an efficient average-project-based ap-
proximate dynamic programming (A-ADP) approach
to solve SRCPSP.

Our contributions in this study include:

• proposing an efficient A-ADP approach for solv-
ing SRCPSPs.

• reducing the computational burden of closed-loop
policy using the solution obtained from the aver-
age project.

• investigating a wide range of problems with 30
tasks and identifying the project characteristic that
has the most significant impact on the perfor-
mance of the A-ADP approach.

• investigating the impact of minimum slack
(MSLK) priority rule on the proposed A-ADP ap-
proach in solving instances with 30 and 60 tasks.

• providing competitive results to the state-of-the-
art algorithms for instances with 30 and 60 tasks
in a short computational time.

2 MDP FORMULATION OF
SRCPSP

This section introduces the SRCPSP’s assumptions
and problem scenario. Then its MDP formulation is
presented, which serves as the basis for developing
ADP algorithms in the upcoming sections.

2.1 Assumptions

Consider a project network represented by an activity-
on-node (AON) diagram denoted as G(V,E), where
the set of tasks in the project is V = {0,1, . . . ,n,n+1}.
Here, tasks 0 and n+ 1 represent the beginning and
end of the project, respectively. The AON network is
assumed to be acyclic; once a task is started, it can-
not be interrupted. The set of edges E represents the
precedence relationships among the tasks, indicating
that a task j cannot begin before task i has been com-
pleted if (i, j) ∈ E. The project requires utilising a
set of resources K = {1,2, . . . ,m} for its execution.
Each resource k ∈K has a limited capacity of Rk units

available during each period. The execution of a task
j requires r jk units of resource k. The duration of a
task j, denoted by a random variable D j, follows a
probability distribution (PD) known to the decision-
maker. The duration of a task can only be observed
once the task has been completed. The objective is to
determine a feasible policy regarding the precedence
and resource constraints that minimises the project’s
expected completion time (makespan).

2.2 SRCPSP Formulation in MDP
Model

We considered the MDP model of the SRCPSP as
suggested in (Li and Womer, 2015). This model in-
cludes stages, states, decisions, transition processes
and cost functions.

A decision stage is defined as a point in time when
a task is finished. We use ti to represent the time asso-
ciated with the ith decision stage, where i ranges from
1 to the number of decision stages, denoted by L. The
state Si contains all the necessary information to de-
cide at each stage i. It includes the completed tasks,
active tasks, the duration of the tasks that have been
executed, the observed duration of active tasks up to
the current stage, and the start times of all completed
and active tasks. The decision xi is a set of tasks that
can start at stage i and satisfy both precedence and
resource constraints.

The other component of the SRCPSP model is the
transition function from the current stage i to the next
stage i+1, which is denoted as SM(·).

Si+1 = SM (Si,xi,D j: j∈Ai

)
(1)

Ai is the set of active tasks at stage i. Given the
decision taken at stage i xi, and the set of observed
duration of active tasks D j: j∈Ai , the transition function
SM(.) maps the current state Si to the next state Si+1.
Equation (1) shows that the next state depends only on
the current state, the decision made, and the realised
duration of active tasks, not on the decision history.
This is known as the Markov property.

At stage i ∈ {1, ...,L− 1}, for the time point ti,
the cost of transition from Si to Si+1 is denoted by
g(Si,xi,Si+1), so the cost function from stage i and
state Si, can be written as:

Ji (Si) = E

{
L−1

∑
j=i

g
(
S j,x j,S j+1

)}
(2)

The goal is to minimise the expected project
makespan by selecting the optimal policy. Let the
cost-to-go function, or the objective function from
stage i and state Si when using the optimal policy π

is:

ICORES 2024 - 13th International Conference on Operations Research and Enterprise Systems

262

Vi (Si) = E

{
L−1

∑
j=i

g
(

S j,xπ
j ,S j+1

)}
(3)

The well-known recursion Bellman func-
tion(Bellman, 2010) computes the optimal policy
which is the optimal set of tasks started at each stage
i as below:

xπ
i = arg min

x⊂X (Si)
E{g(Si,xi,Si+1)+Vi+1 (Si+1))} (4)

where X (Si) is the set of eligible tasks.

3 PROPOSED A-ADP APPROACH
FOR SRCPSP

A successful approximation paradigm for solving
MDPs is the roll-out policy for combinatorial opti-
misation (Bertsekas et al., 1997). At each stage, a
roll-out policy replaces the exact cost-to-go function
Vi(Si) with a heuristic H to approximate it, denoted
as V H

i (Si), which is then used to decide in the current
state. In this policy at each state Si, a decision xPH

i is
obtained using the heuristic H as

xPH
i = arg min

x⊂X (Si)
E
{

g
(
Si,x j,Si+1

)
+V H

i+1(Si+1)
}

(5)

What motivated us to use the roll-out policy is that
it has been shown to be effectively applied in a wide
range of NP-hard combinatorial optimisation prob-
lems, including SRCPSPs (Li and Womer, 2015; Xie
et al., 2021).

Algorithm 1: The Average project-based roll-out policy for
SRCPSP.
Input: current time t, state S, eligible tasks X (S)
Output: Selected task;
if t=0 then

Obtain a priority list πL using PRTdet−MSLK ;
end
Use MC to generate |Ω| scenarios;
Generate the shortlisted eligible tasks X̂
for j ∈ X̂ do

for ω=1:|Ω| do
C(Ω(ω))=SSGS(πL,Ω(ω), S, j, t);

end

Cost(j) = ∑
|Ω|
ω=1 C(Ω(ω)
|Ω| ;

end
Use EPT−SLK to select a task k ∈ X̂ ;
return Selected task k;

Algorithm 1 represents our proposed policy for
the A-ADP approach. In this policy, the priority list of
the tasks (πL) is generated before starting the project

(at time t = 0). All the tasks are ranked according
to their starting time in the average project and the
value of their slack. We solve the average project us-
ing the Cplex CP Optimizer (CPLEX, 2017) to find
the starting time of each task. The slack value of each
task i is the difference between the earliest start time
and the latest start time of the task i in the average
project. The tasks scheduled earlier in the average
project, with lower slack value, have higher priorities
to be selected in the policy. We call this priority rule
as PRTdet−MSLK .

A shortlist of eligible tasks is generated to reduce
the computational burden associated with decision-
making in the roll-out policy. This list comprises only
a few eligible tasks, with the highest priorities accord-
ing to πL.

To approximately evaluate the expected cost-to-
go function starting from Si, a set of |Ω| scenarios
is generated using the Monte Carlo(MC) simulation
which has been effectively employed in various al-
gorithms for the SRCPSP(Ballestı́n, 2007; Xie et al.,
2021; Li and Womer, 2015). The approximated value
for the cost-to-go is obtained by calculating the aver-
age makespan across all |Ω| scenarios. In the follow-
ing, we explain how the makespan for each scenario
is obtained by a schedule generation scheme (SGS).

SGS generates a feasible schedule from scratch by
incrementally extending a partial schedule. A partial
schedule refers to a schedule where only a subset of
tasks have been scheduled. The serial schedule gen-
eration scheme(SSGS) is an SGS that schedules tasks
as soon as possible from a given list one by one. This
scheme considers both the precedence relationships
and resource constraints of the project(Kolisch and
Hartmann, 1999). In this research, we use a different
version of SSGS to generate a schedule. In this ver-
sion, the already scheduled tasks at the current time
ti are not overtaken, and just schedules the remaining
tasks considering πL are obtained by solving the aver-
age project. In this scheme, when a task i is taken at
time ti, the task j selected afterwards cannot be started
before ti.

An evaluation process that we call EPT−SLK is
conducted to identify the task associated with the
minimum cost among the shortlisted eligible tasks.
In EPT−SLK , we rank the tasks in the shortlisted el-
igible tasks based on their slack value from the aver-
age project and the approximated expected cost-to-go
function. The task’s priority for execution is deter-
mined by its average rank.

An Efficient Approximate Dynamic Programming Approach for Resource-Constrained Project Scheduling with Uncertain Task Duration

263

4 COMPUTATIONAL
EXPERIMENTS

The computational experiments provided in this paper
are to investigate the efficiency of our proposed A-
ADP approach. We investigate the project character-
istic that has the most significant impact on the algo-
rithm’s performance and identify when it is important
for the algorithm to work with the stochastic RCPSP.
We also investigate the efficiency of the proposed
A-ADP when using different priority rules obtained
from the average project. The algorithm is tested
on J30 (instances with 30 tasks) and J60 (instances
with 60 tasks) from PSPLIB. The PSPLIB dataset,
available at http://www.om-db.wi.tum.de/psplib/, is
created using the ProGen project instance generator
which are characterised by network complexity NC,
resource factor RF , and resource strength RS (Kolisch
and Sprecher, 1997).

We followed the assumptions in (Ballestı́n, 2007)
for the stochastic task duration. Table 1 shows the
employed PDs in this research. The deterministic du-
ration for task j is denoted by d j and the PDs include
Uniform distributions, Beta distributions and expo-
nential distribution (EXP).

Uniform distributions have a constant probability,
with slight variance in U1 and intermediate variances
in U2. The exponential distribution (EXP) also main-
tains a constant failure rate but exhibits a larger stan-
dard deviation compared to the uniform distribution.

Beta distributions, characterised by slight variance
in B1 and intermediate variances in B2, are well-
known probability distributions in scheduling under
uncertainty. These distributions are represented using
two shape parameters (α and β) to generate random
values.

To evaluate the policy in each experiment, a set
S of 1000 scenarios are generated for an instance r,
r ∈ {1, . . . ,R} using MC and a known PD provided
in Table 1. We solve the problem by Algorithm 1 for
each scenario i ∈ S with the makespan Makespan(i).
The expected makespan for the instance r is calcu-

lated as Er =
∑
|S|
i=1 Makespan(i)

|S| , where |S|= 1000.
The parameter Gap is defined to compare the re-

sults in different experiments and is the percentage
of the average deviation of the expected makespan
from the deterministic critical path length(CPL) of in-
stances, i.e., Gap = 1

R ∑
R
r=1

Er−CPLr
CPLr

.
Our algorithm involves two main computational

components. We allocate a time limit of 2 seconds
for solving the average projects with 30 tasks and 10
seconds for average projects with 60 tasks which is
enough to obtain a feasible solution using Cplex cp

optimizer(Etminaniesfahani et al., 2022; Etminanies-
fahani. et al., 2022). The maximum number of sched-
ules considered for the remaining stages of the algo-
rithm is determined as follows. The maximum num-
ber of schedules considered for a problem with n tasks
when the number of tasks in the shortlisted eligible
tasks is Lsle, and employing |Ω| scenarios for evaluat-
ing the tasks in the policy, is n×|Ω|×Lsle.

4.1 The Importance of Working with
the Stochastic RCPSP

This section investigates when it is important to work
with the SRCPSP. To this aim, we solved all 480 in-
stances of J30.

Table 1: Probability distributions of task duration.

PD Limits Mean Variance
lb ub µ σ

U1 d j−
√

d j d j+
√

d j - d j
3

U2 0 2d j - d j2
3

Exp - - d j d j2

B1 d j
2 2d j - d j

3

B2 d j
2 2d j - d j2

3

To investigate the impact of relying on the results
of deterministic RCPSP on the performance of the A-
ADP approach in Algorithm 1, to obtain the πL, we
ignored the impact of the slack value of tasks, by con-
sidering only the starting time of each task as its pri-
ority. The tasks started earlier have the higher pri-
ority in the policy, and we call that rule PRTdet . We
also replaced EPT−SLK by EPT =argmin j(Cost(j)) for
evaluating each task j in the policy based on only the
expected makespan when selecting the task j.

In our experiments, We set Lsle, and (|Ω|) equal
to three. We call the Gap achieved when Lsle=3 and
PRTdet , as Gap3Tdet . In another experiment, we set the
length of the shortlisted eligible tasks to one and then
obtain the Gap, called Gap1Tdet . When the shortlisted
eligible tasks consist of only one task, the policy se-
lects the eligible task with the highest priority without
approximating the cost-to-go function. Consequently,
the decision-making process relies solely on the de-
terministic solution derived from the average project.

The availability of resources in a problem is de-
termined by RS ∈ {0.2,0.5,0.7,1}. Figure 1 for each
PD, associated with each value of RS is the difference
between the Gap3Tdet and the Gap1Tdet .

The results obtained from this experiment show
that in the problems with RS = 0.2, the difference be-
tween the two policies is the maximum for all PDs.
By increasing RS, which means increasing the avail-
ability of the resources, the difference between the
results obtained by the policies decreases. For U1

ICORES 2024 - 13th International Conference on Operations Research and Enterprise Systems

264

Table 2: Comparison of results obtained by A-ADP and state-of-the-art algorithms for J30 (Zaman et al., 2021).

Algorithm Gap
U1 U2 EXP B1 B2

PPGA(Ashtiani et al., 2011) 19.87 30.67 45.56 19.93 30.76
A-HBA(Li and Womer, 2015) 16.63 42.37 45.13 12.60 16.63

LFT (Chen et al., 2018) 21.60 30.89 46.47 21.59 30.87
SLFT (Chen et al., 2018) 21.60 30.83 46.32 21.60 30.76
DH (Chen et al., 2018) 21.36 31.18 46.86 21.36 31.21

S-COA (Zaman et al., 2021) 1.56 8.67 16.66 1.29 7.72
A-ADP 7.72 12.94 29.26 4.15 11.37

Figure 1: The impact of RS on the performance of the policy
when considering uncertainty.

where the variance of the probability distribution is
relatively low, when RS = 1, the policy based on the
average project performs better than A-ADP when
there are three tasks in the shortlisted eligible tasks.
We did not find a meaningful relation between the per-
formance of the A-ADP with characteristics NC and
RF .

Table 2 compares the results of the state-of-the-
art algorithms in solving SRCPSPs, with Gap3Tdet ob-
tained by our A-ADP (Ashtiani et al., 2011; Chen
et al., 2018; Li and Womer, 2015; Zaman et al., 2021).
The stopping criterion for schedule generation is com-
monly defined as 5000 in the literature.

We set the parameter |Ω| to 3, indicating the num-
ber of scenarios in the policy. Given that the length
of the shortlisted eligible tasks is limited to 3, the
policy’s maximum number of generated schedules at
each stage is 9. Consequently, for a problem com-
prising 30 tasks, the maximum number of schedules
considered is 270.

Table 2 illustrates that more variance in task dura-
tion results in a higher Gap for the same PD. Com-
paring other algorithms, except for the S-COA, our
policy outperforms the other algorithms, including (Li
and Womer, 2015), the other ADP algorithm (Li and
Womer, 2015).

4.2 The Impact of Priority Rules and
Evaluation Process on the
Algorithm

This section investigates the impact of the proposed
priority rule and the evaluation approach in this algo-
rithm.

For this purpose, we employed subsets of datasets
J30 and J60 from PSPLIB denoted as J4830 and
J4860. J30 and J60 comprise 48 different prob-
lem characteristic combinations, with each prob-
lem having ten distinct instances. To comprehen-
sively assess the algorithm across all these combi-
nations, we chose the first instance from each prob-
lem,i.e., J4830= { j301− 1, j302− 1, . . . , j3048− 1}
and J4860= { j601−1, j602−1, . . . , j6048−1}.

We conducted a comparative analysis to assess
the influence of the priority rule introduced in sec-
tion 3. We compared the results obtained with the
PRTdet−MSLK to those with PRTdet . The results of solv-
ing J4830 and J4860 are provided in Table 3, and Ta-
ble 4. The Gap1Tdet−MSLK , is the Gap in which the
shortlisted eligible tasks in the policy have just one
task and the priority rule is PRTdet−MSLK .

Table 3: Results of J4830 when Lsle=1.

PD Gap1Tdet Gap1Tdet−MSLK

B1 3.91 2.33
B2 10.82 9.62

EXP 28.70 27.79
U1 7.40 5.53
U2 12.63 10.98

Table 4: Results of J4860 when Lsle=1.

PD Gap1Tdet Gap1Tdet−MSLK

B1 15.78 13.75
B2 22.94 21.02

EXP 42.65 40.84
U1 18.87 16.66
U2 24.24 22.15

When comparing Gap1Tdet and Gap1Tdet−MSLK for
all PDs in order to solve J4830 and J4860, the tables

An Efficient Approximate Dynamic Programming Approach for Resource-Constrained Project Scheduling with Uncertain Task Duration

265

Table 5: Results of J4830 for different |Ω|, priority rule and evaluation approaches when Lsle=3.

PD
|Ω|=1 |Ω|=3

Gap3Tdet Gap3Tdet−MSLK Gap3Tdet Gap3Tdet−MSLK

EPT−SLK EPT EPT−SLK EPT EPT−SLK EPT EPT−SLK EPT

B1 2.22 3.48 1.87 2.96 2.32 3.31 2.00 3.01
B2 9.68 11.01 9.49 10.32 9.76 10.89 9.44 10.51

EXP 27.93 28.89 27.42 28.87 27.82 28.69 27.98 28.05
U1 5.60 7.15 5.45 6.58 5.80 7.02 5.52 6.65
U2 10.98 12.62 10.94 12.15 10.96 12.36 10.92 11.76

Table 6: Results of J4860 for different |Ω|, priority rule and evaluation approaches when Lsle=3.

PD
|Ω|=1 |Ω|=3

Gap3Tdet Gap3Tdet−MSLK Gap3Tdet Gap3Tdet−MSLK

EPT−SLK EPT EPT−SLK EPT EPT−SLK EPT EPT−SLK EPT

B1 14.40 15.77 13.55 14.65 14.49 15.62 13.50 14.28
B2 21.28 23.40 20.91 21.68 21.61 23.41 20.98 21.74

EXP 41.18 43.72 40.78 42.41 41.36 43.16 40.84 42.33
U1 16.94 19.16 16.67 18.07 19.14 17.46 16.47 17.92
U2 23.18 24.71 21.82 23.55 23.08 24.13 22.55 22.67

Table 3 and Table 4 clearly demonstrate that using the
priority rule PRTdet−MSLK , which takes into account
the minimum slack value of tasks, yields superior re-
sults when compared to cases where slack value is not
considered in the priority rule.

Additionally, we examined two approaches for
evaluating each task in the eligible shortlisted tasks.
One was the evaluation method proposed in section 3
denoted as EPT−SLK , while the other involved assess-
ing tasks by disregarding their slack values, EPT . Fur-
thermore, we explored how the number of scenar-
ios, represented as |Ω|, impacts the algorithm’s effi-
ciency. Our investigation included a comparison of
results when |Ω|was set to 3, with the results obtained
when |Ω| was equal to 1, and the average project was
the single scenario in the policy. This analysis shows
how altering the number of scenarios impacts the al-
gorithm’s performance.

Table 5 represents the results of J4830. Compar-
ing the results for different PDs, there is no meaning-
ful difference when |Ω| is one or three, and in terms of
computational efficiency, employing the task duration
of an average project to calculate the cost-to-go func-
tion when |Ω|=1 reduces the computations by up to
a third compared to the other approach of finding the
expected makespan by averaging scenarios. Table 6
displays the results for the J4860 experiment, which
leads us to the same conclusion. Consequently, we
focus on using the average project with |Ω| set to one.

When we compare the different evaluation meth-
ods in both tables, regardless of the PDs and whether
we’re looking at Gap3Tdet or Gap3Tdet−MSLK , EPT−SLK
consistently outperforms EPT . Moreover, if we
specifically consider the EPT−SLK approach, it is clear
that the values of Gap3Tdet−MSLK consistently surpass

those of Gap3Tdet .

4.3 Comparing the Proposed A-ADP
Algorithm with the State-of-the-Art
Algorithms

This section compares our obtained Gap3Tdet−MSLK ,
when |Ω|=1, and using EPT−SLK with the state-of-
the-art algorithms. We solved all J30 and J60 sets
of instances. The results of our proposed algorithm
are compared with other algorithms for different PDs,
i.e., U1, U2, EXP, B1, and B2.

Table 7: Comparison of Gap3Tdet−MSLK and Gap in the
state-of-the-art algorithms for J30 (Zaman et al., 2021).

Algorithm Gap
U1 U2 EXP B1 B2

PPGA 19.87 30.67 45.56 19.93 30.76
A-HBA 16.63 42.37 45.13 12.60 16.63

LFT 21.60 30.89 46.47 21.59 30.87
SLFT 21.60 30.83 46.32 21.60 30.76
DH 21.36 31.18 46.86 21.36 31.21

S-COA 1.56 8.67 16.66 1.29 7.72
A-ADP 5.64 11.17 27.97 1.82 9.59

Table 8: Comparison of Gap3Tdet−MSLK and Gap in the
state-of-the-art algorithms for J60 (Zaman et al., 2021).

Algorithm Gap
U1 U2 EXP B1 B2

PPGA 18.91 29.08 45.74 18.98 29.17
A-HBA 14.14 28.57 45.36 18.31 28.77

LFT 19.94 28.49 44.97 19.95 28.63
SLFT 19.89 28.42 44.94 19.90 28.55

S-COA 12.60 19.31 28.70 12.62 18.54
A-ADP 18.03 23.71 43.07 14.57 22.26

ICORES 2024 - 13th International Conference on Operations Research and Enterprise Systems

266

Table 9: Comparison of the computational time of A-ADP and S-COA.

Prob. Alg. CPU Time (seconds)
U1 U2 EXP B1 B2

J30 S-COA 58.72 69.09 70.32 64.42 67.24
A-ADP 4.68 4.61 4.37 4.87 4.63

J60 S-COA 181.21 185.45 193.87 183.7 190.88
A-ADP 36.98 36.94 35.37 38.27 39.37

As Lsle=3 and |Ω|=1, the maximum number of
generated schedules in solving J30 is 90, and in solv-
ing J60 is 180.

Table 7 and table 8, compare the results of our
proposed A-ADP algorithm with the state-of-the-art
algorithm. The stopping criterion of the other algo-
rithms is 5000 generated schedules. As is shown in
Table 7 in solving J30 instances except for A-COA,
our algorithm outperforms other state-of-the-art al-
gorithms. Table 8 presents the results for J60 in-
stances. When solving J60 with the U1 probabil-
ity, A-HBA and S-COA perform better than our A-
ADP. However, S-COA is the best-performing algo-
rithm for the remaining probability distributions, and
A-ADP is the second-best compared to the state-of-
the-art algorithms. To show the efficiency of A-ADP
in comparison to S-COA, the CPU times of these al-
gorithms are presented in Table 9. As is highlighted,
A-ADP demonstrates significantly shorter computa-
tional times than S-COA when solving both J30 and
J60 problems.

5 CONCLUSION AND FUTURE
WORK

The results show that the A-ADP approach provides
competitive results in solving SRCPSP with 30 and 60
tasks. Investigating different problem characteristics
also indicates that the larger shortlisted eligible tasks
are required for the problems with the lower availabil-
ity of resources. In making and evaluating the short-
listed eligible tasks, our experiments show the impor-
tance of prioritising tasks with lower slack values and
tasks started earlier in the average project.

Future work includes investigating higher dimen-
sional instances and their characteristics to find a ma-
chine learning-based approach to automatically select
policy for solving SRCPSPs. Extending this approach
to another type of uncertainty, i.e., uncertain resources
and multi-mode instances, is also interesting.

ACKNOWLEDGMENT

Alireza Etminaniesfahani is the recipient of the UTS
International Research Scholarship (IRS) and UTS
President’s Scholarship (UTSP).

REFERENCES

Ashtiani, B., Leus, R., and Aryanezhad, M.-B. (2011).
New competitive results for the stochastic resource-
constrained project scheduling problem: Exploring
the benefits of pre-processing. J. Scheduling, 14:157–
171.

Ballestı́n, F. (2007). When it is worthwhile to work with the
stochastic RCPSP? J. Scheduling, 10:153–166.

Bellman, R. E. (2010). Dynamic programming. Princeton
university press.

Bertsekas, D., Tsitsiklis, J., and Wu, C. (1997). Rollout
algorithms for combinatorial optimization. Journal of
Heuristics, 3:245–262.

Bertsekas, D. P. (2007). Dynamic Programming and Opti-
mal Control, Vol. II. Athena Scientific, 3rd edition.

Bruni, M., Guerriero, F., and Pinto, E. (2009). Evaluat-
ing project completion time in project networks with
discrete random activity durations. Computers & Op-
erations Research, 36:2716–2722.

Cai, H., Bian, Y., and Liu, L. (2024). Deep rein-
forcement learning for solving resource constrained
project scheduling problems with resource disrup-
tions. Robotics and Computer-Integrated Manufac-
turing, 85:102628.

Chen, Z., Demeulemeester, E., Bai, S., and Guo, Y. (2018).
Efficient priority rules for the stochastic resource-
constrained project scheduling problem. European
Journal of Operational Research, 270(3):957–967.

CPLEX, I. I. (2017). version 12.8.0.
Etminaniesfahani, A., Gu, H., Naeni, L., and Salehipour,

A. (2022). A forward–backward relax-and-solve algo-
rithm for the resource-constrained project scheduling
problem. SN Computer Science, 4:104–114.

Etminaniesfahani., A., Gu., H., and Salehipour., A.
(2022). An efficient relax-and-solve algorithm for
the resource-constrained project scheduling problem.
In Proceedings of the 11th International Conference
on Operations Research and Enterprise Systems -
ICORES,, pages 271–277. INSTICC, SciTePress.

An Efficient Approximate Dynamic Programming Approach for Resource-Constrained Project Scheduling with Uncertain Task Duration

267

Guo, W., Vanhoucke, M., Coelho, J., and Luo, J. (2021).
Automatic detection of the best performing prior-
ity rule for the resource-constrained project schedul-
ing problem. Expert Systems with Applications,
167:114116.

Kolisch, R. and Hartmann, S. (1999). Heuristic Algo-
rithms for the Resource-Constrained Project Schedul-
ing Problem: Classification and Computational Anal-
ysis, pages 147–178. Springer US, Boston, MA.

Kolisch, R. and Sprecher, A. (1997). PSPLIB - A
project scheduling problem library: OR Software -
ORSEP Operations Research Software Exchange Pro-
gram. European Journal of Operational Research,
96(1):205–216.

Li, H. and Womer, N. K. (2015). Solving stochastic
resource-constrained project scheduling problems by
closed-loop approximate dynamic programming. Eu-
ropean Journal of Operational Research, 246(1):20–
33.

Pritsker, A., Waiters, L. J., and Wolfe, P. (1969). Multi-
project scheduling with limited resources: A zero-one
programming approach. Management Science, 16:93–
108.

Schwindt, C. and Zimmermann, J. (2015). Handbook on
Project Management and Scheduling Vol. 2. Springer
Cham.

Stork, F. (2000). Branch-and-bound algorithms for stochas-
tic resource-constrained project scheduling. Technical
rep, pages 702–2000.

Xie, F., Li, H., and Xu, Z. (2021). An approximate dynamic
programming approach to project scheduling with un-
certain resource availabilities. Applied Mathematical
Modelling, 97:226–243.

Zaman, F., Elsayed, S., Sarker, R., Essam, D., and Coello
Coello, C. A. (2021). An evolutionary approach for
resource constrained project scheduling with uncer-
tain changes. Computers & Operations Research,
125:105104.

ICORES 2024 - 13th International Conference on Operations Research and Enterprise Systems

268

