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Abstract: Generating code from a natural language using Large Language Models (LLMs) such as ChatGPT, seems 
groundbreaking. Yet, with more extensive use, it's evident that this approach has its own limitations. The 
inherent ambiguity of natural language proposes challenges to auto-generate synergistically structured 
artifacts that can be deployed. Model Driven Development (MDD) is therefore being highlighted in this 
research as a proper approach to overcome these challenges. Accordingly, we introduced an Agile Model-
Driven Development (AMDD) approach that enhances code auto-generation using OpenAI's GPT-4. Our 
work emphasizes "Agility" as a significant contribution to the current MDD approach, particularly when the 
model undergoes changes or needs deployment in a different programming language. Thus, we presented a 
case-study showcasing a multi-agent simulation system of an Unmanned Vehicle Fleet (UVF). In the first and 
second layer of our proposed approach, we modelled the structural and behavioural aspects of the case-study 
using Unified Modeling Language (UML). In the next layer, we introduced two sets of meta-modelling 
constraints that minimize the model ambiguity. Object Constraints Language (OCL) is applied to fine-tune 
the code constructions details, while FIPA ontology is used to shape the communication semantics. Ultimately, 
GPT-4 is used to auto-generate code from the model in both Java and Python. The Java code is deployed 
within the JADE framework, while the Python code is deployed in PADE framework. Concluding our 
research, we engaged in a comprehensive evaluation of the generated code. From a behavioural standpoint, 
the auto-generated code not only aligned with the expected UML sequence diagram, but also added new 
behaviours that improved the interaction among the classes. Structurally, we compared the complexity of code 
derived from UML diagrams constrained solely by OCL to that influenced by both OCL and FIPA-ontology. 
Results showed that ontology-constrained model produced inherently more intricate code, however it remains 
manageable. Thus, other constraints can still be added to the model without passing the complexity high risk 
threshold.  

1 INTRODUCTION 

In the era of Large Language Models (LLMs), Model-
Driven Development (MDD) is gaining momentum 
as a promising way to enhance software engineering 
(Sadik, Ceravola, et al., 2023). Therefore, our study 
presents an Agile Model Driven Development 
(AMDD) approach that utilizes LLMs to auto-
generate complete, deployment-ready software 
artifacts. This method streamlines MDD, avoiding the 
need to constantly update code generators with each 
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model change. The resulting software is not just 
intricate but also designed to fulfill specific 
requirements and functionalities. MDD uses formal 
language models such as Unified Modeling Language 
(UML) to generate code. This automation aligns 
design with implementation, reducing errors and 
accelerating market deployment. UML primarily 
focus on structural aspects, often overlooking 
domain-specific rules and constraints (Sarkisian et 
al., 2022). Yet, the Object Constraint Language 
(OCL) and domain-specific ontology languages like 
FIPA-ontology address this gap. They ensure model 
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integrity and consistency by defining detailed 
constraints and shared knowledge understanding. 
Integrating class diagrams with OCL and ontologies 
could revolutionize code generation, producing 
software that reflects both foundational design and 
domain expertise (Kapferer & Zimmermann, 2020). 

Evaluating auto-generated code is crucial for 
assessing its quality. Traditional qualitative criteria 
like testability and reliability are often subjective. Our 
research adopts more objective, quantifiable metrics, 
focusing on structural integrity. We use cyclomatic 
complexity to evaluate structural soundness and 
conduct comparative analyses to ensure the code 
behaves as expected across different languages and 
aligns with the model's intended behaviour (Ahmad 
et al., 2023).  This paper outlines our study, starting 
with a detailed problem statement in Section 2 about 
challenges in the current MDD approach. Section 3 
details our four-layered AMDD approach, and 
Section 4 applies it to model a UVF and Mission 
Control Center (MCC). Using UML diagrams, OCL, 
and FIPA ontology, leading to auto-generated Java 
and Python code for simulations. Section 5 evaluates 
the model and generated code through assessing its 
structural complexity and testing its deployment 
behaviour. Finally, Section 6 concludes with 
findings, implications, and future research directions. 

2 PROBLEM STATEMENT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Traditional coding vs MDD. 

Natural language, with its inherent ambiguity, 
presents significant challenges in both human and 
machine comprehension. This is particularly evident 
when using LLMs such as ChatGPT to auto-generate 

software artifacts. The uncertain and open-ended 
nature of natural language prompts often leads to the 
production of flawed code, a problem that becomes 
more critical with the increased complexity and 
multidimensionality of the software being developed. 
Yet, MDD aims to address these challenges by 
offering a higher level of software abstraction. In 
MDD, high-level models are the core artifacts, 
serving as the blueprint from which final applications 
are generated (Sadik & Goerick, 2021). 

The difference between traditional coding and 
MDD code generation can be understood through 
Figure 1. Traditional coding directly translates 
software functionalities into code, suitable for smaller 
and straightforward features. Debugging, testing, and 
maintenance are conducted at the code level. In 
contrast, MDD uses models to abstractly understand 
the system, separate from the coding process. In 
traditional model-and-code separation approaches, 
models are often discarded post-coding due to the 
high maintenance cost. In code visualization, models 
are created after software development to understand 
program functionalities or integrating elements into 
models. However, these models are typically not used 
for implementation, debugging, or testing. MDD 
differs significantly in that models are the primary 
development artifacts, replacing source code (Kelly 
& Tolvanen, 2008). Tools like Eclipse Papyrus, 
MagicDraw, Enterprise Architect, and IBM Rational 
Rhapsody facilitate this process by generating target 
code from these models, thus hiding underlying 
complexities (David et al., 2023). 

However, while MDD promises efficiency and 
precision, it also introduces challenges. For instance, 
changes in deployment language or significant model 
updates necessitate extensive modifications to the 
code generators, affecting the agility of the 
development process. The task of creating and 
maintaining the code generators is resource-intensive 
and complicated by the need to tailor them to each 
programming language. This is where the potential of 
LLMs like ChatGPT as universal code generators 
becomes intriguing (Chen et al., 2021). Our study 
points to a significant issue that MDD, despite its 
structured approach, hasn't fully harnessed LLM 
capabilities in code auto-generation. This gap results 
in a misalignment, making the current MDD 
approach less suited for agile software development 
environments, where quick adaptability and 
flexibility are key. Thus, while MDD overcomes 
some limitations of natural language, it still faces 
challenges in fully integrating with advanced AI 
capabilities for efficient and agile software 
development. 
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3 PROPOSED APPROACH 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Proposed AMDD approach. 

Addressing the challenge outlined in our problem 
statement, our AMDD approach requires ChatGPT to 
thoroughly understand the model and its associated 
views. Recognizing ChatGPT's text-based processing 
capabilities, we utilized PlantUML to convert visual 
UML diagrams into a text format that can be easily 
integrated into ChatGPT prompts. In this 
methodology, illustrated in Figure 2, the modeler first 
establishes different model layers, including 
structural, behavioural, and constraints. The 
structural layer encompasses diagrams that display 
the static aspects of the model, like class diagrams 
detailing object relationships and hierarchies, 
package diagrams grouping objects to highlight 
dependencies, and component diagrams breaking 
down system functionality. Deployment diagrams 
depict the physical layout, object diagrams provide 
runtime snapshots, and profile diagrams adapt UML 
models to specific platforms. The behavioural layer, 
through sequence, activity, interaction, timing, use-
case, and state diagrams, models system operations, 
interactions, and the lifecycle of entities, offering a 
comprehensive view of how the system functions and 
interacts with users and other systems. 

Although, the structural and behavioural diagrams 
provide a holistic architectural view, they lack the 
rules that regulate the model semantics. Accordingly, 
in this research we propose the constraints layer to 
fine-tune the model architecture, by explicitly 
including its meta-values that cannot be expressed by 

UML notations. OCL is used to restrict the code 
construction details of the structural and behavioural 
layers, by specifying invariants on classes and 
stereotypes, describing pre- and post-conditions on 
method and states, and limiting the parameters’ 
values. Furthermore, communication constraints can 
be defined using the proper formal method such as an 
ontology language to express the communication 
semantics, that is necessary to share knowledge 
among the software artifacts. 

Ultimately, in the deployment layer, ChatGPT, 
based on the GPT-4 is employed to generate code. 
The choice of GPT-4 over GPT-3.5 is due to its 
superior reasoning capabilities, a vital feature for our 
approach. The LLM must comprehend the model 
semantics encapsulated in the constraints layer to 
integrate them into the generated code. Furthermore, 
post auto-generation of code using ChatGPT, it is 
crucial for the modeler to deploy the generated code 
and verify its operationality. However, it's essential to 
acknowledge that ChatGPT's code generation 
capabilities are continually evolving and may not be 
flawless (Dong et al., 2023). Thus, the possibility of 
encountering bugs during the code deployment is 
anticipated. It becomes imperative for the modeler to 
address these bugs, possibly with assistance from 
ChatGPT, and iteratively run the code until it 
successfully accomplishes its intended purpose. 

4 CASE-STUDY MODEL 

The chosen use-case involves a UVF, comprising 
various types of UVs that undertake specific missions 
and are coordinated by an MCC involving a human 
operator (Sadik, Bolder, et al., 2023). This case-study 
is intentionally distributed, enabling it to be modelled 
and simulated as a MAS (Brulin & Olhofer, 2023). 
The MAS often encompasses a high complexity level, 
as each entity is represented as an agent and must 
communicate and share information with other 
entities (i.e., agents) to achieve a common goal (i.e., 
the fleet mission). To avoid overwhelming the reader 
with the intricacies of the MAS, in the following 
sections, only the essential model that facilitates an 
understanding of the MAS operation concept views 
(Sadik & Urban, 2018). 

4.1 Model Structural Layer 

In the model structure layer, the class diagram is 
pivotal, representing every entity in the case-study as 
an agent class, as illustrated in Figure 3. The operator 
agent models the human operator with actions like 
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sending mission briefs and receiving performance 
data. The MCC agent, with attributes like MCC-ID, 
coordinates the mission and monitors the fleet. The 
UVF-Manager agent handles fleet management, 
including task delegation and performance tracking. 
The Unmanned Vehicle (UV) agent serves as a 
generic class for UVs, with specific subclasses like 
UAV, UGV, and USV for different vehicle types. 
This class diagram elucidates the complex internal 
dynamics of each agent, their attributes, operations, 
and interrelations, including various types of 
relationships such as composition, aggregation, and 
inheritance, and establishes the cardinality between 
agents. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Case-study class diagram. 

4.2 Model Behavioural Layer 

To maintain brevity and keep the article focused, the 
article will only explain two views which are the 
activity and state diagrams, as they are the most 
important behavioral views to understand the case-
study model. The activity diagram refines and 
complements the class diagram by meticulously 
detailing aspects such as synchronization, parallel 
execution, and conditional flows, which are 
indispensable for effectively achieving the mission 
goals. In contrast, the state diagram offers a 
microscopic perspective, unveiling the life cycle of 
the agents’ class within the model and illuminating 
how they coordinate and respond to realize the 
overarching mission objectives. 

The activity diagram in Figure elaborates the 
interplay of information and task flows within the 
agents. It illustrates the orchestration of processes and 
the sequence in which tasks are allocated, carried out, 
and assessed, providing an understanding of the MAS 
temporal and logical dynamics. Thus, the interaction 
begins when the operator agent sends the mission-
brief to the MCC agent. The latter transforms the brief 

into a plan and conveys it to the UVF-manager, 
which, in turn, assigns the tasks to the available UVs. 
Subsequently, the UVF-manager agent awaits the 
completion of tasks by each UV and collates their 
performance, which is instrumental in assessing the 
overall UVF performance. This consolidated 
performance is relayed to the MCC, translated into 
mission-performance, and communicated back to the 
operator agent. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Case-study activity diagram. 

Furthermore, the state diagram offers an in-depth 
view of the internal behaviour of each agent, 
revealing the transitions and actions triggered by 
various events. The operator, MCC, and UVF-
manager are depicted with a simple two-state diagram 
indicating 'busy' or 'free' states. However, the UV 
requires a more complex state machine to evaluate 
task performance. Figure  outlines the UV states: 
'Available' (registered or unregistered), 'Unavailable' 
(out of service), 'Unregistered' (available but not yet 
registered), 'Registered' (controlled or uncontrolled), 
'Uncontrolled' (registered without a mission), and 
'Controlled' (registered with an assigned mission).  
 
 
 
 
 
 
 
 
 

Figure 5: UV agent state diagram. 
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4.3 Model Constraints Layer 

The constraints layer in the proposed AMDD 
approach acts as a meta-model that encapsulates all 
aspects of the technical requirements that cannot be 
formalized in the structural and behavioral layers. In 
the following sections we will discuss in detail the 
different types of meta-model constraints that have 
been considered within the case-study modeling.  

4.3.1 Construction Constraints  

 
 
 
 
 
 
 
 
 

Figure 6: UV agent construction constraints in OCL.  

The OCL is a declarative language that complements 
UML by defining rules applicable to classes within a 
model. Its integration as construction constraints in 
UML diagrams is crucial for enhancing model 
refinement and clarity. OCL effectively addresses 
ambiguities in model construction, ensuring 
precision, particularly beneficial when generating 
deployed code directly from model views. This 
precision guarantees a more accurate and seamless 
transition from model to code. In our study, we 
demonstrate the application of OCL by imposing five 
types of constraints on all agent classes, as shown in 
Figure for the UV agent class. These constraints 
include 'Uniqueness' for distinct agent identifiers, 
'Cardinality' for managing agent associations (e.g., a 
UVF-manager linked to multiple UVs), 'Value' for 
restricting class values within certain ranges (like UV 
performance between 0 and 100), 'Pre-condition' to 
ensure agents are in the right state for transitions 
(such as a UV accepting tasks only when idle), and 
'Post-condition' for mandatory state changes after 
transitions, like changing a UV's status to 'Active' 
after receiving a task. 

4.3.2 Communication Constraints  

OCL excels in setting constraints for UML model 
classes but falls short in managing inter-class 
communication, a critical aspect in Multi-Agent 
System (MAS). Addressing this, Java Agent 
DEvelopment (JADE) and Python Agent 
DEvelopment (PADE) utilize the FIPA-ontology 

communication language. FIPA-ontology enriches 
MAS with comprehensive interaction protocols for 
complex agent communication, an area where OCL is 
limited, as highlighted in our case study. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 7: Case-study FIPA-ontology model. 

In our MAS communication model, as depicted in 
Figure , FIPA-ontology defines a series of fixed 
schemas. The first set, the message communication 
schemas, encompasses various aspects of mission and 
agent management. This includes the Mission-Brief 
schema with details like mission-ID and status, Fleet-
Plan outlining fleet specifics, UV-Task for individual 
task assignments, and UV-Performance for 
performance metrics. Additionally, it covers Fleet-
Performance and Mission-Performance, each 
capturing specific performance-related metrics. The 
second set of schemas in FIPA-ontology are the 
predicates. These define the relationships between 
agent classes, encompassing aspects like inheritance 
(e.g., UAV as a type of UV), composition (e.g., MCC 
having a UVF-manager), aggregation (e.g., UVF-
manager owning multiple UVs), and collaboration 
(e.g., operator working with MCC). Lastly, the third 
set in our model involves actions, which are 
operations that agents can perform, particularly on 
message schemas. This includes actions like sending 
and receiving data, exemplified by an operator agent 
sending a mission brief to the MCC or the MCC 
receiving it from the operator. 

5 CODE EVALUATION 

In the final step of our AMDD approach, we used 
GPT-4 to transform models into code, resulting in an 
average of four bugs per agent class, mostly due to 
missing library imports. Despite these issues, the 
corrected code was deployable. Our study prioritized 
evaluating the completeness of the auto-generated 
code over its correctness. We conducted two 
experiments: the first analyzed the behavior of the 
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auto-generated code, and the second assessed its 
structure and complexity. This approach allowed us 
to thoroughly understand the code generation 
capabilities and limitations of GPT-4 within the 
AMDD framework. 

5.1 Experiment 1: Behavioural 
Dynamic Analysis  

The first experiment orchestrated the generation of 
two distinct deployments. The first is written in Java 
to run on JADE platform, while the second is written 
in Python to run in PADE. The goal of the experiment 
is to compare the code behaviour that run on JADE 
against the code that is running on PADE, to ensure 
the consistency of the system dynamic regardless of 
the execution language. Accordingly, the agent 
interaction behavior on JADE and PADE framework 
is observed. We found that the agents' behavior as 
captured by JADE Sniffer tool aligns with the plotted 
sequence diagram from PADE agent interaction, as 
shown in Figure. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: JADE vs PADE Sequence diagram. 

 
 

In both sequence diagrams in Figure, the 
interaction starts when the operator transmitting a 
mission-brief to the MCC. By receiving this message, 
the MCC asks the UVF-manager to identify available 
UVs. Upon obtaining a list of accessible UVs, the 
MCC devises a fleet-plan and conveys it to the UVF-
manager. After this, the UVF-manager dispatches 
specific tasks to the available UVs. Each UV, upon 
task completion, relays performance data to the UVF-
manager. Thus, the UVF-manager formulates a 
comprehensive fleet-performance metric, which is 
relayed back to the MCC. The MCC, in turn, 
evaluates this metric in congruence with the mission 
objectives, compiling a definitive mission-
performance report. This report, the culmination of 
the entire operation, is ultimately returned to the 
operator.  

Two important remarks have been noticed from 
comparing these two sequence diagrams in Figure 
with the original case-study activity diagram in 
Figure. First, we noticed that ChatGPT has enhanced 
the interaction by adding new behaviours to MCC 
agent and UVF-manager agent. This new behaviour 
can be seen when the MCC is sending DiscoverUVs 
message to the UVF-Manger agent and waiting the 
UVList before forming a FleetPlan, as logically the 
MCC needed to know what the available UVs 
resources are before planning them based on the 
mission-brief. This new interaction behaviour was not 
explicitly mentioned in the case-study activity 
diagram. The second remark is that the timing of 
interaction between the MCC and the UVs differ in 
JADE and PADE, most probably due to the difference 
in the state machine of each UV instance. This is a 
good indication that these UV state machine can 
emulate the operation of the agents.  

5.2 Experiment 2: Structural 
Complexity Assessment 

 
Figure 9: Code control-flow graph example. 

In our second experiment, we focused on examining 
the structure and complexity of auto-generated code 
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by employing the cyclomatic complexity metric. This 
metric is pivotal in quantifying code complexity, as it 
counts the number of linearly independent paths 
through the source code. The calculation is based on 
the code's control-flow graph, similar to the one 
illustrated in Figure. The cyclomatic complexity (M) 
can be calculated from the formula: 

M = E - N + 2P (1)

Where E represents the number of edges in the 
flow graph, N is the number of nodes, and P indicates 
the number of separate branches in the graph. For 
example, in the graph shown in Figure 9, the 
calculated M equals 3. This value of M is crucial for 
assessing various aspects of the software, including 
the difficulty of testing, maintenance, understanding, 
refactoring, performance, reliability, and 
documentation. Based on M's value, risks are 
categorized as follows: M between 1 and 10 indicates 
low risk, M between 11 and 20 suggests moderate 
risk, M between 21 and 50 points to high risk and may 
necessitate reviewing or subdividing the code into 
smaller modules, and M exceeding 50 signals severe 
risk, requiring significant refactoring. 

As in our AMDD approach, we emphasized the 
effect of adding the formal constraints on generating 
a deployed code, our interest in this experiment is to 
understand the influence of the constraints layer on 
the auto-generated code. Therefore, in the experiment 
we auto-generated two distinct deployments, that 
differ in the level of constraints involved in their 
models. The first model implements only the OCL 
constraints, while the second model add the FIPA-
ontology to the model.   

Table 1: Cyclomatic Complexity of the auto-generated 
code.  

 
After generating the two distinct deployments, we 

transformed the agent classes into control flow 
diagrams to calculate their M, as shown in Table. 
Comparing the M values of the auto-generated code 
is evidence that the complexity is slightly increasing 
by adding FIPA-ontology constraints. However, the 
complexity of all the classes in both deployments is 
still locating under the low-risk category. This means 
that the auto-generated structure is adequate and does 

not need any further refactoring. Furthermore, the 
highest M value equals to 6 belongs to the UVF-
manger in the second deployment, where both OCL 
and FIPA-ontology constraints are considered. This 
means that there is still a large risk margin that allows 
to add further constraints in our model, without 
passing the low-risk threshold.        

6 DISCUSSION, CONCLUSION, 
AND FUTURE WORK 

Our research addresses the challenges of auto-
generating deployable code from natural language 
using LLMs like ChatGPT, mainly due to language 
ambiguity. We used formal modelling languages such 
as UML to improve ChatGPT's interpretation, 
revealing a gap in agility within the MDD process. By 
integrating "constraints" into UML models, we added 
semantic depth for more accurate code generation, 
enhancing software structure and communication. In 
a case study, we applied our AMDD approach to 
model a multi-agent UVF system. We used class, 
activity, and state diagrams for agents' layout and 
behaviour, employing OCL for structure and FIPA-
ontology for communication. This model was the 
basis for auto-generating Java and Python code using 
GPT-4, chosen for its improved reasoning 
capabilities. The success of our approach depended 
on GPT-4 understanding of the model's constraints. 

In the first evaluation experiment, we examined 
the behaviour of auto-generated code within 
simulation environments: Java's JADE and Python's 
PADE frameworks. Both deployments effectively 
captured the intended agent interactions, though there 
were minor sequence variations between them. 
Remarkably, GPT-4 not only adhered to the specified 
agent logic but also enriched it by introducing two 
new behaviours in the MCC agent's communication 
sequence. This addition highlighted the power of 
communication constraints in guiding GPT-4 and its 
enhanced comprehension of agent interactions. While 
these improvements were impressive, they 
underscored a need for meticulous code review. 
Despite GPT-4's advancements, ensuring that the 
generated code remains consistent with design 
intentions is crucial to prevent unexpected 
behaviours. 

In the second experiment, we examined the 
structure of the auto-generated code, specifically by 
assessing its cyclomatic complexity. In this 
experiment, we created two separate deployments. 
The first deployment code resulted from a model that 
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involves only OCL constraints, while the second 
deployment code resulted from a model that involves 
both OCL and FIPA-Ontology constraints. Our 
analysis revealed the intriguing finding that 
integrating FIPA-ontology constraints didn't 
dramatically augment the complexity of the auto-
generated code. This suggests that these constraints 
provide meaningful semantics without unduly 
complicating the resultant codebase. Furthermore, the 
analysis also hinted at a notable latitude in our 
approach. There appears to be a reasonable buffer 
allowing for the inclusion of additional constraints to 
the model in future iterations without triggering an 
immediate need for a code refactor. This is indicative 
of the robustness and scalability inherent in our 
AMDD approach. 

Our findings indicate that formal modelling 
languages can mitigate natural language ambiguities 
in code generation. Meta-modelling constraints refine 
this process and provide structural complexity 
insights, signalling a transformative approach to agile 
MDD practices. Future research will focus on 
assessing code correctness, introducing privacy and 
cybersecurity constraints, and comparing our 
methodology with existing MDD frameworks to 
enhance industry adoption. 
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