
Coding by Design: GPT-4 Empowers Agile Model Driven
Development

Ahmed R. Sadik a, Sebastian Brulin b and Markus Olhofer c
Honda Research Institute Europe, Carl-Legien-Strasse 30, Offenbach am Main, Germany

Keywords: GPT-4, Auto-Generated Code, AI-Empowered, Model Driven Development, Ontology-Constrained Class
Diagram, Object Constraint Language, Cyclomatic Complexity.

Abstract: Generating code from a natural language using Large Language Models (LLMs) such as ChatGPT, seems
groundbreaking. Yet, with more extensive use, it's evident that this approach has its own limitations. The
inherent ambiguity of natural language proposes challenges to auto-generate synergistically structured
artifacts that can be deployed. Model Driven Development (MDD) is therefore being highlighted in this
research as a proper approach to overcome these challenges. Accordingly, we introduced an Agile Model-
Driven Development (AMDD) approach that enhances code auto-generation using OpenAI's GPT-4. Our
work emphasizes "Agility" as a significant contribution to the current MDD approach, particularly when the
model undergoes changes or needs deployment in a different programming language. Thus, we presented a
case-study showcasing a multi-agent simulation system of an Unmanned Vehicle Fleet (UVF). In the first and
second layer of our proposed approach, we modelled the structural and behavioural aspects of the case-study
using Unified Modeling Language (UML). In the next layer, we introduced two sets of meta-modelling
constraints that minimize the model ambiguity. Object Constraints Language (OCL) is applied to fine-tune
the code constructions details, while FIPA ontology is used to shape the communication semantics. Ultimately,
GPT-4 is used to auto-generate code from the model in both Java and Python. The Java code is deployed
within the JADE framework, while the Python code is deployed in PADE framework. Concluding our
research, we engaged in a comprehensive evaluation of the generated code. From a behavioural standpoint,
the auto-generated code not only aligned with the expected UML sequence diagram, but also added new
behaviours that improved the interaction among the classes. Structurally, we compared the complexity of code
derived from UML diagrams constrained solely by OCL to that influenced by both OCL and FIPA-ontology.
Results showed that ontology-constrained model produced inherently more intricate code, however it remains
manageable. Thus, other constraints can still be added to the model without passing the complexity high risk
threshold.

1 INTRODUCTION

In the era of Large Language Models (LLMs), Model-
Driven Development (MDD) is gaining momentum
as a promising way to enhance software engineering
(Sadik, Ceravola, et al., 2023). Therefore, our study
presents an Agile Model Driven Development
(AMDD) approach that utilizes LLMs to auto-
generate complete, deployment-ready software
artifacts. This method streamlines MDD, avoiding the
need to constantly update code generators with each

a https://orcid.org/0000-0001-8291-2211
b https://orcid.org/0000-0002-9710-6877
c https://orcid.org/0000-0002-3062-3829

model change. The resulting software is not just
intricate but also designed to fulfill specific
requirements and functionalities. MDD uses formal
language models such as Unified Modeling Language
(UML) to generate code. This automation aligns
design with implementation, reducing errors and
accelerating market deployment. UML primarily
focus on structural aspects, often overlooking
domain-specific rules and constraints (Sarkisian et
al., 2022). Yet, the Object Constraint Language
(OCL) and domain-specific ontology languages like
FIPA-ontology address this gap. They ensure model

Sadik, A., Brulin, S. and Olhofer, M.
Coding by Design: GPT-4 Empowers Agile Model Driven Development.
DOI: 10.5220/0012356100003645
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 12th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2024), pages 149-156
ISBN: 978-989-758-682-8; ISSN: 2184-4348
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

149

integrity and consistency by defining detailed
constraints and shared knowledge understanding.
Integrating class diagrams with OCL and ontologies
could revolutionize code generation, producing
software that reflects both foundational design and
domain expertise (Kapferer & Zimmermann, 2020).

Evaluating auto-generated code is crucial for
assessing its quality. Traditional qualitative criteria
like testability and reliability are often subjective. Our
research adopts more objective, quantifiable metrics,
focusing on structural integrity. We use cyclomatic
complexity to evaluate structural soundness and
conduct comparative analyses to ensure the code
behaves as expected across different languages and
aligns with the model's intended behaviour (Ahmad
et al., 2023). This paper outlines our study, starting
with a detailed problem statement in Section 2 about
challenges in the current MDD approach. Section 3
details our four-layered AMDD approach, and
Section 4 applies it to model a UVF and Mission
Control Center (MCC). Using UML diagrams, OCL,
and FIPA ontology, leading to auto-generated Java
and Python code for simulations. Section 5 evaluates
the model and generated code through assessing its
structural complexity and testing its deployment
behaviour. Finally, Section 6 concludes with
findings, implications, and future research directions.

2 PROBLEM STATEMENT

Figure 1: Traditional coding vs MDD.

Natural language, with its inherent ambiguity,
presents significant challenges in both human and
machine comprehension. This is particularly evident
when using LLMs such as ChatGPT to auto-generate

software artifacts. The uncertain and open-ended
nature of natural language prompts often leads to the
production of flawed code, a problem that becomes
more critical with the increased complexity and
multidimensionality of the software being developed.
Yet, MDD aims to address these challenges by
offering a higher level of software abstraction. In
MDD, high-level models are the core artifacts,
serving as the blueprint from which final applications
are generated (Sadik & Goerick, 2021).

The difference between traditional coding and
MDD code generation can be understood through
Figure 1. Traditional coding directly translates
software functionalities into code, suitable for smaller
and straightforward features. Debugging, testing, and
maintenance are conducted at the code level. In
contrast, MDD uses models to abstractly understand
the system, separate from the coding process. In
traditional model-and-code separation approaches,
models are often discarded post-coding due to the
high maintenance cost. In code visualization, models
are created after software development to understand
program functionalities or integrating elements into
models. However, these models are typically not used
for implementation, debugging, or testing. MDD
differs significantly in that models are the primary
development artifacts, replacing source code (Kelly
& Tolvanen, 2008). Tools like Eclipse Papyrus,
MagicDraw, Enterprise Architect, and IBM Rational
Rhapsody facilitate this process by generating target
code from these models, thus hiding underlying
complexities (David et al., 2023).

However, while MDD promises efficiency and
precision, it also introduces challenges. For instance,
changes in deployment language or significant model
updates necessitate extensive modifications to the
code generators, affecting the agility of the
development process. The task of creating and
maintaining the code generators is resource-intensive
and complicated by the need to tailor them to each
programming language. This is where the potential of
LLMs like ChatGPT as universal code generators
becomes intriguing (Chen et al., 2021). Our study
points to a significant issue that MDD, despite its
structured approach, hasn't fully harnessed LLM
capabilities in code auto-generation. This gap results
in a misalignment, making the current MDD
approach less suited for agile software development
environments, where quick adaptability and
flexibility are key. Thus, while MDD overcomes
some limitations of natural language, it still faces
challenges in fully integrating with advanced AI
capabilities for efficient and agile software
development.

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

150

3 PROPOSED APPROACH

Figure 2: Proposed AMDD approach.

Addressing the challenge outlined in our problem
statement, our AMDD approach requires ChatGPT to
thoroughly understand the model and its associated
views. Recognizing ChatGPT's text-based processing
capabilities, we utilized PlantUML to convert visual
UML diagrams into a text format that can be easily
integrated into ChatGPT prompts. In this
methodology, illustrated in Figure 2, the modeler first
establishes different model layers, including
structural, behavioural, and constraints. The
structural layer encompasses diagrams that display
the static aspects of the model, like class diagrams
detailing object relationships and hierarchies,
package diagrams grouping objects to highlight
dependencies, and component diagrams breaking
down system functionality. Deployment diagrams
depict the physical layout, object diagrams provide
runtime snapshots, and profile diagrams adapt UML
models to specific platforms. The behavioural layer,
through sequence, activity, interaction, timing, use-
case, and state diagrams, models system operations,
interactions, and the lifecycle of entities, offering a
comprehensive view of how the system functions and
interacts with users and other systems.

Although, the structural and behavioural diagrams
provide a holistic architectural view, they lack the
rules that regulate the model semantics. Accordingly,
in this research we propose the constraints layer to
fine-tune the model architecture, by explicitly
including its meta-values that cannot be expressed by

UML notations. OCL is used to restrict the code
construction details of the structural and behavioural
layers, by specifying invariants on classes and
stereotypes, describing pre- and post-conditions on
method and states, and limiting the parameters’
values. Furthermore, communication constraints can
be defined using the proper formal method such as an
ontology language to express the communication
semantics, that is necessary to share knowledge
among the software artifacts.

Ultimately, in the deployment layer, ChatGPT,
based on the GPT-4 is employed to generate code.
The choice of GPT-4 over GPT-3.5 is due to its
superior reasoning capabilities, a vital feature for our
approach. The LLM must comprehend the model
semantics encapsulated in the constraints layer to
integrate them into the generated code. Furthermore,
post auto-generation of code using ChatGPT, it is
crucial for the modeler to deploy the generated code
and verify its operationality. However, it's essential to
acknowledge that ChatGPT's code generation
capabilities are continually evolving and may not be
flawless (Dong et al., 2023). Thus, the possibility of
encountering bugs during the code deployment is
anticipated. It becomes imperative for the modeler to
address these bugs, possibly with assistance from
ChatGPT, and iteratively run the code until it
successfully accomplishes its intended purpose.

4 CASE-STUDY MODEL

The chosen use-case involves a UVF, comprising
various types of UVs that undertake specific missions
and are coordinated by an MCC involving a human
operator (Sadik, Bolder, et al., 2023). This case-study
is intentionally distributed, enabling it to be modelled
and simulated as a MAS (Brulin & Olhofer, 2023).
The MAS often encompasses a high complexity level,
as each entity is represented as an agent and must
communicate and share information with other
entities (i.e., agents) to achieve a common goal (i.e.,
the fleet mission). To avoid overwhelming the reader
with the intricacies of the MAS, in the following
sections, only the essential model that facilitates an
understanding of the MAS operation concept views
(Sadik & Urban, 2018).

4.1 Model Structural Layer

In the model structure layer, the class diagram is
pivotal, representing every entity in the case-study as
an agent class, as illustrated in Figure 3. The operator
agent models the human operator with actions like

Coding by Design: GPT-4 Empowers Agile Model Driven Development

151

sending mission briefs and receiving performance
data. The MCC agent, with attributes like MCC-ID,
coordinates the mission and monitors the fleet. The
UVF-Manager agent handles fleet management,
including task delegation and performance tracking.
The Unmanned Vehicle (UV) agent serves as a
generic class for UVs, with specific subclasses like
UAV, UGV, and USV for different vehicle types.
This class diagram elucidates the complex internal
dynamics of each agent, their attributes, operations,
and interrelations, including various types of
relationships such as composition, aggregation, and
inheritance, and establishes the cardinality between
agents.

Figure 3: Case-study class diagram.

4.2 Model Behavioural Layer

To maintain brevity and keep the article focused, the
article will only explain two views which are the
activity and state diagrams, as they are the most
important behavioral views to understand the case-
study model. The activity diagram refines and
complements the class diagram by meticulously
detailing aspects such as synchronization, parallel
execution, and conditional flows, which are
indispensable for effectively achieving the mission
goals. In contrast, the state diagram offers a
microscopic perspective, unveiling the life cycle of
the agents’ class within the model and illuminating
how they coordinate and respond to realize the
overarching mission objectives.

The activity diagram in Figure elaborates the
interplay of information and task flows within the
agents. It illustrates the orchestration of processes and
the sequence in which tasks are allocated, carried out,
and assessed, providing an understanding of the MAS
temporal and logical dynamics. Thus, the interaction
begins when the operator agent sends the mission-
brief to the MCC agent. The latter transforms the brief

into a plan and conveys it to the UVF-manager,
which, in turn, assigns the tasks to the available UVs.
Subsequently, the UVF-manager agent awaits the
completion of tasks by each UV and collates their
performance, which is instrumental in assessing the
overall UVF performance. This consolidated
performance is relayed to the MCC, translated into
mission-performance, and communicated back to the
operator agent.

Figure 4: Case-study activity diagram.

Furthermore, the state diagram offers an in-depth
view of the internal behaviour of each agent,
revealing the transitions and actions triggered by
various events. The operator, MCC, and UVF-
manager are depicted with a simple two-state diagram
indicating 'busy' or 'free' states. However, the UV
requires a more complex state machine to evaluate
task performance. Figure outlines the UV states:
'Available' (registered or unregistered), 'Unavailable'
(out of service), 'Unregistered' (available but not yet
registered), 'Registered' (controlled or uncontrolled),
'Uncontrolled' (registered without a mission), and
'Controlled' (registered with an assigned mission).

Figure 5: UV agent state diagram.

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

152

4.3 Model Constraints Layer

The constraints layer in the proposed AMDD
approach acts as a meta-model that encapsulates all
aspects of the technical requirements that cannot be
formalized in the structural and behavioral layers. In
the following sections we will discuss in detail the
different types of meta-model constraints that have
been considered within the case-study modeling.

4.3.1 Construction Constraints

Figure 6: UV agent construction constraints in OCL.

The OCL is a declarative language that complements
UML by defining rules applicable to classes within a
model. Its integration as construction constraints in
UML diagrams is crucial for enhancing model
refinement and clarity. OCL effectively addresses
ambiguities in model construction, ensuring
precision, particularly beneficial when generating
deployed code directly from model views. This
precision guarantees a more accurate and seamless
transition from model to code. In our study, we
demonstrate the application of OCL by imposing five
types of constraints on all agent classes, as shown in
Figure for the UV agent class. These constraints
include 'Uniqueness' for distinct agent identifiers,
'Cardinality' for managing agent associations (e.g., a
UVF-manager linked to multiple UVs), 'Value' for
restricting class values within certain ranges (like UV
performance between 0 and 100), 'Pre-condition' to
ensure agents are in the right state for transitions
(such as a UV accepting tasks only when idle), and
'Post-condition' for mandatory state changes after
transitions, like changing a UV's status to 'Active'
after receiving a task.

4.3.2 Communication Constraints

OCL excels in setting constraints for UML model
classes but falls short in managing inter-class
communication, a critical aspect in Multi-Agent
System (MAS). Addressing this, Java Agent
DEvelopment (JADE) and Python Agent
DEvelopment (PADE) utilize the FIPA-ontology

communication language. FIPA-ontology enriches
MAS with comprehensive interaction protocols for
complex agent communication, an area where OCL is
limited, as highlighted in our case study.

Figure 7: Case-study FIPA-ontology model.

In our MAS communication model, as depicted in
Figure , FIPA-ontology defines a series of fixed
schemas. The first set, the message communication
schemas, encompasses various aspects of mission and
agent management. This includes the Mission-Brief
schema with details like mission-ID and status, Fleet-
Plan outlining fleet specifics, UV-Task for individual
task assignments, and UV-Performance for
performance metrics. Additionally, it covers Fleet-
Performance and Mission-Performance, each
capturing specific performance-related metrics. The
second set of schemas in FIPA-ontology are the
predicates. These define the relationships between
agent classes, encompassing aspects like inheritance
(e.g., UAV as a type of UV), composition (e.g., MCC
having a UVF-manager), aggregation (e.g., UVF-
manager owning multiple UVs), and collaboration
(e.g., operator working with MCC). Lastly, the third
set in our model involves actions, which are
operations that agents can perform, particularly on
message schemas. This includes actions like sending
and receiving data, exemplified by an operator agent
sending a mission brief to the MCC or the MCC
receiving it from the operator.

5 CODE EVALUATION

In the final step of our AMDD approach, we used
GPT-4 to transform models into code, resulting in an
average of four bugs per agent class, mostly due to
missing library imports. Despite these issues, the
corrected code was deployable. Our study prioritized
evaluating the completeness of the auto-generated
code over its correctness. We conducted two
experiments: the first analyzed the behavior of the

Coding by Design: GPT-4 Empowers Agile Model Driven Development

153

auto-generated code, and the second assessed its
structure and complexity. This approach allowed us
to thoroughly understand the code generation
capabilities and limitations of GPT-4 within the
AMDD framework.

5.1 Experiment 1: Behavioural
Dynamic Analysis

The first experiment orchestrated the generation of
two distinct deployments. The first is written in Java
to run on JADE platform, while the second is written
in Python to run in PADE. The goal of the experiment
is to compare the code behaviour that run on JADE
against the code that is running on PADE, to ensure
the consistency of the system dynamic regardless of
the execution language. Accordingly, the agent
interaction behavior on JADE and PADE framework
is observed. We found that the agents' behavior as
captured by JADE Sniffer tool aligns with the plotted
sequence diagram from PADE agent interaction, as
shown in Figure.

Figure 8: JADE vs PADE Sequence diagram.

In both sequence diagrams in Figure, the
interaction starts when the operator transmitting a
mission-brief to the MCC. By receiving this message,
the MCC asks the UVF-manager to identify available
UVs. Upon obtaining a list of accessible UVs, the
MCC devises a fleet-plan and conveys it to the UVF-
manager. After this, the UVF-manager dispatches
specific tasks to the available UVs. Each UV, upon
task completion, relays performance data to the UVF-
manager. Thus, the UVF-manager formulates a
comprehensive fleet-performance metric, which is
relayed back to the MCC. The MCC, in turn,
evaluates this metric in congruence with the mission
objectives, compiling a definitive mission-
performance report. This report, the culmination of
the entire operation, is ultimately returned to the
operator.

Two important remarks have been noticed from
comparing these two sequence diagrams in Figure
with the original case-study activity diagram in
Figure. First, we noticed that ChatGPT has enhanced
the interaction by adding new behaviours to MCC
agent and UVF-manager agent. This new behaviour
can be seen when the MCC is sending DiscoverUVs
message to the UVF-Manger agent and waiting the
UVList before forming a FleetPlan, as logically the
MCC needed to know what the available UVs
resources are before planning them based on the
mission-brief. This new interaction behaviour was not
explicitly mentioned in the case-study activity
diagram. The second remark is that the timing of
interaction between the MCC and the UVs differ in
JADE and PADE, most probably due to the difference
in the state machine of each UV instance. This is a
good indication that these UV state machine can
emulate the operation of the agents.

5.2 Experiment 2: Structural
Complexity Assessment

Figure 9: Code control-flow graph example.

In our second experiment, we focused on examining
the structure and complexity of auto-generated code

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

154

by employing the cyclomatic complexity metric. This
metric is pivotal in quantifying code complexity, as it
counts the number of linearly independent paths
through the source code. The calculation is based on
the code's control-flow graph, similar to the one
illustrated in Figure. The cyclomatic complexity (M)
can be calculated from the formula:

M = E - N + 2P (1)

Where E represents the number of edges in the
flow graph, N is the number of nodes, and P indicates
the number of separate branches in the graph. For
example, in the graph shown in Figure 9, the
calculated M equals 3. This value of M is crucial for
assessing various aspects of the software, including
the difficulty of testing, maintenance, understanding,
refactoring, performance, reliability, and
documentation. Based on M's value, risks are
categorized as follows: M between 1 and 10 indicates
low risk, M between 11 and 20 suggests moderate
risk, M between 21 and 50 points to high risk and may
necessitate reviewing or subdividing the code into
smaller modules, and M exceeding 50 signals severe
risk, requiring significant refactoring.

As in our AMDD approach, we emphasized the
effect of adding the formal constraints on generating
a deployed code, our interest in this experiment is to
understand the influence of the constraints layer on
the auto-generated code. Therefore, in the experiment
we auto-generated two distinct deployments, that
differ in the level of constraints involved in their
models. The first model implements only the OCL
constraints, while the second model add the FIPA-
ontology to the model.

Table 1: Cyclomatic Complexity of the auto-generated
code.

After generating the two distinct deployments, we

transformed the agent classes into control flow
diagrams to calculate their M, as shown in Table.
Comparing the M values of the auto-generated code
is evidence that the complexity is slightly increasing
by adding FIPA-ontology constraints. However, the
complexity of all the classes in both deployments is
still locating under the low-risk category. This means
that the auto-generated structure is adequate and does

not need any further refactoring. Furthermore, the
highest M value equals to 6 belongs to the UVF-
manger in the second deployment, where both OCL
and FIPA-ontology constraints are considered. This
means that there is still a large risk margin that allows
to add further constraints in our model, without
passing the low-risk threshold.

6 DISCUSSION, CONCLUSION,
AND FUTURE WORK

Our research addresses the challenges of auto-
generating deployable code from natural language
using LLMs like ChatGPT, mainly due to language
ambiguity. We used formal modelling languages such
as UML to improve ChatGPT's interpretation,
revealing a gap in agility within the MDD process. By
integrating "constraints" into UML models, we added
semantic depth for more accurate code generation,
enhancing software structure and communication. In
a case study, we applied our AMDD approach to
model a multi-agent UVF system. We used class,
activity, and state diagrams for agents' layout and
behaviour, employing OCL for structure and FIPA-
ontology for communication. This model was the
basis for auto-generating Java and Python code using
GPT-4, chosen for its improved reasoning
capabilities. The success of our approach depended
on GPT-4 understanding of the model's constraints.

In the first evaluation experiment, we examined
the behaviour of auto-generated code within
simulation environments: Java's JADE and Python's
PADE frameworks. Both deployments effectively
captured the intended agent interactions, though there
were minor sequence variations between them.
Remarkably, GPT-4 not only adhered to the specified
agent logic but also enriched it by introducing two
new behaviours in the MCC agent's communication
sequence. This addition highlighted the power of
communication constraints in guiding GPT-4 and its
enhanced comprehension of agent interactions. While
these improvements were impressive, they
underscored a need for meticulous code review.
Despite GPT-4's advancements, ensuring that the
generated code remains consistent with design
intentions is crucial to prevent unexpected
behaviours.

In the second experiment, we examined the
structure of the auto-generated code, specifically by
assessing its cyclomatic complexity. In this
experiment, we created two separate deployments.
The first deployment code resulted from a model that

Coding by Design: GPT-4 Empowers Agile Model Driven Development

155

involves only OCL constraints, while the second
deployment code resulted from a model that involves
both OCL and FIPA-Ontology constraints. Our
analysis revealed the intriguing finding that
integrating FIPA-ontology constraints didn't
dramatically augment the complexity of the auto-
generated code. This suggests that these constraints
provide meaningful semantics without unduly
complicating the resultant codebase. Furthermore, the
analysis also hinted at a notable latitude in our
approach. There appears to be a reasonable buffer
allowing for the inclusion of additional constraints to
the model in future iterations without triggering an
immediate need for a code refactor. This is indicative
of the robustness and scalability inherent in our
AMDD approach.

Our findings indicate that formal modelling
languages can mitigate natural language ambiguities
in code generation. Meta-modelling constraints refine
this process and provide structural complexity
insights, signalling a transformative approach to agile
MDD practices. Future research will focus on
assessing code correctness, introducing privacy and
cybersecurity constraints, and comparing our
methodology with existing MDD frameworks to
enhance industry adoption.

REFERENCES

Ahmad, A., Waseem, M., Liang, P., Fehmideh, M., Aktar,
M. S., & Mikkonen, T. (2023). Towards Human-Bot
Collaborative Software Architecting with ChatGPT
(arXiv:2302.14600).

Brulin, S., & Olhofer, M. (2023). Bi-level Network Design
for UAM Vertiport Allocation Using Activity- Based
Transport Simulations.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. de O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., … Zaremba, W. (2021). Evaluating Large Language
Models Trained on Code (arXiv:2107.03374).

David, I., Latifaj, M., Pietron, J., Zhang, W., Ciccozzi, F.,
Malavolta, I., Raschke, A., Steghöfer, J.-P., & Hebig,
R. (2023). Blended modeling in commercial and open-
source model-driven software engineering tools: A
systematic study. Software and Systems Modeling,
22(1), 415–447. https://doi.org/10.1007/s10270-022-
01010-3

Dong, Y., Jiang, X., Jin, Z., & Li, G. (2023). Self-
collaboration Code Generation via ChatGPT

Kapferer, S., & Zimmermann, O. (2020). Domain-specific
Language and Tools for Strategic Domain-driven
Design, Context Mapping and Bounded Context
Modeling: Proceedings of the 8th International

Conference on Model-Driven Engineering and
Software Development, 299–306.

Kelly, S., & Tolvanen, J.-P. (2008). Domain-Specific
Modeling: Enabling Full Code Generation. John Wiley
& Sons.

Sadik, A. R., Bolder, B., & Subasic, P. (2023). A self-
adaptive system of systems architecture to enable its ad-
hoc scalability: Unmanned Vehicle Fleet - Mission
Control Center Case study. Proceedings of the 2023 7th
International Conference on Intelligent Systems,
Metaheuristics & Swarm Intelligence, 111–118.

Sadik, A. R., Ceravola, A., Joublin, F., & Patra, J. (2023).
Analysis of ChatGPT on Source Code
(arXiv:2306.00597).

Sadik, A. R., & Goerick, C. (2021). Multi-Robot System
Architecture Design in SysML and BPMN. Advances
in Science, Technology and Engineering Systems
Journal, 6(4). https://doi.org/10.25046/aj060421

Sadik, A. R., & Urban, B. (2018). CPROSA-Holarchy: An
Enhanced PROSA Model to Enable Worker–Cobot
Agile Manufacturing. International Journal of
Mechanical Engineering and Robotics Research, 7(3).

Sarkisian, A., Vasylkiv, Y., & Gomez, R. (2022). System
Architecture Supporting Crowdsourcing of Contents
for Robot Storytelling Application.

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

156

