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Abstract: In this paper, we introduce DeepTraderX (DTX), a simple Deep Learning-based trader, and present results
that demonstrate its performance in a multi-threaded market simulation. In a total of about 500 simulated
market days, DTX has learned solely by watching the prices that other strategies produce. By doing this, it
has successfully created a mapping from market data to quotes, either bid or ask orders, to place for an asset.
Trained on historical Level-2 market data, i.e., the Limit Order Book (LOB) for specific tradable assets, DTX
processes the market state S at each timestep T to determine a price P for market orders. The market data
used in both training and testing was generated from unique market schedules based on real historic stock
market data. DTX was tested extensively against the best strategies in the literature, with its results validated
by statistical analysis. Our findings underscore DTX’s capability to rival, and in many instances, surpass, the
performance of public-domain traders, including those that outclass human traders, emphasising the efficiency
of simple models, as this is required to succeed in intricate multi-threaded simulations. This highlights the
potential of leveraging ”black-box” Deep Learning systems to create more efficient financial markets.

1 INTRODUCTION

Recent advancements in computing have catalysed
profound transformations in Artificial Intelligence
(AI), which now permeates many facets of our daily
lives.

One area impacted by this transformation is the
financial sector, or more specifically, financial mar-
kets. They are made up of traders, whether hu-
man or machine, with the core objective of being as
profitable as possible. We call ”algorithmic traders”
the software-driven entities that have replaced human
traders, performing based on pre-defined, complex al-
gorithms derived from complex financial engineering.
As markets and technology evolve together, the need
for adaptability to fluctuating conditions is of fore-
most importance. Enter the age of AI traders: more
efficient, enabled to make decisions based on instan-
taneous data analysis, and navigating markets better
than their predecessors.

However, the true paradigm shift is heralded by
the rise of Deep Learning. Its changing potential
is evident across sectors, from chatbots to advanced
medical diagnostics. Deep Learning Neural Networks

a https://orcid.org/0009-0007-6374-4639

(DLNNs), modelled after human neural pathways
(Shetty et al., 2020), are at the forefront of this AI
revolution. Their applications span diverse domains
such as speech recognition, natural language process-
ing, and even cancer detection (Abed, 2022). Re-
cent studies underscore the effectiveness of DLNN-
based traders, which have demonstrated capabilities
rivalling, if not exceeding, traditional algorithmic
traders (Calvez and Cliff, 2018). Moreover, the rapid
democratisation of computational power has led to in-
creasingly sophisticated market simulations, enabling
a vast number of research prospects — especially for
the AI community.

Algorithmic traders execute the most of daily
trades in a market, processing millions of transactions
at sub-second rates. While much of the existing lit-
erature evaluates trading strategies in simplified mar-
ket simulations, the intricate and asynchronous nature
of real-world financial markets often remains unad-
dressed. The purpose of this work is to bridge this
research gap in the literature with these core contribu-
tions:
• Train an intelligent trader based on a proven

DLNN architecture on historical simulated data.
• Integrate our trader in an asynchronous market

simulator to enable a solid experiment base.
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• Evaluate our trader against other traders in the lit-
erature based on profits obtained.

• Validate the results through statistical analysis and
reflect on the model’s strengths and weaknesses.

The core contribution is creating a system that
could outperform existing strategies in a multi-
threaded market simulator. A positive result could
have an impact in the real world, with the only bar-
rier represented by the access to some of the LOB
data the model requires. Customer limit prices are not
public when trading, so owning such historical data
would prove to be great leverage. In the case of a
negative result, this research would prove useful un-
derlying causes and ascertain the vulnerabilities that
a DLNN trader has when deployed in a realistic set-
ting, albeit with the caveat of accessing certain propri-
etary LOB data. Our exploration is both an homage
and an extension of the efforts of two previous pieces
of research, DeepTrader (Wray et al., 2020) and the
Threaded Bristol Stock Exchange (TBSE) (Rollins
and Cliff, 2020), seeking to chart new horizons in the
confluence of AI and financial trading.

1.0.1 Context on Financial Markets and
Algorithmic Traders

Over the course of this paper, there are a number of
specialised terms and concepts relevant to our work,
especially regarding the LOB, which are going to be
expanded on in the following sub-section.

At the core of most financial markets lies the Con-
tinuous Double Auction (CDA) mechanism (Smith,
1962). Unlike the traditional auction setup, where
items are sold one at a time with bidders actively
competing until the highest price is reached, the CDA
operates continuously, allowing buyers and sellers to
place orders at any time. The ”double” in CDA signi-
fies that it facilitates both buying and selling, dynami-
cally matching buy orders with corresponding sell or-
ders based on price preferences.

Central to the operation of the CDA is the LOB.
The LOB is a dynamic, electronic record of all the
outstanding buy and sell orders in the market for a
particular asset. These orders are organised by price
level, with the ”bid” price representing the maximum
amount a buyer is willing to pay and the ”ask” price
indicating the minimum amount a seller is willing to
accept. The difference between the highest bid and
the lowest ask is known as the ”spread”. A key fea-
ture of the LOB is that orders are processed based on
price-time priority. This means that orders at the best
price are always executed first, and among orders at
the same price, the one placed earlier gets priority. In
a typical market scenario, traders—either humans or

algorithms—submit orders. These orders can be of
two main types:

• Limit Orders: A trader is given a price and quan-
tity. For buyers, this price is the maximum they’re
willing to pay, and for sellers, it’s the minimum
they’re willing to accept. These orders are added
to the LOB, waiting for a matching order to arrive.

• Market Orders: A trader specifies only the quan-
tity, aiming to buy or sell immediately at the best
available price. These orders are not added to
the LOB; instead, they are matched with the best
available opposite order from the LOB.

The market’s primary objective is to facilitate
trading by matching buy and sell orders. The continu-
ous updating and matching in the LOB ensure liquid-
ity and dynamic price discovery, reflecting the current
consensus value of an asset.

The data we require from the LOB is referred to
as ”Level-2” data, meaning that we get all the current
active orders. For context, ”Level-1” market data con-
tains only the prices and quantities of the best bid and
ask in the market.

The TBSE is an advanced, asynchronous version
of the open-source Bristol Stock Exchange (BSE)
(Cliff, 2022), a faithful, detailed simulation of a fi-
nancial exchange where a variety of public-domain
automated trading algorithms interact via a CDA. It is
asynchronous in the way traders interact with the mar-
ket, with each trying to buy or sell an asset by plac-
ing Limit Orders concomitantly. Abiding by Smith’s
guidelines (Smith, 1962), traders solely aim for profit,
ensuring no trades occur at a loss. Unlike its predeces-
sor, where traders were sequentially polled for orders,
TBSE grants each trader its own thread. Throughout
a market session, traders continuously receive market
updates and decide on placing orders. This structure
privileges faster algorithms, as orders are queued on a
”first in, first out” (FIFO) basis, emulating real-world
market dynamics more closely.

The following terms will be relevant when defin-
ing our model’s features. The LOB midprice is the
average of the highest bid and the lowest ask prices
in the LOB. The microprice refines this midprice by
factoring in the order imbalance and the depth of the
order book. Imbalance represents the proportionate
difference between buy and sell orders, highlighting
directional pressure. Total quotes on the LOB refer to
the aggregate of all buy and sell orders present. The
estimate P∗ of the competitive equilibrium price pre-
dicts where supply meets demand, ensuring market
clearance. Lastly, Smith’s ”alpha” α metric gauges
how closely the market price approaches this equilib-
rium, serving as a measure of market efficiency.

DeepTraderX: Challenging Conventional Trading Strategies with Deep Learning in Multi-Threaded Market Simulations

413



Now having cleared the domain-specific con-
text, we transition to showing how experimental eco-
nomics evolved from Smith’s inaugural work to AI al-
gorithmic traders, understanding how our work builds
on existing knowledge in Section 2. The rest of this
paper, based on (Cismaru, 2023), will detail how the
model that DTX uses was trained and the experimen-
tal setup in Section 3. The results showing how DTX
outperforms existing traders are shown in Section 4.
Section 5 will further analyse these findings, with
Section 6 providing a view on limitations and future
work, concluding with Section 7. (OpenAI, 2023)

2 BACKGROUND

2.0.1 Beginnings of Experimental Economics
and Agent Based Modelling

The groundwork for experimental economics was laid
by Vernon Smith in 1962 by publishing ”An Ex-
perimental Study of Competitive Market Behaviour”
in The Journal of Political Economy (JPE) (Smith,
1962). Smith has implemented a series of experi-
ments based on the CDA system, where buyers and
sellers are announcing bids and others in real-time,
with the possibility of a trade being executed any time
the prices match.

The experiments were performed with small
groups of human traders. They were instructed to
trade an arbitrary commodity on an open-pit trading
floor with the intention of maximising profitability,
namely the difference between the limit price and the
trade price. Each trader was given a pre-defined limit
price: for sellers, the minimum they are allowed to
sell their units at, and for buyers, the maximum price
they can pay for a unit of the traded asset, thus pre-
venting loss-making trades. The simulations were
carried out as ”trading days”, namely time intervals
of 5 to 10 minutes. The quotes that were shouted by
the traders resembled the LOBs of modern markets.
Once a trader agreed on a trade with its counterparty,
both would leave the market as they only had a sin-
gle unit to trade. The results showed rapid conver-
gence to the theoretical equilibrium price, measured
by Smith’s α metric. It measures how well and ef-
ficiently the market is converging to the equilibrium
price. The experiments capture the asynchronous na-
ture of financial markets, one of the issues that this
work is aiming to explore. Vernon Smith received the
Nobel Prize in 2002 for his pioneering work in exper-
imental economics, with his experiment styles being
the basis of most research carried out in this field and
the methodology used in this paper.

Three decades later, in 1993, Gode and Sunder
introduced the Zero Intelligence traders (Gode and
Sunder, 1993). Their focus is on studying how auto-
mated traders perform in markets dominated by hu-
man traders. They introduced two trading strate-
gies: Zero Intelligence Unconstrained (ZIU) and Zero
Intelligence Constrained (ZIC). ZIU is generating
purely random quotes, while ZIC is limited, con-
strained to a price interval. Their experiments, car-
ried out in the style of Vernon Smith, showed ZIC
to outperform human traders. A few years later, in
1997, Cliff published a paper proposing Zero Intel-
ligence Plus (ZIP) traders, which, by using a simple
form of Machine Learning (ML), can be adaptive and
converge in any market condition (Cliff, 1997). ZIP is
based on a limit price and an adaptive profit margin.
The margin is influenced by a learning rule and the
conditions of the market.

In 1998, Gjerstad & Dickhaut described an adap-
tive agent, GD (Gjerstad and Dickhaut, 1998), with
Tesauro & Bredin publishing a paper in 2002 de-
scribing the GD eXtended (GDX) trading algorithm
(Tesauro and Bredin, 2002). In 2006, Vytelingum’s
thesis introduced what is called the Aggressive-
Adaptive (AA) strategy (Vytelingum, 2006), which
was thought to be the best-performing agent until re-
cently. In 2019, Cliff and Snashall performed com-
prehensive experiments comparing AA and GDX,
simulating over a million markets. The results show
that AA is routinely outperformed by GDX, argu-
ing that advancements in cloud computing and com-
pute power open new possibilities for strategy evalua-
tion that were not possible before (Snashall and Cliff,
2019).

2.0.2 Rise of Intelligence in Market Modelling
and Price Prediction

The advent of AI has attracted the attention of the fi-
nance and trading fields. Increasing numbers of pa-
pers detail how advanced Deep Learning methods be-
came powerful tools in the world of agent-based trad-
ing, market making, and price forecasting. In their
report, Axtell and Farmer argue that the advance in
computing has enabled agent-based trading (ABM),
impacting how trading is performed today (Axtell and
Farmer, 2018). In finance, ABM helped us under-
stand markets, volatility, and risk better. Their report
is comprehensive and can be considered a higher-level
point of reference on how agents are applied in differ-
ent branches of finance and economics. Njegovanović
published a paper in 2018 that discusses the implica-
tions of AI in finance, with a focus on how the human
brain and its behaviour have inspired the architecture
of automatic decision models (Njegovanović, 2018).
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In the past decade, a number of studies have ex-
plored the potential of Deep Learning in finance. In
2013, Stotter, Cartlidge, and Cliff introduced a new
method for assignment adaptation in ZIP, performing
balanced group tests against the well-known ZIP and
AA strategies (Stotter et al., 2013). Their results show
that assignment-adaptive (ASAD) traders equilibrate
more quickly after market shocks than base strategies.

In 2020, Silva, Li, and Pamplona use LSTM-based
trading agents to predict future trends in stock in-
dex prices. Their proposed method, named LSTM-
RMODV, demonstrates the best performance out of
all studied methods, and it is shown to work in both
bear and bull markets (Silva et al., 2020). In 2019,
Sirignano and Cont proposed a Deep Learning model
applied to historic US equity markets. The informa-
tion extracted from the LOBs uncovers a relationship
between past orders and the direction of future prices.
They conclude that this is better than specialised pre-
dictions for specific assets. Their results illustrate
the applicability and power of Deep Learning meth-
ods in modelling market behaviour and generalisation
(Sirignano and Cont, 2019).

2.0.3 Need for Intelligence and Realistic
Modelling

The work in this paper continues what Calvez and
Cliff started in 2018 (Calvez and Cliff, 2018), when
they introduced a DLNN system trained to replicate
adaptive traders in a simulated market. Purely based
on the observation of the best bid and ask prices, the
DLNN has managed to perform better than the trader
observed. In 2020, Wray, Meades, and Cliff will take
this further by introducing the first version of Deep-
Trader, a high-performing algorithmic trader (Wray
et al., 2020) trained to perform in a sequential mar-
ket. Based on a LSTM, it automatically replicates a
successful trader by training on 14 features derived
from Level-2 market data. The first version of Deep-
Trader matches or outperforms existing trading algo-
rithms in the public-domain literature. Most studies
are performed on sequential simulations, in which the
speed at which the traders react to changes in the mar-
ket does not matter. Axtell and Farmer argue in their
above-mentioned report, that the real social and eco-
nomic worlds are parallel and asynchronous, but we
try to replicate it with single-threaded code (Axtell
and Farmer, 2018). Rollins and Cliff try to mitigate
this in a paper they published in 2020 (Rollins and
Cliff, 2020). They propose TBSE, as we introduced in
Section 1.0.1, on which they perform pair-wise exper-
iments between well-known trading strategies. The
results reported intriguing insights, with a new domi-
nance hierarchy of trading algorithms emerging.

Our work aims to integrate an optimised version
of DeepTrader in TBSE and test it againts existing
strategies. We will dive into the details of this in the
next section, asking the question: Can we train this
model to learn from a variety of traders and conditions
and study its behaviour in a parallel simulation? We
hope that the results of our study can provide more
insight into its potential real-world performance.

3 METHODS

The core of our work relies on TBSE, as introduced
in Section 1.0.1. It was used to generate the large
amounts of data required for training DTX when run-
ning against the other public-domain trading strate-
gies. The code of our project is available online at
GitHub at github.com/armandcismaru/DeepTraderX
for easy reproducibility.

The market is defined by the the limit orders given
to traders, based on supply and demand schedules.
TBSE was designed to use stochastically-altered real-
world historical data to create variable, more realistic
schedules. For our training and experiment sessions,
we used IBM stock data from the August 31, 2017
NYSE trading day, namely the best/worst bids/asks at
1 minute intervals.

TBSE provides the means to produce large quan-
tities of ”historical” market data. The one metric we
are looking to evaluate DTX on is the mean profit
that each trader type achieves at the end of the ses-
sion, namely profit per trader (PPT). We cannot assess
these algorithmic traders the same way we would with
real traders, as TBSE doesn’t simulate loss, so we are
judging based on profits only.

The data to train the DLNN model is curated by
taking ”snapshots” of the Level-2 LOB data, updated
each time a trade occurs. During training, our DLNN-
based trader is given 14 numeric inputs, deriving from
these LOB snapshots, as detailed in Section 1.0.1.
The 14 values are as follows:

1. The time t of the trade when it took place.

2. The type of customer order used to initiate the
trade, either a ”bid” or an ”ask” order.

3. The limit price of the trader’s quote that initiated
the trade.

4. The midprice of the LOB at time t.

5. The microprice of the LOB at time t.

6. The LOB imbalance at time t.

7. The spread of the LOB at time t.

8. The best (highest) bid on the LOB at time t.
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9. The best (lowest) ask on the LOB at time t.

10. The difference between the current time and the
time of the previous trade.

11. The quantity of all quotes on the LOB at time t.

12. An estimate P∗ of the competitive equilibrium
price.

13. Smith’s α metric using the P∗ estimate of the com-
petitive equilibrium price at time t.

14. The target variable: the price of the trade.

When performing inference, our model takes in
the first 13 multivariate inputs to produce the target
variable, item 14, namely the price at which it is will-
ing to trade at a specific time in the market (the quote
placed by the trader).

3.0.1 Data Generation and Preprocessing

TBSE provided five working trading agents that
were used to generate the training data, as
included here: github.com/MichaelRol/Threaded-
Bristol-Stock-Exchange. To create a large and diver-
sified training dataset, the market simulations were
run using 5 types of traders in different proportions,
with a total of 40 traders per simulation. The follow-
ing proportion-groups of 20 traders per side of the ex-
change (buyers or sellers) were used: (5, 5, 5, 5, 0),
(8, 4, 4, 4, 0), (8, 8, 2, 2, 0), (10, 4, 4, 2, 0), (12, 4,
2, 2, 0), (14, 2, 2, 2, 0), (16, 2, 2, 0, 0), (16, 4, 0, 0,
0), (18, 2, 0, 0, 0), and (20, 0, 0, 0, 0). Each number
in a specific position corresponds to a population of
traders of a certain type for a market simulation. For
example, for the specification (12, 4, 2, 2, 0), there
are 12 ZIC, 4 ZIP, 2 GDX, 2 AA, and no Giveaway
traders for both the buyers and sellers sides.

Using all the unique permutations of the propor-
tions resulted in 270 trader schedules, in which the
5 traders participate equally. This ensured that the
model trains to generalise from a varied and rich set
of market scenarios. Each schedule was executed for
44 individual trials, amounting to 270× 44 = 11880
market sessions. Each simulation represents one mar-
ket hour, requiring roughly one minute of wall-clock
time. If running on a single computer, generating this
amount of data would require approximately 8.6 days
of continuous execution, generating roughly 13 mil-
lion LOB snapshots. To address this time constraint,
the decision was made to use cloud computing to dis-
tribute computation across several worker nodes.

It is generally good practice to normalise the in-
puts of a network due to performance concerns, par-
ticularly for Deep Learning architectures like LSTMs.
Normalising the inputs helps ensure that all features
are contained within a similar range and prevents one

feature from dominating the others. For example,
we have features with different scales, such as the
time, which runs from 0 to 3600, while the quote
type is binary. So by normalising, we only have val-
ues in the [0,1] interval. Doing this ensures improved
convergence of the optimisation algorithm and helps
the model generalise better to new data. The choice
was to use min-max normalisation, given that we are
working with multivariate features derived from fi-
nancial data.

3.0.2 Model Architecture and Training

Contrary to the usual practices for training and vali-
dating a DLNN, which consist of splitting the dataset
into training, validation, and test subsets, we used all
the dataset for training. Markets are a combination
of unique factors, so our trader’s profit is heavily de-
pendent on what is happening in a specific simula-
tion. Considering this, it is without purpose to as-
sess its performance relative to historic data by judg-
ing the absolute values of our target variable. Rather,
as the model produced a good drop in the loss level
during training, the DLNN was validated by quantify-
ing how well DTX performed in live market simula-
tions against other traders in terms of PPT. Our dataset
is large and was generated using unique simulations;
thus, DTX doesn’t learn to replicate specific scenar-
ios; rather, it grows its ability to adapt and generalise
in any condition.

The architecture of the Deep Learning model that
DTX relies on is illustrated in Figure 1. It is com-
prised of three hidden layers, a LSTM with 10 units
(neurons), and two consequent Dense layers with 5
and 3 units, respectively, all using the Rectified Linear
Unit (ReLU) activation function. The output layers
use a ”linear” activation function, chosen as suitable
for a continuous output variable.

When dealing with large datasets, training should
be done in batches to accommodate memory limita-
tions and speed up training. Our network accommo-
dates this with a custom data generator based on the
Sequence class, used by Keras to train a model in
batches. To balance accuracy and training times, a
batch size of 16384 was chosen. To to balance poten-
tial overfitting and long convergence times we chose
a learning rate of µ = 1.5× 10−5. The DLNN uses
the Adam optimizer for its ability to efficiently con-
verge to a good solution, prevention of overfitting,
and incorporation of momentum, speeding up learn-
ing and improving generalisation performance. The
model was trained in approximately 22 hours, lever-
aging the GPU clusters of the Blue Crystal 4 super-
computer.

The model was trained for 20 epochs. An epoch
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Figure 1: Architecture diagram for the DLNN model used by DTX.

refers to a single pass of the entire dataset through the
neural network. So, at the end of the training session,
DTX is exposed to 11880×20 = 237600 market ses-
sions. With each experiment producing ∼ 1100 LOB
snapshots, DTX is trained using a total of roughly 261
million snapshots. The training error (loss) was calcu-
lated using the Mean Square Error (MSE). The error
decreased considerably during the first 4 epochs and
approached 0 in the last epoch with a loss curve re-
sembling an asymptote to the X axis.

3.0.3 Experiment Design and Evaluation

Our aim is to quantify how DTX performs relative to
the other strategies. Finding the right methodology
for doing this is as important as the strategy itself, as
it is essential to isolate market conditions in repeat-
able experiments. Traders are dependent on the be-
havior of other strategies, mandating a controlled lab-
oratory environment that allows quantitative analysis
of their performance. Thus, there are two strategies
used in each experiment: DTX and the others, one by
one. Drawing inspiration from the work of Tesauro
and Das (Tesauro and Das, 2001), we have chosen
two experiment types.

For each, DTX has run in n = 500 independent
market simulations, populated by 40 traders, 20 for
each side, buyer or seller. It is worth specifying that
each set of 50 trials was run on a different cloud
machine, resulting in a broad distribution of profits,
with each using the same seed for functions involv-
ing randomness. This is due to the well-known and
researched issue in computer science, that machines
cannot emulate perfect randomness (Bridle, 2022).
TBSE allows full control of the experiment condi-
tions. The time frame of the simulation, the supply
and demand schedules, and the order interval can all
be controlled to isolate the differences between the
chosen strategies. As we use an asynchronous simu-
lation, we are looking to evaluate DTX based on its
DLNN model’s efficiency and capacity to generalise
on LOB data, translating into profits.

The first experiment design is the Balanced Group
Tests (BGTs), in which the 20 buyers or sellers are
again evenly split between the two trader types, re-
sulting in 10 DTX traders and 10 traders of another
type for each group. The choice is beneficial as it is

a stochastic-controlled trial method that helps reduce
bias sources and improve the internal validity of the
study. We want to make sure that the traders produce
different profits solely because of their inherent strat-
egy, not noise.

The second type of experiment is the One to Many
tests (OTMs), where the trading strategy that you
want to observe becomes the ”invader” out of a ho-
mogenous population made up of different strategies.
For clarity, this means that 2 instances of DTX will
run alongside 38 traders of a given type. This is par-
ticularly useful as we are trying to see how DTX per-
forms in a market shaped almost entirely by another
trader, capturing its dynamics and producing profits.
For fairness, there is one defecting strategy on both
buyer and seller sides.

The research on the profitability of DTX has been
conducted against four ”competitor” traders: ZIC,
ZIP, GDX, and AA, adding up to eight sets of head-
to-head experiments. These strategies were chosen
as they are the most relevant in the literature, with
AA and ZIP being ”super-human” traders, amongst
the first to be proven to outperform humans.

4 RESULTS

The following section presents the results of our ex-
periments, summing 4,000 individual market simula-
tions. The outcome largely supports our research hy-
pothesis, with DTX dominating in 6 out of 8 experi-
ments, with very significant differences in PPT for a
number of them.

The results are presented in the form of profit dis-
tribution box plots and scatter plots of individual trial
profits. An extended summary of the results and de-
scription of the statistical significance tests conducted
on them can be found in Chapter 3.8 and 4 of (Cis-
maru, 2023). In the box plots, the vertical axis is rep-
resented by PPT across trials. The box represents the
interquartile range, the range between the first quartile
and the third quartile. The line inside the box repre-
sents the median of the dataset. The whiskers repre-
sent the data within 1.5 times the interquartile range,
with the diamond-shaped points outside them being
considered outliers from a data distribution point of
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view. The scatter plots show individual trials in terms
of PPT obtained by both traders. The line in the scat-
ter plot is a diagonal reference line, where the points
would lie if the profits per trader for both strategies
were equal. Points above the line indicate higher prof-
its achieved by DTX, analogous for the other trader.

The figures are grouped on experiment and trader
type basis. Each set of two box-plots corresponds
to BGTs and OTMs between DTX and one of the 4
other traders for all experiments. Due to space con-
strains, the scatter plots were chosen for the more in-
teresting experiment results, on a case by case basis.
We present them in the following order: ZIC, ZIP,
GDX, and AA. For each experiment, we performed a
Wilcoxon-signed rank-test with a significance level of
95%. The null hypothesis is that there is no statistical
difference between the means of the profits achieved
by the traders. A p-value lower than 0.05 indicates
that we can reject the hypothesis, concluding that one
strategy outperforms the other in a given experiment.

4.0.1 ZIC vs. DTX

Figure 2a shows a narrow difference in means be-
tween ZIC and DTX in the BGTs. The statistical
test for 95% significance level has indicated that DTX
is the better strategy of this experiment. In the case
of OTMs, the difference in profits is sensibly larger
for DTX, as seen in the profit distribution in Figure
2b and in the cluster of profits above the diagonal in
Figure 3. The statistical test has confirmed the domi-
nance of DTX in this experiment.

(a) BGTs for ZIC vs. DTX. (b) OTMs for ZIC vs. DTX.

Figure 2: Box-plots showing PPT for ZIC vs. DTX tests.

4.0.2 ZIP vs. DTX

The BGT experiment between ZIP and DTX is its
only categorical loss. While Figure 5 doesn’t indi-
cate any immediate winner, Figure 4a shows a slight
advantage for ZIP, with a higher mean PPT. The
Wilcoxon signed-rank test has confirmed the result,
confirming that there is a significant difference in

Figure 3: Scatter plot of PPT in OTMs for ZIC vs. DTX.

profits in favour of ZIP.
On the other hand, Figure 4b shows higher mean

profits for DTX, although with a much bigger vari-
ance and a number of outlier values, fact backed by
the result of the statistical test.

(a) BGTs for ZIP vs. DTX. (b) OTMs for ZIP vs. DTX.

Figure 4: Box-plots showing PPT for ZIP vs. DTX tests.

Figure 5: Scatter plot of PPT in BGTs for ZIP vs. DTX.

4.0.3 GDX vs. DTX

Figures 6a and 7 show BGT comparison of PPT
scores between DTX and GDX. Upon visual inspec-
tion, the bar plot shows a significant difference be-
tween the means of DTX and its competitor, with the
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scatter plot placing most of its points above the diag-
onal, indicating the clear dominance of DTX in this
experiment, with the same outcome confirmed by the
outcome of our statistical test.

Figure 6b shows PPT score comparisons in the
OTM experiment. The profits obtained by DTX, al-
though they have a high variance, lay on a superior
magnitude scale than those of GDX, as visible in the
box-plot. The Wilcoxon signed-rank test confirms
this hypothesis.

(a) BGTs for GDX vs DTX. (b) OTMs for GDX vs. DTX.

Figure 6: Box-plots showing PPT for GDX vs. DTX tests.

Figure 7: Scatter plot of PPT in BGTs for GDX vs. DTX.

4.0.4 AA vs. DTX

Figure 8a visually represents the profits obtained by
AA and DTX in the BGTs, indicating similar results
for both traders. The statistical test applied failed to
prove that there is a significant difference in terms of
mean profits between AA and DTX. Thus, this is our
only inconclusive experiment.

On the other side, Figure 8b shows a high-profit
but high-variance DTX in the OTM experiments
against AA, a fact also visible by looking at the points
above the diagonal in the scatter plot in Figure 9.
The statistical test concludes that DTX is the higher-
performing strategy in this experiment, but with in-
creased variance.

(a) BGTs for AA vs. DTX. (b) OTMs for AA vs. DTX.

Figure 8: Box-plots showing PPT for AA vs. DTX tests.

Figure 9: Scatter plot of PPT in OTMs for AA vs. DTX.

4.0.5 Summary of Results

The results presented in this section are used to ob-
jectively highlight what a trader based on a simple
LSTM architecture is able to achieve. To recap, our
model was exposed to prices quoted by traders at time
a T and the corresponding LOB state S (as described
in Section 3) during training. The scope of this is to
enable the model to ”read” the market, and, alongside
its own limit price, perform inference and generate a
price used to place a market order. Whether that price
produces profit is down to how quickly (due to the
asynchronous simulation) and accurate DTX reacts to
the market and the behaviour of other traders.

In summary, our empirical analyses reveal that
DTX exhibits superior performance in six out of eight
experiments and matches profits in one out of the
eight. DTX achieves its sole purpose, which is to
make profit. Notably, DTX either matches or sur-
passes the performance of three out of the four traders
tested, including those deemed super-human. Specif-
ically, DTX recorded two victories over GDX and
exhibited a win-tie performance against AA. How-
ever, the results against Cliff’s ZIP are more nuanced;
DTX registered both a victory and a defeat in markets
where both traded concurrently.

As we draw a line at the end of this section, having
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presented a detailed analysis of the results, it is worth
noting that DTX produced very interesting results, but
it is still an early development initiative. Although the
performance of DTX is notable, we need to have an
objective stance as we transition into the discussion,
where we will delve deeper into an analysis of these
results. The next section will discuss the strengths
and weaknesses of DTX, relating its performance to
previous results in TBSE, and exploring their broader
impact on the field at the intersection of finance and
artificial intelligence.

5 DISCUSSION

The biggest strength of our results is the consistent
profitability of DTX across all the experimental se-
tups. This accomplishment is particularly relevant
when considering the volatility of markets, which is
better captured in the multi-threaded simulation that
we use. DTX’s ability to outperform or match traders
such as AA, GDX, or ZIC suggests that the model can
be relied on to trade real money in real markets, gen-
eralising effectively across various scenarios and ag-
gregate on-the-spot information better than humans.
Our trader is not adaptive, so it reacts consistently and
quickly no matter the conditions.

We treat DTX as a ”black-box” trader, so we can-
not explain its inner processes on why it produces a
certain quote price when given its 13 input features,
but we are analysing how those prices produce profits
relative to other traders. The individual prices pro-
duced are almost impossible to interpret by humans,
rather we judge the profits they produce, which are
also a function of how and when the other traders act.
DTX performed the best against ZIC and GDX. While
the results againts ZIC were expected, as it is a sim-
ple, non-adaptive trader, the performance relative to
GDX was impressive in both experiment types. This
result might render the adaptive Dynamic Program-
ming framework that GDX relies on as obsolete when
facing modern DLNN based traders.

However, DTX has matched but not completely
outperformed the ”super-human” traders, AA and
ZIP. In the BGTs againts these two, DTX was less
effective, with a tie and a narrow loss. The simple
ML rule of ZIP and the aggressive pricing system of
AA are still efficient strategies, meaning that DTX is
still ”young”, and not stable enough to dominate in
larger groups. In the OTMs, DTX dominated, being
able to intercept profits as an ”intruder” when running
againts the best traders. The high variance in these ex-
periments suggests that DTX should not be used when
seeking fast profits, but should rather be run in longer

time frames to prove its efficiency.
Within the broader academic discourse on trading

algorithms, our findings resonate with (Wray et al.,
2020). They proposed this DLNN architecture, man-
aging to outperform other strategies, but only trained
it to copy specific traders in a sequential simula-
tion. When they introduced TBSE (Rollins and Cliff,
2020), Rollins and Cliff proposed the idea that the
traders in the literature might behave differently when
tested in a concurrent simulation that better reflects
real markets. Their results challenged the ”status quo”
of the trader dominance hierarchy, finding that they
now come as follows: ZIP > AA > GDX > ZIC.
By quantifying the difference in results between DTX
and the four traders, we can say that the relative per-
formance of DTX follows the same ranking.

These results have broader implications as they
have proven how, among so many other applications,
AI autonomous agents can generate real money. DTX
is an early proof-of-concept but its ability to be con-
sistent, resilient, and generalise suggests that such
traders could be pivotal in creating fairer and more
efficient markets. However, it’s crucial to consider
that markets populated solely by these intelligent au-
tomated systems might result in inexplicable events
and our inability, as humans, to understand the new
mechanisms of the financial markets we rely on.

6 LIMITATIONS & FUTURE
WORK

This study, while comprehensive, is not without lim-
itations. DTX was trained using rich data, but from
only so many traders and scenarios. Also, our ex-
perimental setup was focused on only two types of
traders at a time. Not to mention the considerable
resource overhead involved in data collection, model
training, and testing. Addressing these in future re-
search would offer even more nuanced insights into
DTX’s capabilities. Moreover, an intriguing avenue
for future exploration would be quantifying the corre-
lation between the model’s inference time and perfor-
mance, as well as the degree of impact of each one of
its 14 features.

In practical applications, a financial institution en-
gaged in active trading could potentially deploy the
DTX algorithm, provided they have access to exten-
sive historical LOB data as well as their proprietary
trading data. Given that access to limit order prices
(one of the features of DTX, as described in Section
3) is typically restricted to an entity’s own trading op-
erations, DTX could be trained on this comprehensive
dataset, thereby amalgamating the strengths of multi-
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ple established strategies and leveraging vast comput-
ing resources. A market populated with traders like
DTX can be more efficient in allocating resources,
creating a fair and predictable space. (OpenAI, 2023)

7 CONCLUSION

In the rapidly evolving domain of automated trading,
our study emphasises the potential of Deep Learning
trading algorithms. As markets continue to evolve,
the quest for strategies that can adapt and thrive re-
mains paramount, and DTX, as evidenced by our re-
search, stands as a promising proof-of-concept in this
landscape. In the quest for novelty and realism, we
researched this in a distributed market simulation that
has previously overturned the trader dominance hier-
archy, with DTX being consistent with these findings.

As we stand on the cusp of this new frontier,
it beckons researchers, practitioners, and policymak-
ers alike to collaboratively shape a future where AI-
augmented trading systems contribute to more effi-
cient, stable, and equitable financial markets.
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