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Abstract: Triangle mesh compression has been a popular research topic for decades. Since a plethora of algorithms
has been presented, it is becoming increasingly difficult to come up with significant performance improve-
ments. Some of the recent advances in compression efficiency come at the cost of rather steep implementation
and/or computational expense, which has profound consequences on their practicality. Ultimately it becomes
increasingly difficult to come up with improvements that are reasonably easy to implement and do not harm
the computational efficiency of the compression/decompression procedure. In this paper, we analyze a com-
bination of two previously known techniques, namely using the local coordinates for expressing compression
residuals and weighted parallelogram prediction, which were not previously investigated together. We report
that such approach outperforms industry standard Draco on a large set of test meshes in terms of rate/distortion
ratio, while retaining beneficial properties such as simplicity and computational efficiency.

1 INTRODUCTION

Triangle mesh compression is a common task in mesh
processing pipelines, and even the ever continuing
growth of commonly available computational power
has not diminished its importance. Its is essential for
both efficient storage and transfer of highly detailed
meshes, since even the most basic approaches allow
for a quite drastic reduction of code length in com-
parison with plain encoding.

The first generation of compression algorithms
has focused on reducing mechanistic error measures
(MSE, PSNR, Hausdorff distance) while achieving a
low data rate. Later, the field has seen a renewed
interest when perceptual metrics (DAME, MSDM,
FMPD) came into focus and perceptual fidelity be-
came the main goal (Sorkine et al., 2003; Marras
et al., 2015). Now, after decades of research, a wide
variety of algorithms is available, each bringing a
certain improvement in compression efficiency. It is
therefore quite difficult to come up with an algorithm
that outperforms the state-of-the-art significantly.

On the other hand, many of the advanced tech-
niques seem to lack in terms of real-life applicabil-
ity. Compression is mostly used to save time for

a https://orcid.org/0000-0002-1858-2411
b https://orcid.org/0000-0001-8956-6411
c https://orcid.org/0000-0002-0213-3769

users, trading the slow data transmission time for fast
processing (decompression). This purpose is often
neglected in research papers, where only the com-
pression efficiency is investigated, while the compu-
tational cost of advanced algorithms is often down-
played. Similarly, the ease of implementation is often
neglected, while in real-world applications, a small
compression efficiency gain can often be neglected
when facing a high implementation cost, since in
contrast with academic-level proof-of-concept test-
ing, real-world implementations have much higher
requirements on robustness and reliability. This is,
for example, demonstrated by the current de-facto
standard for industrial mesh compression, the Google
Draco library: out of the plethora of advanced com-
pression techniques, a rather modest subset of basic,
most efficient algorithms is chosen and implemented
at the industrial robustness level.

One of the evergreen approaches is the combina-
tion of traversal-based connectivity encoding (Edge-
Breaker (Rossignac, 1999) or valence-based cod-
ing (Alliez and Desbrun, 2001)) with the parallelo-
gram prediction rule used for encoding the vertex po-
sitions. This approach has been used as a baseline
for several advancements, such as weighted parallel-
ogram coding, double/multiple parallelogram coding,
angle-based coding, encoding of residuals in local co-
ordinates and many others. Without exhaustive test-
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ing, it is hard to tell which of these advancements
”eat the same piece of the pie”, making each other
less efficient when combined, and which can be used
in conjunction, combining their advantages. This is
especially true when considering the performance in
terms of perceptual metrics.

In these circumstances, the contributions of the
presented paper are the following:

• we demonstrate, that a combination of weighted
parallelogram prediction with encoding in local
coordinates (tangential + normal) leads to a com-
bined benefit in terms of rate-distortion perfor-
mance,

• we show that non-uniform quantization of local
coordinates leads to a considerable improvement
in rate-distortion performance in terms of percep-
tual error metrics,

• we provide comparison with state-of-the-art in-
dustrial compression library, showing that the
combined approach, in spite of its simplicity, pro-
vides a performance advantage at negligible addi-
tional cost in both implementation effort and exe-
cution computational expense.

2 RELATED WORK

In terms of single-rate triangle mesh compres-
sion, the most prominent approaches are driven
by connectivity encoding algorithms (e.g., Edge-
breaker (Rossignac, 1999), Valence coding (Touma
and Gotsman, 1998) or TFAN (Mamou et al., 2009)).
Such algorithms process a mesh during a connectiv-
ity traversal, which these approaches use to exploit
the spatial coherence of vertex positions by prediction
inferred from already encoded vertices. Their popu-
larity mainly stems from their simplicity.

While not the first, certainly the most influential
is the Parallelogram scheme proposed by Touma and
Gotsman (Touma and Gotsman, 1998). It forms a pla-
nar parallelogram from vertex positions of an adjacent
triangle to predict the position of the currently coded
vertex. Not only are most of the modern connectivity-
driven methods directly derived from it, but it is also
still being used in modern mesh compression software
(e.g., Google Draco (Galligan et al., 2018)).

The data rate of geometry can be improved by
averaging over multiple predictions where possible.
Dual parallelogram scheme proposed by Sim et
al. (Sim et al., 2003) uses a connectivity traversal
which quite often allows prediction of a single ver-
tex by two parallelograms. The FreeLence method
proposed by Kälberer et al. (Kälberer et al., 2005)

added an additional parallelogram prediction com-
puted from three incident vertices on the boundary of
the already processed area.

Another way of improvement is the adjustment
of the prediction itself. On curved surfaces, the
planar prediction might be inefficient in terms of
the normal direction. To this end, Gumhold and
Amjoun (Gumhold and Amjoun, 2003) proposed to fit
a higher-order surface to already encoded geometry to
estimate a dihedral angle. Ahn et al. (Ahn et al., 2006)
also predicted the dihedral angles but from neighbour-
ing triangles. By introducing weighting in the paral-
lelogram formula, some approaches were able to im-
prove the tangential part of the prediction. This was
discussed by Kälberer et al. (Kälberer et al., 2005)
and elaborated on by Courbet and Hudelot (Courbet
and Hudelot, 2011) who used Taylor expansion to de-
termine weights even for more complicated stencils
than parallelograms. More recently, Váša and Brun-
nett (Váša and Brunnett, 2013) estimated the weights
from vertex valences and already-known inner angles
to obtain state-of-the-art performance in predicting
tangential information.

The quantization and encoding of correction vec-
tors is also a crucial part of the problem. Most of
the methods (e.g., (Touma and Gotsman, 1998; Váša
and Brunnett, 2013)) quantize the encoded values in
a global coordinate system, each coordinate quan-
tized with equal precision. As was pointed out by
Lee et al. (Lee et al., 2002), this, however, leads
to high normal distortion particularly visible on pla-
nar surfaces not aligned with one of the main coor-
dinate axes. Their proposal was to work in a local
frame either represented by two inner and one dihe-
dral angle, or by axes aligned with an adjacent tri-
angle. Both these representations enable the separa-
tion of normal and tangent information, thus exploit-
ing different distributions of values in entropy cod-
ing. Gumhold and Amjoun (Gumhold and Amjoun,
2003) combined these two representations and used
a dihedral angle for normal information, while tan-
gent information was represented by planar coordi-
nates. Kälberer et al. (Kälberer et al., 2005) improved
this approach by quantizing the normal and tangent
information with different precision.

All the listed methods aimed to optimize mech-
anistic distortion measures (e.g., MSE, Hausdorff
distance or PSNR), which give an upper bound in
the error of absolute coordinates. These metrics,
however, do not reflect the way the human brain
perceives distortion. This is better measured by
perception-oriented metrics (e.g., MSDM2 (Lavoué,
2011), DAME (Váša and Rus, 2012), FMPD (Wang
et al., 2012), TPDM (Torkhani et al., 2014) and
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TPDMSP (Feng et al., 2018)). In the past, there were
multiple methods that optimized such criteria (e.g.,
(Karni and Gotsman, 2000; Sorkine et al., 2003; Mar-
ras et al., 2015)). These, however, are quite complex
and are usually outperformed by conventional meth-
ods in terms of mechanistic measures. More recently,
there have been proposed a few methods that aim at
both criteria (Alexa and Kyprianidis, 2015; Lobaz and
Váša, 2014; Váša and Dvořák, 2018), but require ad-
ditional complexity.

3 PRELIMINARIES

The problem that we address in this paper is the fol-
lowing: a triangle mesh is given, consisting of a con-
nectivity C = {ti}T−1

i=0 , and geometry G = {vi}V−1
i=0 .

Each ti is a triplet of integers, representing the indices
of the vertices that form the i-th triangle, and each vi
is a triplet of floats (vx

i ,v
y
i ,v

z
i ), representing the Carte-

sian coordinates of the i-th vertex. The objective is
to store this information into a binary stream of the
shortest possible length so that reconstruction can be
built from the stream with the following properties:

1. the connectivity is reconstructed without loss,
up to an allowed reordering of triangles and re-
indexation of vertices, and

2. the geometry is reconstructed with a certain user-
controllable precision.

Many algorithms only work when additional condi-
tions are met. In particular, a connectivity-manifold is
a mesh, where each edge is part of at most two tri-
angles (mesh border is allowed). In the following,
we assume that the input triangle mesh fulfills this
property. In order to put our contribution into con-
text, we shortly review the main building blocks of a
typical single-rate triangle mesh encoder. Next, we
are also going to discuss some extensions proposed
previously.

The most common approach to static mesh com-
pression is to process the surface in a traversal driven
by the connectivity. In each traversal step, a single tri-
angle is attached to the part of the mesh that has been
already processed. The edge of the known part of the
mesh is identified as gate, and the vertex opposite of
the gate is either already part of the processed part of
the mesh, in which case it is the task of the connec-
tivity encoder to identify which one it is, or it has not
been processed yet: in that case, the vertex position is
encoded into the data stream in some efficient way.

The authors of the popular connectivity encoder
EdgeBreaker have shown, that for connectivity-
manifold meshes, it suffices to store one of five sym-
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Figure 1: Prediction stencil.

bols C, L, E, R or S per triangle, where the C symbol
represents encountering a previously unknown vertex,
while the remaining symbols encode which known
vertex is the tip vertex of the current triangle. After
each expansion step, the next gate is selected using
certain implicit rules, i.e. without the need for storing
any additional data.

A typical situation that arises when a previously
unvisited vertex is encountered during mesh traversal
is depicted in Fig. 1. The local configuration is also
known as the prediction stencil. The objective is to
store information that allows reconstructing the coor-
dinates of the opposite vertex vR with as few bits as
possible. A common prediction-correction strategy is
usually applied: based on the known information, the
decoder builds a prediction of the following encoded
value(s); the encoder mimics the prediction and en-
codes the difference between the actual value(s) and
the prediction, usually quantized to some precision.
If the predictions are accurate, then the magnitudes of
the corrections are generally small in comparison with
original data, leading to a decrease in the entropy of
the data stream and ultimately to efficient compres-
sion.

A triangle adjacent to the gate in the processed
part of the mesh (base triangle) consists of vertices
vL, vR and vB. The coordinates of these vertices are
known to both the encoder and the decoder (up to
quantization error), and therefore the decoder can use
them to estimate the position of the opposite vertex
vO. A popular choice of prediction scheme is the par-
allelogram predictor, formulated as

pO = v̄L + v̄R − v̄B, (1)

where pO is the prediction and v̄ stands for the co-
ordinates of a vertex v as known by the decoder, i.e.
possibly affected by quantization.

This basic scheme has been modified in different
ways, usually trying to incorporate additional infor-
mation available at the decoder in order to improve
the accuracy of the prediction. In particular, when a
new vertex is encountered, it can be predicted from
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two (Sim et al., 2003) or multiple (Cohen-Or et al.,
2002) gates. The predictions are usually averaged and
for practical meshes, this results in an improved per-
formance.

Alternatively, it is possible to transmit the mesh
connectivity first, processing the mesh geometry in
a separate subsequent traversal. This way, the infor-
mation from the connectivity, in particular vertex va-
lences, can be used for the prediction as well. With
the valences known, it is possible to estimate the inner
angles in the currently processed triangle as 2π/di,
where di is the valence of the i-th vertex. The authors
of the weighted parallelogram scheme have derived
that after normalising the inner angles to sum up to
π, so that they form a proper triangle, it is possible to
predict the position of the vertex v using a generalised
parallelogram predictor

pO = w1v̄L +w2v̄R − (1−w1 −w2)v̄B, (2)

where the weights w1 and w2 are computed as

w1 =
cot(β)+ cot(δ)
cot(δ)+ cot(γ)

, (3)

w2 =
cot(α)+ cot(γ)
cot(δ)+ cot(γ)

, (4)

where the angles are the known inner angles of the
base triangle α and β, and the predicted inner angle
of the newly attached triangle γ and δ, as shown in
Fig. 1. By incorporating the inner angles around the
vertices vL and vR in other triangles known to the de-
coder, it is possible to build an even more accurate
prediction of the angles γ and δ, leading to further im-
provement of the data rate.

Another modification to the basic algorithm has
been proposed by the authors of the Angle-Analyzer
algorithm(Lee et al., 2002). They proposed two in-
dependent ideas: first, rather than representing the
encoded vertex in terms of Cartesian coordinates (or
their corrections), they represent it in terms of inner
angles of the new triangle and a dihedral angle be-
tween the known adjacent triangle and the newly at-
tached triangle. Second, they propose separating the
normal and tangential components of the correction in
separate contexts of the entropy coder. This approach
can be manifested as either

• encoding the inner angles in a single context and
dihedral angles in another, when encoding the ver-
tex position in terms of angles, or

• separating the tangential and normal components
of the correction and encoding each in separate
contexts, when encoding the vertex position in
terms of coordinates.

In the latter case, the authors use a local coordinate
frame as follows: vL is used as the origin, and the
following orthonormal vectors are used as the basis:

x1 =
(vL −vR)× (vB −vR)

∥(vL −vR)× (vB −vR)∥

x2 =
vL −vR

∥vL −vR∥
x3 = x1 ×x2 (5)

The coordinates of the opposite vertex vO are ex-
pressed in this coordinate system and encoded. This
way the first coordinate of the encoded vector rep-
resents the normal component, while the remaining
ones represent the tangential component. The main
benefit of this approach is that the statistical distribu-
tion of the normal component is different from that of
the tangential components, which is in turn exploited
by the used entropy coder.

Another approach to encoding vertices in local co-
ordinates has been taken by the authors of the Higher
Order Prediction scheme (Gumhold and Amjoun,
2003). They use a cylindrical coordinate system with
the origin at the center of the gate and axis-aligned
with the gate. A vertex in this coordinate system is
described by a triplet of scalars (x,y,α), and recon-
structed as

v̄O = (v̄L + v̄L)/2+ xx2 + sin(α)yx1 + cos(α)yx3,
(6)

where (x1,x2,x3) represent the same local basis ori-
entation as in Eq. (5). The local coordinates x and y
can be predicted using the parallelogram rule, while
the angle α can be estimated using the higher order
fitting of already known vertices, at a non-negligible
computational cost. Note that in order to compensate
for different sampling rates at varying distances from
the coordinate system axis, rather than quantizing the
angle α directly, the quantity yα is quantized end en-
coded. In decoding, y is decoded first and used to
decode the actual value of α.

These approaches to encoding vertex positions us-
ing local coordinates suffer from serious flaws. The
approach of Lee et al. (Lee et al., 2002) uses the left
gate vertex as origin. This way the information from
known positions of the right gate vertex and base ver-
tex is essentially ignored, except for gate orientation
and base triangle normal, which influence the spatial
alignment of the basis. The approach by Gumhold
and Amjoun (Gumhold and Amjoun, 2003) on the
other hand uses a non-orthogonal, non-uniform cylin-
drical grid, which leads to a hard-to-predict behaviour
of the quantization procedure. In the following, we
propose a simple way to avoid both these problems.
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4 PROPOSED ALGORITHM

We propose using the common connectivity-driven
traversal based approach, with corrections encoded
in a local orthonormal basis. The key insight is that
origin of the basis can be put to the predicted po-
sition of the tip vertex pO. In terms of resulting
symbol entropy, this approach is equivalent to esti-
mating the local coordinates using some prediction
scheme. In contrast with the approach of Gumhold
and Amjoun (Gumhold and Amjoun, 2003), we use
the weighted parallelogram scheme for prediction.

Another design choice is the section of the basis
orientation. We have experimented with two possi-
bilities. One is equivalent to the basis described by
Eq. 5, i.e. aligned with the gate edge. However, a dif-
ferent basis with similar properties can be constructed
as follows:

x′1 =
(vL −vR)× (vB −vR)

∥(vL −vR)× (vB −vR)∥

x′2 =
pO −vB

∥pO −vB∥
x′3 = x1 ×x2 (7)

Rather than aligning the basis with the gate ori-
entation, this basis is aligned with the direction to-
wards the prediction from the known vertex vB. Note
that, for a symmetric prediction stencil, the bases are
equivalent, and in both cases the bases separate the
normal information into the first component of the lo-
cal coordinate triplet.

Separating the normal has two profound conse-
quences: first, the normal component usually has a
significantly different statistical distribution than the
tangential components. While the tangential compo-
nents represent the sampling of the surface, which
may or may not be regular, the normal component es-
sentially carries the information about the shape.

This then implies the second consequence: having
the sampling and shape information separated, it is
possible to use a different precision in encoding each.
While for textured meshes, even the tangential posi-
tion of vertices may be important, from the point of
view of shape the sampling is mostly irrelevant, and
therefore it may be beneficial to sample the normal
component more precisely.

5 EXPERIMENTS

As mentioned above, the distortion of normals plays
a significant role in perceiving the quality of a com-
pressed triangle mesh. Figure 2 shows the compar-
ison of mesh distortion while maintaining the same

compression ratio using the prediction corrections in
world coordinates and in coordinates aligned with the
tangential plane.

We have tested the compression distortion of a
planar surface in various orientations. The traditional
world space prediction space is very sensitive to the
orientation of the surface. This is significantly re-
duced when using the tangent space. While target-
ing a human perception metric (high sensitivity to
changes in dihedral angles close to flat), it is even pos-
sible to obtain better results by increasing the number
of quantization levels for the normal direction, while
reducing the number of quantization levels in tangent
directions to maintain the same compression ratio.

To compare the proposed method, we have se-
lected three existing algorithms. Draco (Galligan
et al., 2018) is a well-known and commonly used
library for mesh compression. In our tests, we
use the default settings. Error propagation con-
trol in laplacian mesh compression (EPC) (Váša and
Dvořák, 2018) is a compression method that focuses
on achieving good results in both perceptual and
mechanistic quality of the compressed meshes. Fi-
nally, we compare the results against the Weighted
parallelogram prediction (WP) (Váša and Brunnett,
2013) in world space.

To measure the quality of compressed models, we
have chosen three different metrics:

1. Mean squared error (MSE) is a widely used met-
ric, unfortunately, this metric only measures the
distances between the original and distorted ver-
tices. Similarly to other areas, this metric is not
very suitable for measuring the quality of com-
pression with respect to shape preservation or vi-
sual quality, yet, it is used very often.

2. Metro (Cignoni et al., 1998) metric is another
commonly used mechanistic error measure. It
builds on analyzing the nearest point pairs on the
two compared meshes, and it does not require the
compared meshes to have the same connectivity.

3. Dihedral angle mesh error (Váša and Rus, 2012)
(DAME) is one of the metrics designed to take hu-
man perception into account, which we have used,
since comparing artifacts introduced by compres-
sion, it is important to measure, how these arti-
facts are perceived by humans.

For our tests we have used models from the
thingi10k archive (Zhou and Jacobson, 2016). In or-
der to be able to compare all methods at the same
BPV, we use a subset fulfilling these criteria: (a) has
more than 20.000 vertices, (b) has a single compo-
nent, (c) is 2-manifold and (d) is watertight. Out of
the available models, over 500 meet these criteria.
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(a) Original mesh (wireframe). (b) Original mesh (shaded). (c) Compression in world space.

(d) Compression in tangent space. (e) Finer quantization in normal direc-
tion.

(f) Precise encoding of the first triangle.

Figure 2: The comparison of quantization in world space and tangential space. The original model is a plane rotated 17.5°
around the x axis - (a) the wireframe and (b) shaded model. Compressed versions have a compression rate of approx. 13 BPV.
(c) The compression in world space coordinates is very sensitive to rotation. (d) In tangent space, the errors are mainly
introduced by the precision of the first triangle, but generally it is less sensitive to rotation than compression in world space.
(e) It is even possible to increase the precision in the normal direction, while reducing the precision in target directions while
maintaining the same compression rate. (f) In this particular scenario, when all triangles have the same normal, the normal
component should be zero. Due to the distortion of the first triangle, this is not generally true. Storing the first triangle
(dark triangle in top right corner) without distortion allows a significant increase of the compression rate (8.6 BPV), while
maintaining constant normal vectors. The triangles of the original mesh are blue, and the compressed mesh is red.

The proposed method based on weighted parallel-
ogram is presented in two variants - the standard tan-
gent space compression and compression with double
precision of the normal component.

We have tested two formulations of local basis.
The choices are the basis aligned with the prediction
gate, as defined in Eq. 5, and the basis aligned with
the direction towards tip vertex, as defined in Eq. 7. In
the experiments, the basis of Eq. 7 provides slightly
better results on average, but slightly worse in the me-
dian. For the rest of our experiments, we have used
this basis, but choosing the better of these two op-
tions for a particular model can in some cases lead to
a considerable reduction of the resulting distortion of
up to 45% in terms of MSE and up to 22% in terms of
Metro and DAME. Note, however, that for a majority
of models, the difference tends to be rather small.

Note that Draco does not allow fine control over
the data rate (measured in bits per vertex - BPV), but
only allows choosing an integer-valued quality con-
trol parameter. For this reason, we use Draco as the
baseline method and we compare the other methods
relative to Draco, since the other competing method
allow fine tuning the resulting data rate and matching
the Draco result in terms of achieved data rate. There-
fore, in the figures, we present a quantity that relates
a particular error measure achieved by a particular al-
gorithm to the same error measure achieved by Draco

at the same data rate. A value of 1 indicates equiv-
alent result, while a values smaller than 1 indicate a
performance gain w.r.t. Draco (lower distortion at the
same data rate), and values larger than 1 indicate a
performance loss.

In terms of MSE, our method outperforms Draco
and EPC in most cases (Figure 3). On the other hand,
in the given dataset, there appears a number of models
where it performs rather poorly. One such example is
depicted in Figure 4. Its MSE is 151× higher than
for Draco, maintaining the same BPV (these outliers
are not in the plot). Due to these outliers, there is a
large difference between median and average cases. A
common feature of these outliers are usually a rather
low data rate for Draco standard settings (5 - 6 BPV)
and a high variability of triangle sizes. Using Metro
metric, the proposed algorithm is slightly better than
Draco when using uniform quantization in all direc-
tions. It outperforms Draco when halving the size of
quantization bins (doubling the number of levels) for
normal direction. For most of the models, the pro-
posed method performs better in DAME metric than
Draco. Similarly to MSE, the outliers are pushing the
average much higher than the median case.

The increasing computational power allows the
processing of huge triangle meshes. The compres-
sion process itself, although not time-critical, should
not exceed a user-acceptable limit, both in compres-
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Figure 3: Comparison of compression methods relative to
Draco using MSE, Metro and Dame.

Figure 4: Original model (left) and model compressed by
proposed method (right) on 5.77 BPV. The MSE is 151
times higher than the Draco compression at comparable
BPV. The model consists of triangles with extremely vary-
ing sizes and shapes, from large narrow triangles to rela-
tively small, nearly equilateral triangles.

sion and especially in decompression phase. We have
measured the compression and decompression time
for all methods. Unfortunately, it is not possible to
measure purely the processing time, as the process is
usually combined with I/O operations. For this rea-
son, we have measured the overall time of the process,
including the reading and parsing of the input file and
writing the result to the disk, targeting at the same
BPV. For the measurement, we have used a commod-
ity hardware - a notebook with AMD Ryzen 7 5800H,
16 GB of RAM, and an SSD hard drive. Our method
is implemented in .NET 6 as a single-threaded appli-
cation, without any special optimization.

The compression processes for Draco and our im-
plementation exhibit a linear behavior in terms of
number of vertices, while EPC is less predictable
(Figure 5), probably since the process involves solv-
ing a system of linear equations. Due to the simplicity
of the compression algorithm, the weighted parallel
prediction and our proposed modifications are much
faster than Draco, even in the non-optimized devel-
oper version. There is also only a negligible impact of
the proposed modification on the overall performance
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caused by the transformation of the coordinates into
the tangent space. It is also worth noting that Draco
compression exceeds 10 seconds for models with ap-
proximately 200,000 vertices.

While the compression process usually affects
only a limited group of users - the creators, de-
compression affects the user experience of the end
users (Figure 6). The decompression process is faster
than the compression process for all methods. While
Draco and Parallelogram-based method nearly halved
the time, in the case of EPC, the difference is much
smaller. Similarly to the compression process, our im-
plementation is more than 8 times faster than Draco.

6 CONCLUSION

We proposed a modification of the weighted parallel-
ogram compression method based on the transforma-
tion of vertex coordinates into tangential space. The
transformation considerably improves the quality of
compression in terms of objective and subjective met-
rics, while maintaining a simple algorithm. Accord-
ing to our tests, this modification outperforms in terms
of rate-distortion ratio some well-known compression
methods , such as Draco and EPC, for most meshes,
while being considerably faster.
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There are, however, some triangle configurations
that are not suitable for the proposed algorithm. In the
future, we plan to investigate the particular properties
that cause the drop of compression performance of
our algorithm in these cases, and the possible strate-
gies to mitigate this performance loss.
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