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Abstract: We investigate the problem of producing diverse solutions to an image super-resolution problem. From a
probabilistic perspective, this can be done by sampling from the posterior distribution of an inverse problem,
which requires the definition of a prior distribution on the high-resolution images. In this work, we propose to
use a pretrained hierarchical variational autoencoder (HVAE) as a prior. We train a lightweight stochastic en-
coder to encode low-resolution images in the latent space of a pretrained HVAE. At inference, we combine the
low-resolution encoder and the pretrained generative model to super-resolve an image. We demonstrate on the
task of face super-resolution that our method provides an advantageous trade-off between the computational
efficiency of conditional normalizing flows techniques and the sample quality of diffusion based methods.

1 INTRODUCTION

Image super-resolution is the task of generating a
high-resolution (HR) image xxx corresponding to a low-
resolution (LR) observation yyy. A typical approach
for image super-resolution is to train a deep neural
network in a supervised fashion to map a LR im-
age to its HR counterpart (see (Lepcha et al., 2022)
for an extensive review). Despite impressive perfor-
mances, those regression based methods are funda-
mentally limited by their lack of diversity. Indeed,
there might exist many plausible HR solutions asso-
ciated with one LR observation, but regression based
methods only provide one of those solutions.

An alternative approach for image super-
resolution is to sample from the posterior distribution
p(xxx|yyy). Specifically, we can train conditional deep
generative models to fit the posterior p(xxx|yyy). With
the recent advances in deep generative modeling, it
is possible to generate realistic and diverse samples
from the posterior distribution.

Starting from the seminal work of (Lugmayr
et al., 2020), many approaches proposed to train con-
ditional generative models such as conditional nor-
malizing flow or conditional variational autoencoders
in order to model the posterior distribution of the
super-resolution problem. We refer to those methods
as direct methods, as they only require one network
function evaluation (NFE) to generate one sample.

With the recent development of score-based gen-
erative models (also known as denoising diffusion
models) (Ho et al., 2020; Song et al., 2021), poste-
rior sampling methods based on conditional denoising
diffusion models are now able to produce high-quality
samples outperforming previous direct methods (Choi
et al., 2021; Chung et al., 2022; Kawar et al., 2022).
However, denoising diffusion methods are limited by
their computationally expensive sampling process, as
they require numerous network function evaluations
to generate one super-resolved sample. In the follow-
ing, we classify those methods as iterative methods.

In this work, we address the question: Can we get
the best of both worlds between the sampling qual-
ity of iterative methods, and the computationnal effi-
ciency of direct methods? We show that it is indeed
possible to reach this goal with our diverse super-
resolution method CVDVAE (Conditional VDVAE).

Our approach is based on reusing a pretrained hi-
erarchical variational autoencoder (HVAE) (Sønderby
et al., 2016; Kingma et al., 2016). HVAE models are
able to generate high-quality images by relying on an
expressive sequential generative model (Vahdat and
Kautz, 2020; Child, 2021; Hazami et al., 2022). By
associating one latent variable subgroup to each resid-
ual block of a generative network, HVAE models are
able to learn compact high-level representations of the
data, and they can generate new samples efficiently,
with only one evaluation of the generative network.
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Figure 1: Diverse super-resolved samples at different upscaling factors. Our method can generate realistic samples with
diverse attributes (hairs, mouth, eyes. . . ).

The fast sampling time and the expressivity of
HVAE models make them suitable candidates for ef-
ficient posterior sampling. In this work, we exploit
a pretrained VD-VAE model (Child, 2021). In or-
der to repurpose VD-VAE generative model for image
super-resolution, we train a low-resolution encoder
to encode LR images in the latent space of the VD-
VAE model. By combining the LR encoder with the
VD-VAE generative model, we can produce a sample
with only one (autoencoder) network evaluation. By
adopting a stochastic model for the LR encoder, our
method can generate diverse samples from the poste-
rior distribution, as illustrated in Figure 1. We show
that the LR encoder can be trained with reasonable
computational resources by exploiting the VD-VAE
original (HR) encoder to generate labels for training
the LR-encoder, and by sharing weights between the
LR encoder and VD-VAE generative model. We eval-
uate our method on super-resolution of face images,
with upscaling factor ×4 and ×8 and demonstrate that
it reaches sample quality on par with sequential meth-
ods, while being significantly faster (>×500).

The paper is organised as follows. In section 2,
we provide the necessary background on HVAE mod-
els. Then we present in section 3 our super-resolution
method. Experimental results are given in section 4
and we discuss related works in section 5.

2 HIERARCHICAL VAE

Variational Autoencoder. We propose to use a hier-
archical variational autoencoder as a prior model over
high-resolution images. A variational autoencoder is
a deep latent variable model of the form:

pθ(xxx) =
∫

pθ(zzz)pθ(xxx|zzz)dzzz. (1)

where pθ(zzz) defines the prior distribution of the latent
variable zzz and pθ(xxx|zzz) is the decoding distribution.

A VAE also provides an inference model (en-
coder) qφ(zzz|xxx), trained to match the intractable model
posterior pθ(zzz|xxx) (Kingma and Welling, 2013). In
order to define expressive models, both the gener-
ative model pθ(zzz,xxx) and the encoder qφ(zzz|xxx) are
parameterized by neural networks, whose weights are
respectively parameterized with θ and φ.

Hierarchical Generative Model. A hierarchical
VAE is a specific class of VAE where the la-
tent variable zzz is partitioned into L subgroups zzz =
(zzz0,zzz1, · · · ,zzzL−1), and the prior is set to have a hier-
archical structure:

pθ(zzz) = pθ(zzz0,zzz1, · · · ,zzzL−1) (2)

= pθ(zzz0)
L−1

∏
l=1

pθ(zzzl |zzz<l). (3)

In practice, each latent supgroup is a 3-dimensional
tensor zzzl ∈R cl×hl×wl , with increasing resolution h0 ≤
h1 ≤ · ≤ hL−1. Each conditional model in the hierar-
chical prior is set as a Gaussian:{

pθ(zzz0) = N (zzz0;µθ,0,Σθ,0)

pθ(zzzl |zzz<l) = N (zzzl ;µθ,l (zzz<l) ,Σθ,l(zzz<l)) .
(4)

As illustrated in Figure 2, the generative model is
embedded within a ”top-down” generative network.
To generate an image, a low-resolution constant input
tensor is sequentially processed by a serie of top-
down blocks and upsampling layers (Figure 2a). In
each top-down block l (Figure 2b), a latent subgroup
zzzl is sampled according to the statistics µθ,l (zzz<l) and
Σθ,l(zzz<l) computed within the top-down block.

Hierarchical Encoder. The HVAE encoder has the
same hierarchical structure as the generative model:

qφ(zzz|xxx) = qφ(zzz0|xxx)
L

∏
l=1

qφ(zzzl |zzz<l ,xxx), (5)
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with Gaussian parameterization of the conditional
distributions:{

qφ(zzz0|xxx) = N
(
zzz0;µφ,0(xxx),Σφ,0(xxx)

)
qφ(zzzl |zzz<l ,xxx)= N

(
zzzl ;µφ,l (zzz<l ,xxx) ,Σφ,l(zzz<l ,xxx)

)
.

(6)

The HVAE encoder is merged with the generative top-
down network. In each top-down block l, a branch as-
sociated with the encoder uses features from the input
xxx along with features from the previous levels to infer
the encoder statistics at level l (in green in Figure 2b).
The image features are extracted by a ”bottom-up”
network (in green in Figure 2a).

3 SUPER-RESOLUTION HVAE

Problem Formulation. In this section we describe
our super-resolution method based on a pretrained
HVAE model. We assume that the LR image yyy ∈
R3×H

s ×W
s , and its associated HR image xxx ∈ R3×H×W

are related by a linear degradation model:

yyy = (k ∗ xxx) ↓s, (7)

where k is a low-pass filter and (u) ↓s is defined as the
subsampling operation with downsampling factor s.
Our goal is to sample from the posterior distribution
of the inverse problem:

p(xxx|yyy) ∝ p(yyy|xxx)p(xxx). (8)

In (8), the likelihood p(yyy|xxx) can be deduced from
the degradation model (7). On the other hand, the
prior model p(xxx) needs to be specified by the user.
Deep generative models such as GANs, VAE or dif-
fusion models can be used to model the prior on high-
resolution images. In the following, we propose to
parameterize p(xxx) with a hierarchical variational au-
toencoder. Given a pretrained HVAE prior pθ(xxx), the
ideal super-resolution model is:

pθ(xxx|yyy) =
∫

pθ(xxx|yyy,zzz)pθ(zzz|yyy)dzzz, (9)

where probability laws correspond to the con-
ditional of the augmented model pθ(zzz,xxx,yyy) :=
pθ(zzz)pθ(xxx|zzz)p(yyy|xxx). Since we do not have acces to
pθ(xxx|yyy,zzz) and pθ(zzz|yyy), we can not directly sample
from (9). However, we will see in the following part
that we can efficiently approximate this model by
making use of the structure of the HVAE hierarchical
latent representation and of the its pretrained encoder.

Super-resolution Model. It has been observed in
several works that the low-frequency information of
images generated by HVAE model where mostly con-
trolled by the low-resolution latent variable, at the be-
ginning of the hierarchy (Vahdat and Kautz, 2020;

Child, 2021; Havtorn et al., 2021). Hence, for a
large enough number of latent groups k, samples from
pθ(xxx|xxx<k) share the same low-frequency information.
As a consequence, all the samples from pθ(xxx|xxx<k) are
consistent to a LR image yyy (up to a small error).

This motivates us to define the following super-
resolution model:

pSR(xxx|yyy) =
∫

pθ(xxx|zzz<k)qψ(zzz<k|yyy)dzzz, (10)

where qψ(zzz|yyy) is a stochastic low-resolution encoder,
trained to encode the low-resolution latent groups.
By definition of the super-resolution model (10), we
can sample from pSR(xxx|yyy) by sequentially sampling
zzz<k ∼ qψ(zzz<k|yyy) and xxx ∼ pθ(xxx|zzz<k).

Hierarchical Low-Resolution Encoder. We set the
LR encoder to have a hierarchical structure:

qψ(zzz<k|yyy) = qψ(zzz0|yyy)
k

∏
l=1

qψ(zzzl |zzz<l ,yyy), (11)

with Gaussian conditional distributions:{
qψ(zzz0|yyy) = N

(
zzz0;µψ,0(yyy),Σψ,0(yyy)

)
qψ(zzzl |zzz<l ,yyy) = N

(
zzzl ;µψ,l(zzz<l ,yyy),Σψ,l(zzz<l ,yyy)

)
.

(12)
We implement the LR encoder with the same archi-
tecture as VD-VAE original (HR) encoder, but with
a limited number of blocks due to reduced number
of latent variable to be predicted (Figure 2). Only
the parameters of the low-resolution encoder (in red
in Figure 2) are trained, while the shared parameters
(in blue in Figure 2) are set to the value of the
corresponding parameters in the pretrained VD-VAE
generative model, and remain frozen during training.

Training. We keep the weights of the HVAE decoder
pθ(xxx|zzz), so that the only trainable weights of our
super-resolution model (10) are the weights of the LR
encoder ψ. Given a joint training distribution of HR-
LR image pairs pD(xxx,yyy), the LR encoder is trained to
match the available ”high-resolution” HVAE encoder
qφ(zzz<k|xxx) on the associated HR images, by minimiz-
ing the Kullback-Leibler (KL) divergence:

L(ψ) = EpD (xxx,yyy)
[
KL

(
qφ(zzz<k|xxx)||qψ(zzz<k|yyy)

)]
. (13)

The criterion (13) was introduced by (Harvey et al.,
2022), who demonstrated that minimizing (13) is
equivalent to maximizing a lower-bound of the super-
resolution conditional log-likelihood on the training
dataset, and that under additional assumptions on the
pretrained HVAE model, one can reach optimal per-
formance by only training the low-resolution encoder
qψ(zzz<k|yyy). In practice, the KL divergence within the
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Figure 2: Super-resolution model based on a pretrained VD-VAE model. (a) Given a pretrained VD-VAE network, composed
of an encoder bottom-up network (in green), and a top-down network (in black), we train a LR encoder (in red) to encode
low-resolution images in the latent space of VD-VAE. The LR-encoder has the same structure than VD-VAE encoder, with a
bottom-up path that extracts multiscale features, and a top-down path merged with VD-VAE top-down path. (b) In each block
of the top-down path, we add branch for the LR encoder (in red) to infer the statistics of qψ(zzzl |zzz<l ,yyy).

training criterion (13) can be decomposed into a sum
of KL divergence on each latent subgroup:

KL
(
qφ(zzz<k|xxx)||qψ(zzz<k|yyy)

)
= KL

(
qφ(zzz0|xxx)||qψ(zzz0|yyy)

)
+Eqφ(zzz<k|xxx)

[
k

∑
l=1

KL
(
qφ(zzzl |zzz<l ,xxx)||qψ(zzzl |zzz<l ,yyy)

)]
.

(14)

Since each conditional law involved in (14) is Gaus-
sian, each KL term can be computed in closed-form.
In practice the covariance matrices Σφ,l(zzz<l ,xxx) and
Σψ,l(zzz<l ,yyy) are constrained to be diagonal, so that the
KL can be computed efficiently.

4 EXPERIMENTS

4.1 Experimental Settings

Dataset and Upscaling Factors. We test our
super-resolution method CVDVAE on the FFHQ
dataset (Karras et al., 2019), with images of
resolution 256 × 256. We experiment on 2 upscal-
ing factors: ×4 (64 × 64 → 256 × 256) and ×8
(32× 32 → 256× 256). The low resolution images
are initially downscaled by applying an antialiasing
kernel followed by a bicubic interpolation.

Compared Methods. We compare CVDVAE with a
conditional normalizing flow (HCFlow) (Liang et al.,
2021), a conditional diffusion model (SR3) (Saharia
et al., 2021), and a method that add guidance to
a non-conditional diffusion model at inference

(DPS) (Chung et al., 2022). We retrain HCFlow on
FFHQ256 using the official implementation. For
DPS, we also reuse the official implementation with
the available pretrained model, which was trained
on FFHQ. For SR3, since no official implementation
is available, we used an open-source (non-official)
implementation (Jiang, 2022), and we trained a
model on FFHQ. When training SR3, we found that a
color shift (Deck and Bischoff, 2023) was responsible
for important reconstruction errors. To compensate
this weakness of the method, we project the super-
resolved image on the space of consistent solutions at
inference as proposed in (Bahat and Michaeli, 2020).
For fair comparison, we retrained both HCFlow and
SR3 with the same computational budget as for our
low-resolution encoder. For HCFlow and CVDVAE,
we set the temperature of the latent variables at
τ = 0.8 during sampling.

Evaluating a Diverse SR Method. Due to the
ill-posedness of the problem, evaluating a diverse
super-resolution model based solely on the distortion
to the ground truth is not satisfactory. Indeed, there
exist many solutions that are both realistic and
consistent with the LR input while being far from the
ground truth. Thus, in order to evaluate the super-
resolution model, we provide a series of metrics that
evaluate different expected characteristics of a diverse
super-resolution model, such as the consistency of the
solution, the diversity of the samples and the general
visual quality. It should be noted that those metrics
are not necessarily correlated: a model could generate
diverse solutions, that are not consistent or realistic,
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or, on the opposite, it could provide solutions that
are realistic and consistent but with a low diversity.
Thus, to evaluate a diverse super-resolution model, it
is necessary to consider these three different aspects
together: diversity, consistency and visual quality.

Evaluation Metrics. The general quality of the
super-resolved images is evaluated using the blind
Image quality metric BRISQUE (Mittal et al., 2012).
Consistency with the LR input is measured via peak
Signal-to-Noise Ratio (PSNR, denoted as LR-PSNR
in Tables 1 and 2). Furthermore, to evaluate the di-
versity of the super-resolution, we compute the Aver-
age Pairwise distance between different samples com-
ing from the same LR input (denoted as APD in
Tables 1 and 2), both at the pixel level, using the
mean square error (MSE) between samples (consid-
ering pixel intensity value between 0 and 1), and at
a perceptual level using the LPIPS similarity crite-
ria (Zhang et al., 2018). For one LR input, the av-
erage pairwise distance is computed as the average
distance between all the possible pairs of images in a
set of 5 super-resolved samples. The reported APD
in Tables 1 and 2 corresponds to the mean value of
the single image APD over 500 LR inputs in the test
set. We measure the distortion of the super-resolved
samples with respect to the ground truth HR image in
terms of PSNR, structural similarity (SSIM) (Wang
et al., 2004) and LPIPS, as it is common in the super-
resolution literature. All numbers reported corre-
spond to the metric mean value on a subset of 1000
images from FFHQ256 test set.

4.2 Results

Quantitative Evaluation. The quantitative results
presented in Table 1 indicate that CVDVAE provides
a good trade-off between the different evaluated met-
rics. Indeed, it obtains the second best results in terms
of distortion and visual quality, and the second or
third best results in terms of diversity. CVDVAE is
also one of the fastest methods, along with HCFlow.
HCFlow provides the best results for distortion met-
rics as it explicitly penalizes bad reconstruction in its
training loss. Similar to CVDVAE, its application
is fast, as it requires only one network evaluation to
produce a super-resolved image. However, HCFlow
lacks high-level diversity (as measured by the LPIPS
average pairwise distance), compared with the con-
current methods. We postulate that this lack of diver-
sity is due to the relative lack of expressiveness of nor-
malizing flows architecture compared to the convolu-
tional architectures used by diffusion and HVAE mod-
els. Our method, along with DPS, produces the best

LR Ours

HCFlow

DPS

SR3

Figure 3: Samples from different diverse SR methods (×4).

results in terms of visual quality as measured by the
BRISQUE metric, illustrating the benefit of using a
pretrained unconditional generative model. The com-
putational cost of DPS is nevertheless significantly
higher than the ones of CVDVAE and HCFlow, as
DPS requires 1000 steps of network evaluations (and
backpropagation through the denoiser) to produce one
super-resolved sample. Finally, SR3 performances
are inferior to the compared methods. We used the
same computational budget (48 hours on 4 GPUs)
for training the SR3 models than our CVDVAE and
HCFlow. This computational budget is significantly
lower than the one reported in the SR3 paper (Saharia
et al., 2021) (≈ 4 days on 64 TPUv3 chip), and we
expect that training the SR3 model for more epochs
would improve its performance. Like DPS, SR3 is
slower than our method as it requires 2000 network
evaluations to produce one super-resolved image; al-
though, unlike DPS, SR3 does not require to back-
propagate through the score-network.

Qualitative Evaluation. Visual comparisons of
super-resolved samples from the different evaluated
methods are provided in Figures 3 and 4. CVDVAE is
able to produce diverse textures as illustrated by the
facial hair variation in Figure 3 or the hair variation
in 4. CVDVAE appears to produce super-resolved
samples with higher semantic diversity, in terms of
textures (hairs, skin), in line with the higher percep-
tual diversity measured in the quantitative evaluation.

Temperature Control. As for the unconditionnal
HVAE models, CVDVAE offers the possibility to
control the conditional generation via the tempera-
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Table 1: Comparison of diverse SR methods face super-resolution. Best result is in bold, second best is underlined.
Distortion Visual Quality Consistency Diversity (APD)

model PSNR↑ SSIM↑ LPIPS ↓ BRISQUE↓ LR-PSNR ↑ MSE (×104) ↑ LPIPS (×103) ↑ time (s)

×4

Bicubic 27.49 0.84 0.29 61.79 36.99 0 0
HCFlow 31.74 0.89 0.13 37.21 52.81 161.8 62.6 0.11
CVDVAE (ours) 30.24 0.85 0.16 32.30 75.20 88.8 123.0 0.14
SR3 28.87 0.73 0.25 37.17 63.47 20.06 209.2 46
DPS 28.50 0.81 0.20 32.21 38.96 10.4 150.0 103

×8

Bicubic 23.50 0.70 0.45 78.42 33.61 0 0
HCFlow 26.72 0.76 0.24 36.25 51.13 575.5 155.3 0.17
Ours 25.47 0.71 0.27 32.26 70.15 248.2 236.4 0.13
SR3 26.26 0.70 0.29 34.78 68.6 19.95 234.3 62
DPS 24.38 0.68 0.28 30.09 36.97 35.68 247.4 103

ture of the latent variable distributions (Vahdat and
Kautz, 2020; Child, 2021). The temperature parame-
ter τ controls the variance of the Gaussian latent dis-
tributions. In order to assess the behavior of the model
on both low and high temperature regime, we evaluate
our method on 2 temperatures (τ ∈ {0.1,0.8}). Quan-
titative results in Table 2 show that reducing the tem-
perature leads to a solution closer to the ground truth
in terms of low-levels distortion metrics (PSNR and
the SSIM), while using a higher temperature helps
to improve the perceptual similarity (LPIPS) with the
ground-truth, as well as the general perceptual quality
of the generated HR images and the diversity of the
samples. On Figure 5, we display CVDVAE’s sam-
ples at different temperatures τ. The sampling tem-
perature correlates with the perceptual smoothness of
the super-resolved sample, a higher sampling temper-
ature inducing images with sharper details.

5 RELATED WORKS

Super-Resolution with Pre-Trained Generative
Models A large number of methods were designed
to solve imaging inverse problems such as im-
age super-resolution by using pretrained deep gen-
erative models (DGM) as a prior. This includes
methods relying on generative adversarial networks
(GAN) (Menon et al., 2020; Marinescu et al., 2020;
Pan et al., 2021; Daras et al., 2021; Daras et al.,
2022; Poirier-Ginter and Lalonde, 2023), variational
autoencoders (Mattei and Frellsen, 2018; González
et al., 2022; Prost et al., 2023) and denoising diffu-
sion models (Choi et al., 2021; Chung et al., 2022;
Kawar et al., 2022; Song et al., 2023). However,
those approaches are computationally expensive as
they require an iterative sampling or optimization pro-
cedure which require many network evaluation. On
the other hand, our approach enables fast inference
(one network evaluation), at the cost of reduced flex-
ibility (due to the need of training a task-specific en-
coder). The idea of training an encoder to map a de-
graded image in the latent space of a generative net-

LR Ours

HCFlow

DPS

SR3

Figure 4: Samples from different diverse SR methods (×8.)

work was previously exploited in the context of im-
age inpainting with HVAE (Harvey et al., 2022), and
super-resolution with a GAN prior (Chan et al., 2021;
Richardson et al., 2021).

Diverse Super-Resolution with Conditional Gen-
erative Models. Although it is possible to sample
from the posterior p(xxx|yyy) by using an unconditionnal
deep generative models, those methods are restricted
to specific dataset for which pretrained models are
available. On generic natural images, the state of the
art methods rely on conditional generative models, di-
rectly trained to model the posterior p(xxx|yyy) (Lugmayr
et al., 2021; Lugmayr et al., 2022). Those methods in-
clude conditional normalizing flows (Lugmayr et al.,
2020; Liang et al., 2021), conditional GAN (Bahat
and Michaeli, 2020), conditional VAE (Gatopoulos
et al., 2020; Zhou et al., 2021; Chira et al., 2022)
and conditional denoising diffusion models (Li et al.,
2022; Saharia et al., 2021).
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Table 2: Effect of the sampling temperature τ on CVDVAE super-resolution results.
Distortion Visual Quality Consistency Diversity (APD)

τ PSNR↑ SSIM↑ LPIPS ↓ BRISQUE↓ LR-PSNR ↑ MSE (×104) ↑ LPIPS (×103) ↑
×4 0.1 30.75 0.86 0.15 36.47 75.70 64.6 104.5

0.8 30.24 0.85 0.16 32.3 75.20 88.8 123.0

×8 0.1 26.27 0.75 0.30 50.34 71.63 140.4 179.0
0.8 25.47 0.708 0.28 32.26 70.15 248.2 236.4

LR τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 1
Figure 5: Effect of the sampling temperature τ on the super-resolved result. Increasing the temperature yields image with
more high-frequency details.

6 CONCLUSIONS

In this work we presented CVDVAE, a method that
realizes an efficient sampling from the posterior of
a super-resolution problem, by combining a low-
resolution image encoder with a pretrained VD-VAE
generative model. CVDVAE showed promising re-
sults on face super-resolution, on par with state-of-
the-art diverse SR methods, providing semantically
diverse and high-quality samples. Our results illus-
trate the ability of conditional hierarchical generative
models to perform complex image-to-image tasks.

Our results are in line with many works that illus-
trates the benefits of using HVAE models for down-
stream applications (Havtorn et al., 2021; Agarwal
et al., 2023; Prost et al., 2023). One drawback of
our approach is its limitation to dataset for which pre-
trained HVAE models are available, such as human
faces or low-resolution ImageNet. However, we pos-
tulate that HVAE models have not yet reached their
limits, and, by adapting design features from current
SOTA deep generative models (Rombach et al., 2022;
Kang et al., 2023) (architectural improvement, longer
training, larger dataset), HVAE models could signif-
icantly improve their performance and expreessive-
ness, and generalize on much diverse datasets.
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