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Abstract: Federated Learning has gained significant attention as a data protecting paradigm for decentralized, client-
side learning in the era of interconnected, sensor-equipped edge devices. However, practical applications of
Federated Learning face three major challenges: First, the expensive data labeling process required for target
adaptation involves human participation. Second, the data collection process on client devices suffers from
covariate shift due to environmental impact on attached sensors, leading to a discrepancy between source
and target samples. Third, in resource-limited environments, both continuous or regular model updates are
often infeasible due to limited data transmission capabilities or technical constraints on channel availability
and energy efficiency. To address these challenges, we propose FedAcross, an efficient and scalable Feder-
ated Learning framework designed specifically for real-world client adaptation in industrial environments. It
is based on a pre-trained source model that includes a deep backbone, an adaptation module, and a classifier
running on a powerful server. By freezing the backbone and the classifier during client adaptation on resource-
constrained devices, we enable the domain adaptive linear layer to solely handle target domain adaptation and
minimize the overall computational overhead. Our extensive experimental results validate the effectiveness of
FedAcross in achieving competitive adaptation on low-end client devices with limited target samples, effec-
tively addressing the challenge of domain shift. Our framework effectively handles sporadic model updates
within resource-limited environments, ensuring practical and seamless deployment.

1 INTRODUCTION

Traditional machine learning requires a centralized
data center to store and aggregate collected training
data as obtained from local devices, such as mobile
phones, drones or thin clients. This approach has
proven to be impractical for real-world application ar-
eas, as it requires considerable effort to collect and
label data from different sources in compliance with
data protection regulations.

In (McMahan et al., 2017) Federated Learning
(FL) was introduced as a means of mitigating the se-
curity risks and costs associated with the implementa-
tion of traditional models. The proposed architecture
enables multiple edge devices to jointly learn a global
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machine learning model under the administration of a
central server, while local data stay with the client.
Recent years have witnessed remarkable advance-
ments in hardware and software technologies, with
notable growth observed in the proliferation and inter-
connection of sensor-equipped edge devices (Siqueira
and Davis, 2021), nowadays frequently employed in
industrial production environments. This develop-
ment, coupled with the increasing use of 5G-capable
end devices, has significantly boosted the attractive-
ness of FL for practical industry applications and re-
search purposes (Hard et al., 2018; Yang et al., 2018;
Yang et al., 2019; Yang et al., 2020).

A popular real-world use case, where the typ-
ical FL approach is not directly applicable, is the
classification of waste items (Laier and Laier, 2023;
Bashkirova et al., 2023) by resource-constrained
client devices equipped with visual sensors located
at different waste sorting facilities (see conceptual
design shown in Figure 1). In times of constantly
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Figure 1: Challenges (left) and proposed approach (right) for federated client adaptation.

increasing amounts of garbage, waste sorting is a
crucial challenge in many communities and intelli-
gent sensor systems are a key element in the differ-
ent strategies to address the problem (Lange, 2021).
In this scenario, each client’s local model is trained
using isolated processing units, while data is gener-
ated locally and remains decentralized. Cross-device
federated learning (Kairouz et al., 2021) tackles the
aforementioned challenges of collaborative learning
across multiple machines with limited data collec-
tion, expensive labeling and restricted sharing. Fur-
thermore, there are several external drivers influenc-
ing the availability and quality of relevant sensor in-
formation. Considering e. g. visual sensors, domain
shifts (see Figure 1, left) in captured images may oc-
cur due to variations in lightning or environmental
conditions that affect brightness, contrast, color tem-
perature, perspective, and noise (Koh et al., 2021). In
general, the challenge of adjusting a system trained
in the source domain to perform better in the tar-
get domain is referred to as source-to-target adapta-
tion (Raab et al., 2022). Considering the limited hard-
ware resources of clients, such as computing power,
transmission capacity, and memory consumption, it is
essential to design a training algorithm that minimizes
client-side load while maintaining accurate model
training. Consequently, this work focuses on integrat-
ing an established pre-train and fine-tune strategy into
FL, aiming to transform domain-specific features into
a task-invariant metric space to mitigate the effects of
domain shift under resource constrains.

To address transmission costs and privacy restric-
tions (see Section 3.5 for details) in cross-device FL,
we provide a practical solution not considered by
now in FL across multiple domains based on proto-
types (Snell et al., 2017), reducing data transfer over-
head and minimizing computational costs for client
device inference: Local prototypes are computed as
class-wise averaged feature vectors for memory effi-
ciency and client-side label prediction is carried out
by comparing the distances between projected inputs
and class prototypes for CPU usage optimization. As

detailed below, this article presents a novel FL frame-
work FedAcross, addressing real-world challenges of
data sparsity on isolated clients as well as domain
shift occurring across clients deployed in unrestrained
industrial settings.
Main Contributions.
1. A computation-efficient FL approach is proposed

to tackle target adaptation issues with limited
labeled samples and distributional shifts across
siloed devices in real-world applications. The out-
lined concept aims to improve per-device local
models on downstream classification tasks while
iteratively optimizing global model parameters to
enhance bootstrapping of new FL clients.

2. We provide a ready-to-deploy, efficient and highly
scalable, end-to-end FL solution based on Py-
torch Lightning (Falcon and team, 2019) and
Flower (Beutel et al., 2020), available on Github1.

3. We thoroughly assess our method on a waste item
classification scenario using domain adaptation
benchmark data sets mirroring production con-
ditions and observed competitive adaptation per-
formance to state-of-the-art methods. This sce-
nario is exceptionally challenging and covers a
broad spectrum of real-life particularities in cross-
device FL. Notably, our approach is not limited to
waste item classification but can be effectively ap-
plied to various other use cases2, highlighting its
versatility and potential.

2 RELATED WORK

Previous studies have extensively examined the limi-
tations of device-based FL, in which data remains iso-
lated within individual entities or organizations. Re-
searchers have conducted investigations to address the

1https://github.com/cairo-thws/FedAcross
2Supply chain optimization, smart grid energy manage-

ment, epidemic and disease surveillance
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challenges associated with this siloed approach, in-
cluding data privacy concerns, communication over-
head, and model performance degradation (Zhao
et al., 2022). However, the existing approaches still
have certain limitations in efficiently utilizing the in-
formation present in siloed data while maintaining
privacy. Achieving efficient information transfer and
compact encoding is crucial to overcome the barri-
ers of crossing device borders with minimal transmis-
sion costs and achieving robust generalization capa-
bilities (Zhao et al., 2022).This is getting even more
challenging in realistic scenarios, where often only
weakly labeled data are available.

Techniques addressing centralized scenarios have
been proposed using few-shot learning (FSL) to ef-
fectively enable models to learn from limited labeled
data (Wang et al., 2020; Song et al., 2023; Hu et al.,
2022). These approaches usually rely on fine-tuning
strategies to improve the model’s ability to gener-
alise and adapt to new tasks, even when only a few
labeled training samples are available. Two main
training paradigms have emerged: learning by trans-
fer (Dhillon et al., 2020), where a deep neural net-
work is trained on a source data set and subsequently
fine-tuned on a downstream few-shot learning task,
and meta-learning approaches see e.g. (Snell et al.,
2017), where incremental parameter updates encode
task-specific background information in the model
optimization process.

Additionally, the siloed setting and common phe-
nomena of error-prone measurement devices intro-
duce various effects of cross-domain shifts. Cross-
domain learning specifically focuses on transferring
knowledge from a source domain to a target domain,
even when the data’s characteristics or distribution
significantly differ. Extensive research in this area has
explored domain adaptation (DA) techniques such as
domain alignment, feature mapping and instance re-
weighting to improve model performance when ap-
plied to unseen target domains (Raab et al., 2022)

Moreover, test-time adaptation methods (Nado
et al., 2021; Zhang et al., 2022) require only few
labeled data points per class from a target domain
to optimize domain-specific adaptation parameters,
thereby providing an effective blueprint to compose
our model architecture.

Cross-domain few-shot learning (CD-FSL) deals
with a centralized combination of the aforementioned
challenges, namely the effective and fast learning of
relevant information with only a few samples while
coping with the distributional shift between source
and target data. Recent studies on CD-FSL (Guo
et al., 2020) have shown that transfer learning ap-
proaches outperform state-of-the-art meta-learning

methods on FSL benchmarks over multiple domains.
Therefore, transfer learning represents a reasonable
solution to not only avoid computationally intensive
gradient update calculations for client models running
on edge devices, but also to outsource the heavy lift-
ing of training a source model on a large data set to
a well-equipped server instance. With FedProto (Tan
et al., 2022), which is a prototype-based aggregation
method for heterogeneous clients and FPL (Huang
et al., 2023), which constructs server-side cluster pro-
totypes, prototypes have already been used in FL con-
texts; however, it does not address client-side resource
limitations and requires many labeled data. Our ap-
proach combines ideas from different fields address-
ing the mentioned issues to provide a practical solu-
tion.

3 METHODOLOGY

In Section 3.2 we provide the main prerequisites,
followed by an overview of the server model archi-
tecture. An end-to-end source model training pro-
cedure as well as some theoretical background is
provided in Section 3.1. Section 3.3 examines the
on-client model adaptation process under the con-
straints of minimal availability of labeled samples
and domain shift. Subsequently we introduce a
computation-efficient, prototype-based client infer-
ence pipeline in Section 3.4 followed by the pseudo-
code for FedAcross and prototype upstreaming op-
tions in Section 3.5.

3.1 Server Model Training

The proposed server model consists of four main
components as visualized in Figure 2. Throughout
this chapter, we describe in detail each of these com-
ponents and deliver a justification of the respective de-
sign choice in regards to the proclaimed challenges.
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3.2 Prerequisites

We consider a publicly available, labeled source data
set DS = {XS,YS} = {xl ,yl}N

l=1
i.i.d.∼ pS(XS,YS) in the

source domain S distributed by pS. For each client
i we have a target data set DTi

i.i.d.∼ {xl ,yl}ki
l=1

i.i.d.∼
pTi(XTi ,YTi) in the target domain Ti. Without loss of
generality, we assume the amount of labeled sam-
ples per class k = ki = {0,3,5,10} for client i. Sam-
ples are given as xl ∈ Rd , d as number of features
and yl ∈ Y , Y as a discrete label space, common for
source and target domain, |Y | = L. The distributions
pS(XS,YS) ̸= pTi(XTi ,YTi) are subject to domain shift.
Similar as xl , we introduce class-wise prototypes ω(n)

for the different source and target domains, where n is
a class index in Y . A central server handles the bulk
of model learning, while the training data is stored
in separate silos at different clients with limited com-
munication and processing power. The objective is to
train a classifier model that can generalize to related
target domains (see ”DomainA” and ”DomainB” in
Figure 1 as an example for source and target domain
differences). With f (φ) being a feature extractor pa-
rameterized by φ and A(ψ) an adaptation module pa-
rameterized by ψ. Eventually a classifier g(ν) is gen-
erated, parameterized by ν. The approach is appli-
cable to various tasks, although we assume the fea-
ture space is related to image processing. Given a FL
setup as seen in Figure 1, a computationally power-
ful server instance can fully access the source domain
data set DS. Additionally, each client i participating in
the distributed learning process has exclusive access
to its target domain data set DTi . To reflect real-world
conditions in the modeling process, the following as-
sumptions are also made:

• The number of annotated samples per class in the
target domain data set DTi is fixed by k. The k-
shot support set of client i is then denoted with
Dspt

Ti
⊂ DTi , resulting in input-output pairs within

each observed data set being equally distributed.
In production, operators collect and annotate only
k samples for local model fine-tuning.

• The number of classes used for local fine-tuning
can be limited to n for each client separately, giv-
ing the client operator the option to individually
select a subset of available classes to meet their
needs.

In the following paragraphs we propose a model ar-
chitecture that adheres to the above constraints and
addresses the challenges presented from beginning to
end. A summary including the most important nota-
tion used in this work can be found in Table 1.

The transformation module T is the first compo-

Table 1: Notation Summary.

Notation Description
DS source domain data set on server S
DTi target domain data set on client i
Dspt

Ti
k-shot support set on client i, Dspt

Ti
⊂ DTi

N nr. of observed classes, n = 1, ...,N
K nr. of labeled samples per class, k = 0, ...,K
f (φ) feature extractor f parameterized by φ

A(ψ) adaptation module A parameterized by ψ

g(ν) classifier g parameterized by ν

ω
(n)
i prototype of class n on client i

nent of the server model. It maps the input xS taken
from the source domain data set DS onto the output x̃S
by applying a single augmentation chain that deploys
concatenated affine transformations to alter model in-
put data samples using x̃S← T (xS). Affine data aug-
mentation is a widely used and valid tool to avoid
overfitting in the context of image classification us-
ing deep learning models (Perez and Wang, 2017).
Further studies (Kim et al., 2022) revealed these data
augmentation techniques are also beneficial for CD-
FSL to increase the data set size as well as to improve
the training procedure on the transfer learning down-
stream task on the target data set. Since the server
model is trained on the entire source data set DS, we
follow their base augmentation method for full fine-
tuning scenarios, where the entire network parameters
are refreshed, and deploy horizontal flipping, random
resized cropping and color jittering into the pipeline
of T .

The feature extractor f , parameterized by φS, is
the second model component that retrieves relevant
features from the transformed input data x̃S and pro-
duces output data

◦
xS, with f (x̃S) 7→

◦
xS,
◦
xS ∈ Rm,m≪

d. As a compromise between the network depth re-
quired for the image classification problem and the
constraint of keeping the run-time resource usage as
low as possible for client endpoints in the fine-tuning
stage later on, a pre-trained ResNet-34 (He et al.,
2016) backbone with about 22 million parameters is
employed on server side.

Following the feature extractor f , the next com-
ponent of the source model is the adaptation module
A parameterized by ψS. This is the core of our con-
tribution to this work being built upon the concept of
task-specific adapters (Li et al., 2022) and universal
templates for few-shot learning (Triantafillou et al.,
2021): a domain-adaptive linear layer allocates a ded-
icated set of conditional batch normalization parame-
ters and linear layer weights for the source domain
pre-training and each downstream target fine-tuning
task, rendering the adaptation module A being fully
responsible for DA (Chang et al., 2019). Formally,
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the server-side adaptation module is defined as

A(ψ) = A(µ,σ,γ,β,W,b;
◦
xS)

=
(W
◦
xS +b)−µ

σ
γ+β

(1)

with
◦
xS denoting the output of the feature extrac-

tor, {µ,σ} denoting the batch norm statistics, {γ,β}
are the batch norm parameters and {W,b}, W ∈
Rm×m, b ∈ R are the weights and bias parameters of
the linear layer, respectively. Parameter simplifica-
tions are possible by taking dependencies into ac-
count. In the server model, the classification head
g is realized by a fully connected layer that receives
the output of the adaptation module and projects that
output to a specific set of labels. Following the
definition of all essential components of the source
model, the overall decision function is expressed as
F (φS,ψS,νS) = g(νS) ◦A(ψS) ◦ f (φS). The training
objective for our server-side classification task is de-
fined as

argmin
φS,ψS,νS

LCE(F (φS,ψS,νS; x̃S),yS) (2)

where LCE is the cross entropy loss regularized by
label smoothing (Müller et al., 2019) to further en-
courage robust output features and yS the ground-truth
label associated with x̃S. All optimizations are done
with stochastic gradient descent + momentum until
convergence.

Overall, server pre-training on the source domain
data set DS is intended to learn and refine a set of
features that are both discriminatory and transferable,
thereby mitigating the difference between source and
target domains. This results in the adapted parameters
of the server model being used as initial parameters
for client devices joining the FL process. Technically,
the parameter transmission can be performed in two
ways:

• On Demand. Upon joining the FL process for
the first time, the central server transmits model
parameters to the client. The disadvantage of this
method is the high communication costs associ-
ated with the initial transfer of all parameters, de-
spite it being a flexible solution.

• Pre-Configured. Upon installation, the client in-
cludes a pre-trained model parameter configura-
tion, thereby eliminating the need to update the
weights at the start and reducing the amount of
communication involved.

Further, low-end client devices join the FL process of
the central server step by step and follow the adapta-
tion as described in Section 3.3.

3.3 Client Adaptation

For each client the respective client model is designed
from the ground up with all aforementioned limita-
tions in mind. As shown in Figure 2, the client model
implements the same training pipeline as the source
model in order to ensure maximum parameter reuse.
After applying the pre-trained weights to the feature
extractor fi, the adaptation module Ai, and the clas-
sifier gi, the parameter sets of the feature extractor
and the classifier are frozen, resulting in these com-
ponents being fixed during training. This strategy is
beneficial in many ways: disabling the backpropaga-
tion of error especially through the deep feature ex-
tractor, thus avoiding computationally expensive gra-
dient calculations of the corresponding weights, low-
ers the hardware requirements for the client model
significantly. Furthermore, the network training is op-
timized to achieve a convergent solution at an accel-
erated pace while maintaining stability. Lastly, exclu-
sive fine-tuning of the parameters of the adaptation
module contributes to the concept of keeping domain-
specific information in a single, purpose-built model
component.

The adaptation of client i is conducted using a
reduced k-shot target support set Dspt

Ti
⊂ DTi , where

k = {3,5,10} denotes the number annotated samples
per class, reflecting data scarcity in the target domain.
We further discuss and evaluate the selection of k in
Section 4. The training objective for the fine-tuning
task of client i is defined as

argmin
ψi

LCE(F (ψi; x̃l),yl) (3)

with F ( ·) being the client decision function parame-
terized with ψi, x̃l the augmented data sample drawn
from the target domain data set Dspt

Ti
, and the corre-

sponding ground-truth label yl , respectively.
In the next step (see Figure 2), target prototypes

are calculated in the same manner as class prototypes
in ProtoNet (Snell et al., 2017) and FedProto (Tan
et al., 2022), but in FedAcross with a particular fine-
tuning strategy. Our choice of the prototypical repre-
sentation is based on its high interpretability, simplic-
ity of computation, and memory efficiency. There-
fore, the prototype to model the n-th class on client i
is denoted as:

ω
(n)
i =

1
|Dspt

Ti
,n| ∑

(xl ,yl)∈Dspt
Ti

τi(x̃l) (4)

where τi( ·) defines the embedding function over the
client-side feature extractor and adaptation module
with τi(x̃l) = Ai( fi(x̃l)). The output set of the client
adaptation is a collection of prototypes tailored to the
target data set.
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3.4 Client Inference

Inference on a client device is straightforward: The
entire embedding pipeline, including feature extractor
fi and adaptation module Ai, is upcycled to project the
unlabeled, transformed sample x̃l , observed on client
device i, to generate the corresponding query proto-
type as illustrated in Figure 33. The embedded query
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vector is then fed into the Distance Metric Module for
computation of the pairwise L2 distance between the
query vector and the pre-computed target prototypes.
The query sample is assigned to the class belonging
to the nearest target prototype denoted as

ŷl = argmin
n

∥∥∥τi(x̃l)−ω
(n)
i

∥∥∥
2

(5)

where ŷl is the predicted label of sample x̃l observed
on client i.

3.5 Client Prototype Upstreaming

Clients can not only benefit from the FL cycle, but
also pledge to contribute to it through sharing their
locally refined knowledge without risking the expo-
sure of sensitive information. We argue that access
to raw client data points is restraint in three ways:
First, in contrast to traditional FL our approach does
not rely on interchanging model gradients, thus avoid-
ing the threat of input data reconstruction from inter-
cepted model gradients. Second, target prototypes re-
side at the mean of their respective class in the em-
bedding space, restricted to only leak information in
the same way that mean value statistics leak informa-
tion (Brinkrolf et al., 2019). Third, even in case an
adversary manages to reconstruct the feature vector
of a single data point and additionally gains access to
the fine-tuned client model, the resembling of a raw
client data point encoded by a deep backbone is con-
sidered to be not a practically feasible task.

Prototype Upstreaming enables client devices to
send their generated target prototypes and adapta-
tion module parameters back to the server, minimiz-
ing data transfer whilst addressing bandwidth con-
straints and transmission latency. The prototypes are a

3We show one of the X-ray images from the WeSort.AI
waste detection scenario. The rechargeable battery of a cell
phone has to be detected.

Algorithm 1: FedAcross.

highly compact injective encoding of the former train-
ing data. Similarly to how clients generate target pro-
totypes, the server can produce source prototypes by
applying Equation (4) on the source data set DS after
pre-training the source model. Compared with target
prototypes, these prototypes are more robust to out-
liers, yet they are also more specialized to the source
data set. To compensate for this shortcoming, there
are a variety of methods to enrich source prototypes
with fine-tuned prototypes received from client de-
vices, e.g. by applying an appropriate fusion strat-
egy as described in (Tan et al., 2022). For enhanced
bootstrapping of new clients in the FL cycle, the ini-
tial weights of the adaptation module A can be re-
fined by processing the fine-tuned adaptation parame-
ters received from previous clients. FedAvg (McMa-
han et al., 2017) is one of the best known approaches
to combine model parameters within a FL context,
where weights are collected from remote devices and
averaged on a central hub. This method can be flaw-
lessly integrated into our client-server setup. The
pseudo-code for FedAcross is given in Algorithm 1.
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4 EXPERIMENTS

In this section, we explain the experiments of our ap-
proach replicating a garbage classification scenario4.

4.1 Implementation Setup

All experiments are conducted to reflect the real-
world challenges induces by domain shift over client
observations, shortage of annotations on target sam-
ples and additional restrictions imposed by the FL en-
vironment. For each experiment, the feature extractor
of the server instance is first initialized with a ResNet-
34 or ResNet-50 architecture using corresponding
weights from pre-training on ImageNet (Russakovsky
et al., 2015), respectively. Additionally, the weight
parameters of the adaptation module and the classi-
fier’s linear layers are initialized with random values
from a normal distribution. The batch normalization
layer’s weights, on the other hand, are initialized us-
ing the Xavier normal initialization method (Glorot
and Bengio, 2010). The main objective of the server
pre-training is the optimization of the server model to
recognize source domain-specific classes by minimiz-
ing the cross-entropy loss from Equation (2) on the
full source data set DS. Following (Guo et al., 2020)
for a pre-training configuration in conjunction with
few-shot learning downstream tasks, an SGD opti-
mizer with initial learning rate of 0.01, momentum of
0.9 and weight decay of 0.001 is deployed. The learn-
ing rate is steadily reduced by learning rate schedul-
ing. Server training runs 300 epochs, processing ran-
domly shuffled mini-batches of size 128 per epoch,
with optional early stopping on convergence. The
server-side transformation module follows the recom-
mendation from (Kim et al., 2022) by applying hor-
izontal flipping, random resized cropping and color
jittering to augment the input data. Following the pre-
training step, the Flower-based server opens a gRPC
network connection and listens for clients to join the
FL round.

Fine-tuning starts by booting up client instances
signaling their availability to the server with a pre-
configured parameter set taken from the pre-training
stage. Moreover, to further replicate the scarcity of
labeled target data, each client i is restricted to only
access its corresponding k-shot support set Dspt

Ti
dur-

ing training, where each support set is randomly gen-
erated from the respective domain of the DA data set
under inspection. The objective of the client train-
ing is to fine-tune the client model by minimizing the

4The original x-ray and multi-spectral image data could
not be made available for copyright reasons, but the data in
the experiments are sufficiently similar.

cross-entropy loss from Equation (3). The training
setup for clients and server is equal, except that the
client has a learning rate set to 0.1 and the mini-batch
size is set to 32. For simulation purposes, the number
of training epochs is set to 200 for one federated round
since clients can access all support samples straight
away. In real world scenarios, the training epochs
can be split and distributed over the number of fed-
erated rounds. On completion of the fine-tuning pro-
cess, the client creates the target prototypes based on
Equation (4). Test accuracy is reported by evaluating
each client individually using mean-centroid classifi-
cation on its respective hold-back test set and average
classification accuracy over five runs.

4.2 Model Evaluation

In order to adequately benchmark our model, we first
evaluate our method against approaches of source-
free unsupervised DA as set up in (Zhang et al., 2022),
focusing on single-domain performances. We chose
the official Office-31 (Saenko et al., 2010) and Of-
ficeHome (Venkateswara et al., 2017) data sets to be
the most suitable fit for evaluation purposes, since the
contained domains are based on pictures taken from
real-world objects with visual differences in terms of
lighting conditions, viewpoints and backgrounds. A
total of 31 object classes with 4110 images are present
in the Office-31 data set spread over three domains:
Amazon (A), DSLR (D) and Webcam (W). The Of-
ficeHome data set used in the second experiment in-
cludes 15500 images and 65 object classes divided
into four domains: Art (A), Clipart (C), Product (P)
and Real World (RW). For both experiments, we ini-
tially select a source domain (e.g. DS = A sets do-
main A as source), pre-train the server model on it
and copy the model to fine-tune it on the remaining
domains, with A→W and A→ D exemplifiying the
mean-centroid classification task on the test set of the
target domains W and D, respectively. The perfor-
mance of FedAcross is evaluated using a ResNet-50
feature extractor, since all competitive methods uti-
lize the latter. First, we compare our approach with
source-free DA methods that permit access to the full
target data set for fine-tuning: SHOT (Liang et al.,
2020), SFDA (Kim et al., 2021) and SDAA (Kurmi
et al., 2021). We also compare our approach to
recent state-of-the-art few-shot adaptation methods
FLUTE (Triantafillou et al., 2021), which develops a
universal template based on multiple source data sets,
and LCCS (Zhang et al., 2022) that adapts batch nor-
malization statistics on target samples.

The experimental outcome on Office31 (Table 2)
shows that FedAcross delivers on par adaptation re-
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Table 2: Results5 with ResNet-50 baseline, centralized
source-free DA and few-shot transfer learning methods on
Office-31. ”→” indicates a domain change.

Method k Office-31
DS = A DS = W DS = D

A→W A→ D W→ A W→ D D→ A D→W Avg
Baseline - 68.4 68.9 60.7 99.3 62.5 96.7 76.1
SHOT all 90.1 94.0 74.3 99.9 74.7 98.4 88.6
SFDA all 91.1 92.2 71.2 99.5 71.0 98.2 87.2
SDDA all 82.5 85.3 67.7 99.8 66.4 99.0 83.5

FLUTE∗ 5 84.6 88.2 66.4 99.1 66.4 95.3 83.3
LCCS∗ 5 92.8 91.8 75.1 99.9 75.4 98.5 88.9

FedAcross 5 89.4 90.4 63.5 94.5 60.0 90.4 81.4
FedAcross 10 97.4 98.5 71.1 98.6 71.0 97.4 89.0

sults against all competitors despite the more chal-
lenging conditions induced by the FL setup: Although
LCCS produces the best overall adaptation perfor-
mance (88.9%) with five labeled samples per class,
FedAcross achieves the best overall adaptation re-
sults of all methods under inspection with k = 10
(89.0%). Ultimately, our approach offers practical ad-
vantages over LCCS for cross-device FL scenarios:
First, FedAcross demonstrates enhanced flexibility as
client adaptation does not depend on the number of
batch normalization layers of the feature extractor,
making it more versatile and applicable to a wider
range of network architectures. Second, in contrast
to FedAcross, the LCCS method requires a two-stage
adaptation process, starting with a compute-intensive
grid search in the initial stage. This demanding com-
putational task is dedicated to determine the optimal
parameter configuration for its learnable coefficients,
which are then applied to kick-start the gradient up-
date stage.

The results on the more challenging OfficeHome
benchmark data set in Table 3 reveal that the un-
supervised DA method SHOT outperforms all other
competitors in that scenario, underlining the difficulty
of adaptation in low data regimes (71.8% SHOT -
70.9% FedAcross, k = 10). We argue against SHOT
that it requires on average six times the amount of
(unlabeled) data points per class in the OfficeHome
setup (59.6 images/class for SHOT - k images/class
for FedAcross, k = 10) to achieve only slightly better
overall accuracy than FedAcross.

Two further insights regarding our problem
emerge from the results: There is a trade-off between
the number of parameters that needs to be transmit-
ted to the client initially (communication efforts) and
on-client adaptation performance determined by the
selection of the feature extractor. Moreover, the num-
ber of ground truth annotations k, is essential in en-
hancing prediction accuracy according to the specific
needs of client operators.

To investigate the effectiveness of our approach in
terms of waste item classification, the DA benchmark

5∗Results referenced from (Zhang et al., 2022)

Table 3: Results5 with ResNet-50 baseline, centralized
source-free DA and few-shot transfer learning methods on
OfficeHome. ”→” indicates a domain change.

Method k OfficeHome
DS = A DS = C DS = P DS = RW

A→ C A→ P A→ RW C→ A C→ P C→ RW P→ A P→ C P→ RW RW→ A RW→ C RW→ P Avg
Baseline - 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
SHOT all 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
SFDA all 48.4 73.4 76.9 64.3 69.8 71.7 62.7 45.3 76.6 69.8 50.5 79.0 65.7

FLUTE∗ 5 49.0 70.1 68.2 53.8 69.3 65.1 53.2 46.8 70.8 59.4 51.7 77.3 61.2
LCCS∗ 5 57.6 74.5 77.0 60.0 71.5 70.9 59.2 54.7 75.9 69.2 61.2 81.5 67.8

FedAcross 5 45.9 68.9 66.1 53.9 67.6 64.8 55.8 47.2 67.2 59.5 48.1 73.3 59.9
FedAcross 10 56.7 77.0 76.3 69.1 76.7 74.6 69.5 59.4 76.6 72.4 60.4 81.5 70.9

data sets OfficeHome and DomainNet (Peng et al.,
2019) (30 waste object classes, Clipart and Real do-
main) are modified to only include items typically
observed in waste sorting scenarios6. In our exper-
iment, the waste sorting service provider (Srv) pre-
trains its source model on all available waste object
classes. Waste sorting facilities (Cl) fine-tune their lo-
cal model on a specialized, randomly selected subset
of ten classes, respectively. In Table 4, the prediction
accuracy averaged over five runs with k = {0, 3, 5,
10} is reported. The results for OfficeHome (Waste)
show that FedAcross effectively improves the predic-
tion accuracy on client devices with k > 3 in a pho-
tographic adaptation task, scaling with an increased
number of annotated samples. The more challeng-
ing DomainNet (Waste) adaptation tasks across two
domains with a larger distributional gap show simi-
lar performance improvements, thus highlighting the
flexibility of FedAcross.

Table 4: Adaptability of FedAcross in a waste sorting sce-
nario. ”→” indicates a domain change.

OfficeHome (Waste) DomainNet (Waste)
k SrvRW→ClP SrvP→ClRW SrvC→ClR SrvR→ClC
0 87.82±0.26 78.68±0.86 54.51±0.12 65.0±0.50
3 84.42±0.25 75.73±0.73 54.74±0.06 69.0±0.65
5 89.43±0.45 84.44±0.29 57.77±0.24 76.87±0.25

10 93.45±0.56 88.91±0.19 66.48±0.32 83.18±0.53

Finally, we take advantage of the interpretable
nature of our approach to visualize the separation
progress over multiple adaptation stages using t-
SNE (van der Maaten and Hinton, 2008) on the
Office-31 classification task A→W. One objective
of our approach is to determine the optimal projection
that will bring samples from the same class closer to-
gether while pushing samples from different classes
further apart, resulting in prototypes with greater rep-
resentativeness. In Figure 4, the plots illustrate tar-
get sample feature projections of five classes using:
(a) an off-the-shelf ResNet-50 backbone, (b) a model
pre-trained on DS and (c) a model pre-trained on DS
and fine-tuned on Dspt

Ti
with their prototypes denoted

as red rectangles, respectively.

6Waste object classes are specified in the FedAcross
sources.
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(a) baseline (b) server pre-train (c) client fine-tune

Figure 4: t-SNE plot of target class data (color-coded dots)
and respective target class prototype (red triangles).

5 CONCLUSION

Although baseline prototypes are relatively close to
each other, the pre-training assists in the initial class
sample separation. Fine-tuning compresses samples
of the same class even further, creating a suitable basis
to apply a nearest-centroid classifier. In this work, we
presented FedAcross, a computation-efficient FL ap-
proach offering a ready-to-deploy solution for target
adaptation tasks under resource restrictions and dis-
tributional shifts across data silos. We demonstrated
the scalability and flexibility of our method by ex-
emplifying an image recognition task motivated from
intelligent waste sorting systems throughout this pa-
per. By employing prototype-based few-shot learning
in combination with cross-device domain adaptation
techniques, our model achieves competitive results
in a federated server-client environment whilst keep-
ing communication and computation efforts to a min-
imum. An extensive set of experiments performed on
both public and industry data sets have demonstrated
the applicability of our proposed approach in produc-
tion environments.

While our current approach offers significant in-
sights, it also opens up several avenues for future re-
search. An immediate extension of our work could
involve adapting our methodology to handle data
streams in a federated learning environment. This
evolution would require developing robust techniques
to manage the dynamic and potentially large-scale na-
ture of streaming data. Furthermore, integrating ac-
tive learning strategies into federated clients presents
an exciting opportunity. Such an approach would
not only address the challenge of expansive label-
ing in distributed settings but also enhance the ef-
ficiency of the learning process. A critical aspect
of this future work would be the quality assessment
of data points obtained from streaming data, ensur-
ing that the most informative samples contribute to
the learning process. This progression would signif-
icantly improve the model’s adaptability and perfor-
mance in real-world, dynamic scenarios. Addition-
ally, exploring the impact of these advancements on

privacy preservation and communication efficiency
in federated settings could provide valuable insights,
aligning with the growing need for secure and scal-
able machine learning solutions. Ultimately, these ef-
forts would contribute to the development of more so-
phisticated, efficient, and practical federated learning
systems, capable of handling the complexities of real-
world data distributions and applications.
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