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Abstract: Autonomous Mobility on Demand (AMoD) systems are a promising area in the emerging field of intelligent
transportation systems. In this paper, we focus on the problem of how to dispatch a fleet of autonomous
vehicles (AVs) within a city while balancing supply and demand. We first formulate the problem as a Markov
Decision Process (MDP) of which the goal is to maximize the accumulated average reward, then propose the
Multiagent Reinforcement Learning (MARL) framework. The Temporal-Spatial Dispatching Network (TSD-
Net) that combines both policy and value network learns representation features facilitating spatial information
with its temporal signals. The Batch Synchronous Actor Critic (BS-AC) samples experiences from the Rollout
Buffer with replacement and trains parameters of the TSD-Net. Based on the state value from the TSD-Net,
the Priority Destination Sampling Assignment (PDSA) algorithm defines orders’ priority by their destinations.
Popular destinations are preferred as it is easier for agents to find future work in a popular location. Finally,
with the real-world city scale dataset from Chicago, we compare our approach to several competing baselines.
The results show that our method is able to outperform other baseline methods with respect to effectiveness,
scalability, and robustness.

1 INTRODUCTION

As urban populations have increased all over the
world, the transportation scene in most metropolitan
areas had been dominated by an ever-increasing num-
ber of private vehicles (UN, 2015). While highly con-
venient for individuals, a community containing an
excessive number of vehicles may find itself experi-
encing numerous social and environmental problems,
including air pollution, parking limitations, high en-
ergy consumption, and traffic congestion. The emer-
gence of Autonomous Mobility on Demand (AMoD)
systems is a promising alternative to the paradigm of
private vehicles. The AMoD systems manage a fleet
of autonomous vehicles (AVs) around a city. Passen-
gers place orders through smart devices such as cell-
phones or tablets, and the AMoD platform dispatches
AVs to provide them with fast, point-to-point travel
services.

Dispatching a fleet of AVs across a city while
maintaining balance between supply (AVs) and de-
mand (orders) is one of the important operations in
AMoD systems. In general, the dispatching operation
comprises two primary tasks: (i) repositioning vacant

AVs to locations where rider requests occur, enabling
them to get closer to potential passengers, and (ii) as-
signing suitable orders to available AVs for delivery
to the required areas through ride-matching.

However, coordinating multiple AVs in a dynamic
environment is extremely difficult: (i) occurrences of
orders are unknown both with respect to time and lo-
cation, and the quantity of orders are constantly fluc-
tuating over space and time; (ii) multiple AVs work-
ing under the same system may affect each other; (iii)
customers may cancel the service when the waiting
period exceeds their patience.

Most previous research work that applied Deep
Reinforcement Learning (DRL) to solve these prob-
lems still suffers from certain limitations: (i) it takes
so long to collect experiences for the AMoD system
that AVs are unable to effectively interact with the en-
vironment in real-time. (ii) most neural network ar-
chitectures of the AMoD system only consider spatial
information from the environment but ignore tempo-
ral properties behind the spatial distribution.

To address the challenges and limitations in
AMoD systems, we propose a Multiagent Reinforce-
ment Learning (MARL) framework. Our contribu-
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tions are:
• We propose a new neural network architecture

named Temporal-Spatial Dispatching Network
(TSD-Net) that combines both policy network
(Actor) and value network (Critic). Also, the
Gated Recurrent Units (GRU) are embedded to
process temporal signals behind spatial informa-
tion.

• To improve the efficiency of the training proce-
dure, we designed a Batch Synchronous Actor
Critic (BS-AC) algorithm. Instead of spending
a long time to collecting experiences, the BS-AC
samples experiences with replacement to quickly
achieve effective results.

• To address the issue of insufficient supply during
peak hours, we employ the Priority Destination
Sampling Assignment (PDSA) algorithm. This
algorithm is utilized to select the riders with the
most preferred destinations when supply is insuf-
ficient to satisfy all riders.

• To verify the effectiveness, scalability and robust-
ness of our framework, extensive experiments are
conducted with a city-scale dataset from the City
of Chicago.
This paper is organized as follows: First, literature

on AMoD and DRL will be reviewed in Section 2.
Preliminaries and problem formulation are introduced
in Section 3 and Section 4. Our proposed MARL
framework is described in Section 5, and experiment
results are analyzed in Section 6. Finally, conclusions
are in Section 7.

2 RELATED WORK

RL in AMoD Systems. Reinforcement Learning
(RL) has recently become prevalent in the field of
AMoD systems. (Xu et al., 2018) learns the spa-
tial features to identify popular and unpopular re-
gions of a city and plans bipartite matches between
vehicles and orders by Kuhn-Munkres (KM) algo-
rithm (Munkres, 1957). However, the tabular learn-
ing method limits the dimension of the state space.
The proposed holistic mechanism by (Li and Allan,
2022a), termed T-Balance, integrates Q-Learning Idle
Movement (QIM) for vehicle repositioning. However,
its effectiveness is hindered by a severely limited ac-
tion space, resulting in a lack of flexibility. (Wen
et al., 2017) applied the Deep-Q-Network (DQN) to
manage the fleet of vehicles around a city to gain
balance between supply and demand. (Li and Al-
lan, 2022b) considered various degrees of nodes in
the graph and designed an action mask with DQN to

make action selection efficient. (Zheng et al., 2022)
proposed an action sampling DQN such that vehicles
at the same region can select different actions. How-
ever, none of these three works consider cooperation
among vehicles. (Lin et al., 2018) and (Wang et al.,
2021) utilized the Advantage Actor Critic (A2C) to
balance available vehicles and orders. Both of them
train the model by the same batch of experiences it-
eratively without importance sampling. Such a train-
ing procedure leads to bias since the A2C is an on-
policy approach. (Sun et al., 2022) proposed a new
network architecture with Proximal Policy Optimiza-
tion for training. However, it takes so long to collect
experiences that the policy network cannot be updated
frequently. To handle AMoD systems across multiple
cities, (Wang et al., 2018) applied the transfer learning
with the DQN and (Gammelli et al., 2022) proposed
graph meta-reinforcement learning to adapt to differ-
ent cities, but neither consider the adaption of various
settings within a city.

Deep Reinforcement Learning (DRL). Most of
the DRL can be categorized into three families: value
based method, policy based method, and actor critic.
In the field of the value based method (started from
the TD-Gammon architecture (Tesauro et al., 1995))
the DQN (Mnih et al., 2013) is integrated with both
Convolutional Neural Network (Krizhevsky et al.,
2017) and Experience Replay Buffer (Lin, 1992),
achieving human level control on the Atari games.
However, the target value from the policy network
is varied so often that the learning process is ex-
tremely difficult. (Mnih et al., 2015) conquered the
problem by separating the target network from the
policy network and updating it periodically. After-
wards, several augmented versions of the DQN were
published: (Van Hasselt et al., 2016) utilized double
Q-learning to tackle the overestimation of Q value,
(Wang et al., 2016) proposed a dueling network ar-
chitecture to mitigate the bias of the policy distribu-
tion, and (Schaul et al., 2015) designed a sampling
mechanism where valuable experiences have priority
to be learned. However, the intrinsic drawback of the
DQN is that the convergence is not guaranteed. In
terms of policy based method, the Monte Carlo Pol-
icy Gradient with approximation function proposed
by (Sutton et al., 1999) has better convergence prop-
erties. The weakness of the method is that it can only
be applied in episodic scenarios and high variance is
introduced. The family of actor critic algorithms can
solve this issue. (Mnih et al., 2016) proposed an on-
line learning paradigm named Asynchronous Actor
Critic where the Advantage Function can inhibit the
occurrence of high variance, but it is inefficient in that
experiences cannot be reused. (Schulman et al., 2017)
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overcomes this drawback by introducing importance
sampling with clip function where the ratio is con-
strained within a certain range.

3 PRELIMINARIES

Several definitions of Autonomous Mobility on De-
mand (AMoD) systems are introduced in the follow-
ing:

Map. The city is assumed to be partitioned into
a grid with elements gi. An undirected edge ei j con-
nects each pair of adjacent grid cells gi and g j. The
map of the city can be represented by an undirected
graph M = (G,E), where G is the set of all grid cells
gi ∈ G, and E is the set of all edges ei j ∈ E.

Task. A task τi is generated whenever a passen-
ger’s request occurs. A task can be represented as a
tuple τi = (tτi ,oτi ,dτi , lτi , pτi), where tτi is the occur-
rence time of τi, oτi and dτi are the origin and desti-
nation of τi provided from the passenger, lτi is the trip
duration of τi estimated by the AMoD system, and
pτi is the patience duration of the passenger; in other
words, the passenger will switch to alternative trans-
portation after time tτi + pτi .

Agent. An agent is an autonomous vehicle (AV)
in the AMoD system. An agent’s information can
be represented by a tuple agi = (idagi , locagi ,statagi),
where idagi is the unique identification number of
agent agi, locagi is the current location of agi indi-
cated by grid number gi, and statagi is the status of
agi, which is either in service, indicating the agent
agi has been allocated a task, or idle, denoting it has
no task on hand and is seeking a new one.

The framework of the AMoD system is shown in
Fig.1. The AMoD Platform receives Environment In-
formation at each time t, from which the State Infor-
mation is obtained by the Spatial Encoder (SE) and
the location of vehicles along with the encoded State
Information from the Encoder are collected by Ex-
perience Collector appending the corresponding ex-
perience to the Rollout Buffer where training experi-
ences are stored. The Batch Synchronous Actor Critic
module (BS-AC) retrieves experiences from the Roll-
out Buffer, updating the parameters of the Temporal-
Spatial Dispatching Network (TSD-Net) and then
clearing the Rollout Buffer. The encoded State Infor-
mation is also fed into the TSD-Net, which outputs
the route information of repositioning for idle agents
and the state value indicating future gains for Priority
Destination Sampling Assignment module (PDSA).
Based on the state value, the PDSA selects appropri-
ate tasks (requests) for agents by tasks’ priority such
that more tasks can be served in the future. In our

environment, not every order can be satisfied. We pri-
oritize trips that maximize the total reward.

4 FORMULATION

Typically, dispatching multiple agents in the AMoD
system is a sequential decision making problem that
can be formulated as a Markov Decision Process
(MDP). Each agent in idle status in the AMoD Sys-
tem is considered as available in the MDP model. For
efficiency of computation and storage space, agents
share the same Neural Network and Rollout Buffer
rather than owning them independently. Sharing one
buffer means all AVs share experiences together such
that they can learn fast. We use the entropy to keep
smaller differences among action probability, and
sample the action each time. Note that agents with
the same temporal-spatial property (e.g. currently in
the same grid cell) are homogeneous, and they have
the same policy distribution. The MDP can be rep-
resented as a tuple G = (N ,S ,A ,R ,P ,γ), where N
is the fluctuating number of available agents, S and
A represent state space and action space respectively,
R denotes the reward function, P indicates the state
transition function and γ is a discount factor. The de-
tails of each element are given as follows.

State. The state si
t ∈ S is a representation of the

environment that the ith available agent interacts with
at time t. In our work, it can be denoted as [

−→
Tt ,

−→
Xt ,gi

t ]

where
−→
Tt and

−→
Xt are vectors representing spatial dis-

tribution of tasks and agents at time t respectively, and
gi

t is the location of the ith available agent at time t.
It is worth noting that the length of

−→
Tt and

−→
Xt is the

number of grid cells in the city,
−→
Tt [ j] and

−→
Xt [ j] are the

number of tasks/agents in grid cell j at time t.
Action. The joint action vector −→at ∈ A = A1 ×

A2 × ...×AN indicates the repositioning strategy of
all available agents at time t, where A i is the action
space of the ith available agent. It can be represented
by −→at = {a1

t ,a
2
t , ...,a

N
t } where ai

t ∈ A i is the action
executed by the ith available agent at time t. The ac-
tion space A i of the ith available agent specifies where
the agent can go next, either moving to one of the
neighboring grid cells or staying in the current grid
cell.

Reward. The ith available agent will receive an
immediate reward ri

t ∈ R → R from the environment
after executing action ai

t at time t. To avoid exces-
sive agents flowing into grid cells with a high volume
of tasks, each agent receives a positive reward (+1)
with an adjustment indicating ratio of supply and de-
mand if it is assigned a task, as shown in Eq.1 where
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Figure 1: Autonomous Mobility on Demand (AMoD) System.

−→
Xt [gi

t ] is the number of available agents and
−→
Tt [gi

t ] is
the number of tasks at grid cell gi

t (gi
t is the grid cell

that the ith available agent moves into at time t).

ri
t =

1−
−→
Xt [gi

t ]−
−→
Tt [gi

t ]−→
Xt [gi

t ]
if assigned a task

−1 otherwise
(1)

State Transition. The state transition si
t+1 =

P (si
t ,a

i
t) specifies what state the ith available agent

will be in at time t, based on current state si
t and ac-

tion ai
t . In the MDP, there are two types of transitions:

si
t+1 will be NULL if the agent is assigned a task; oth-

erwise si
t+1 = [

−→
T t+1,

−→
A t+1,gi

t+1].
Discount Factor. The discount factor γ ∈ [0,1]

specifies the impact degree of the future rewards. If
γ = 0, an agent is myopic and no future rewards are
taken into account; on the other hand, all future re-
wards have the same weight as the current one if
γ = 1.

The goal of the MDP is to maximize the long term
benefits of each agent, which can be represented by

V (si) =
T
∑

t=T0

γt−T0 · ri
t where T0 is the current time.

5 METHODOLOGY

5.1 Temporal-Spatial Dispatching
Network

The architecture of the Temporal-Spatial Dispatch-
ing Network (TSD-Net) is shown in Fig.2. Since the
spatial information has time series property, we de-
sign the Spatial Encoder (SE) with the Gated Recur-
rent Unit (GRU) (Cho et al., 2014) where the hid-

den state ht−1 involving previous spatial information
is taken as one of inputs (here ht−1 represents both
h1

t−1 and h2
t−1 in the figure). The purpose of the SE

is to learn the representation of spatial distributions.
To save computational resources, the TSD-Net plays
the role of both policy network (Actor) and value
network (Critic), sampling appropriate actions ai

t for
each available agent and outputting the scale of the
state value function V (si

t ,θ) (Sutton and Barto, 2018)
at each time t.

The Norm function within the SE normalizes the
vector of the spatial distribution, as shown in Eq.(2),
where x⃗t is the input of the function, e.g. the spatial
distribution vector

−→
Xt and

−→
Tt . There are two reasons

for using the Norm function. (i) During rush hours,
most tasks and agents converge around downtown ar-
eas while almost none can be found in non-busy re-
gions, meaning that many elements of vector x⃗t are 0,
which would cause inefficiency in the learning pro-
cess. The Norm function can help get rid of most
zeros. (ii) The close range of the normalized vector x⃗t
improves he sensitivity of the network. Note that the
output of Norm is all-ones vector if std(⃗xt) = 0.

Norm(⃗xt) =
x⃗t −mean(⃗xt)

std(⃗xt)
(2)

Using the properties of time series of spatial data,
the Gated Recurrent Unit (GRU) can combine previ-
ous corresponding information to the present task, as
shown in Eq.(3) where input y⃗t can be seen as the out-
put of the Norm function and hidden state ht−1 is the
output of the GRU at time t −1. The GRU is the vari-
ant version of the LSTM (Hochreiter and Schmidhu-
ber, 1997) which successfully solves the ’long term
dependency’ problem in the Recursive Neural Net-
work (Bengio et al., 1994). When comparing the
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Figure 2: Temporal-Spatial Dispatching Network (TSD-Net) Architecture.

GRU with the LSTM, it is evident that the GRU ex-
hibits a more compact model structure while retaining
its desirable properties.

ht = GRU (⃗yt ,ht−1) (3)

The overall operations of the spatial encoding is
shown in Eq.(4) where W represents parameters of
Linear Layer such as Wa or Wa′ and ∗ is the matrix
multiplication. In this context, we have devised two
distinct Spatial Encoders (SE) to independently pro-
cess task-related and agent-specific information. The
primary objective of these SEs is to convert spatial
data into a representative vector encompassing vari-
ous spatial distribution features, integrating it with the
latest temporal learning outcomes through the utiliza-
tion of the GRU.

SE (⃗xt) =W ∗GRU(Norm(⃗xt),ht−1) (4)

As shown in Fig.2, the encoded state vector X i
t ag-

gregates information of spatial distribution from the
SE and the ith available agent location from One
Hot Encoder at time t, as shown in Eq.(5) where
⊕ is a concatenation operator and Ω symbolizes the
One Hot Encoder which converts categorical data
into binary vectors with a ”1” for the active category
and ”0”s elsewhere. The purpose of the concatena-
tion operation is to bring together global information
(SE(

−→
Xt ),SE(

−→
Tt )) and local information (Ω(gi

t)). This
integration provides subsequent neural network layers
with a rich set of learn-able features for policy train-
ing.

X i
t = SE(

−→
Xt )⊕SE(

−→
Tt )⊕Ω(gi

t) (5)

The state value V (si
t ,θ) can be computed by

Eq.(6), where θ is the set of parameters of the TSD-
Net. The V (si

t ,θ) specifies the expected accumu-
lated rewards starting from state si

t . It functions as a
’Critic,’ evaluating whether the current state, denoted

as si
t , is advantageous or detrimental for the agents.

This assessment can be leveraged to fine-tune the pol-
icy distribution during training, and also provide ad-
ditional assistance in enabling Autonomous Vehicles
(AVs) to prioritize valuable tasks when supply falls
short.

V (si
t ,θ) =Wd ∗ReLu

(
Wc ∗ReLu(Wb ∗X i

t )
)

(6)

Similarly, the action sampling distribution
π(ai

t |si
t ,θ) can be computed by Eq.(7), where the

elements of y⃗ represent the scores of each action in A i

and k = |A i|. This sampling mechanism serves a dual
purpose, preventing both the repetition of the same
actions by AVs in the same area and the convergence
to local optima in the training policy.

y⃗ =We ∗ReLu
(
Wc ∗ReLu(Wb ∗X i

t )
)

π(ai
t |si

t ,θ) =
e⃗y[ai

t ]

∑k e⃗y[k]

(7)

5.2 Batch Synchronous Actor Critic

The Actor-Critic algorithm (Konda and Tsitsiklis,
1999) is a kind of Reinforcement Learning (Sutton
and Barto, 2018) that integrates both policy-base and
value-base approaches. The Actor learns an appropri-
ate policy to adapt to the environment while the Critic
evaluates the quality of the learning policy. In this pa-
per, we propose the Batch Synchronous Actor Critic
(BS-AC) of which the basic idea is to train the set of
parameters θ of the TSD-Net with experiences from
the Rollout Buffer, such that the unbiased state value
function V (si

t ,θ) (Critic) and the appropriate policy
distribution (Actor) can be learned.

Unlike the Advantage Actor Critic (Mnih et al.,
2016) that trains only one agent with all experiences
at each iteration, the BS-AC trains multiple agents
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by sampling a batch of experiences from the Rollout
Buffer with replacement. There are two benefits of
sampling experience with replacement compared to
using the sum of experiences: (i) States that are com-
mon among agents will take priority such that scenar-
ios corresponding to these states can be learned by
agents efficiently; (ii) experiences can be reproduced
by sampling with replacement such that the number
of learning experiences can be larger than the number
of experiences in the Rollout Buffer, and sufficient ex-
periences can help agents gain a deeper understanding
of their interactions with the environment.

The Critic V (si
t ,θ) is learned by minimizing the

following loss function Lc(θ), as shown in Eq.(8)
where ri

t +V (si
t+1,θ) is the target value to be learned.

Lc(θ) = E
(
ri

t +V (si
t+1,θ)−V (si

t ,θ)
)2 (8)

The policy of Actor π(a|s,θ) can be learned by
maximizing the following objective function Ja(θ), as
shown in Eq.(9) where p(s) is the probability distribu-
tion of state s under policy πθ and A is the Advantage
function. We utilize the Advantage function rather
than state value function V because V would intro-
duce high variance, and A = ri

t +V (si
t+1,θ)−V (si

t ,θ).

Ja(θ) = ∑
s∈S

p(s) ∑
a∈A

π(a|s,θ) ·A (9)

Since our neural network architecture TSD-Net
shares parameters between the policy of Actor πθ and
the state value function of Critic V , the total objec-
tive function J a+c(θ) should combine both Ja(θ) and
Lc(θ), as shown in Eq.10. The J a+c(θ) is also fur-
ther augmented by the policy entropy H(πθ) ensuring
that agents at the same grid cell can still have diversity
movement. Both c1 and c2 are the constant value.

J a+c(θ) = Ja(θ)− c1Lc(θ)+ c2H(πθ) (10)

where the policy entropy H(πθ) is represented by the
formula shown in Eq.11. As shown in the equation,
when the action probabilities of policy π are similar,
the entropy is higher, and vice versa.

H(πθ) =−
n

∑
a=1

π(a,θ) log(π(a,θ)) (11)

The details of the BS-AC training algorithm is
shown in Algo.1. First, each available agent executes
its action to interact with the environment and store its
transition (experience) to the Rollout Buffer D (line
3-10). Then a batch of transitions B is sampled from
D with replacement and the accumulated objective
J is computed from the batch (line 11-16). Finally,
we update the parameters θ of the TSD-Net by the
stochastic gradient ascent and clean up all transitions
in D afterwards (line 17-20).

Algorithm 1: BS-AC Training Algorithm.

1 Initialize a set D as Rollout Buffer.
2 Create the TSD-Net with random parameters

θ.
3 for t = 1 to Tmax do
4 for each agent agi in A do
5 if agi in idle mode then
6 Sample an action ai

t from the
TSD-Net under state si

t .
7 Execute action ai

t , observe reward
ri

t and next state si
t+1.

8 Store transition (si
t ,a

i
t ,r

i
t ,s

i
t+1) as

an experience into D .
9 end

10 end
11 Sample a batch of transitions B from D

with replacement.
12 J = 0
13 for i = 1 to |B| do
14 Compute the total objective J a+c(θ).
15 J = J + J a+c(θ)

16 end
17 Perform the Stochastic Gradient Ascent

on J with respect to θ.
18 Update parameters θ = θ+α

1
|B| ▽θ J .

19 Clean up all transitions in D .
20 end

5.3 Priority Destination Sampling
Assignment

To mitigate extended response times, many prior
AMoD systems have employed a First Come First
Serve (FCFS) task assignment strategy, particularly
within the same grid cell. This approach proves ef-
fective when supply meets demand adequately. How-
ever, when supply falls short of demand, tasks with
destinations in remote, low-activity areas tend to
stress the limited supply. Remote destinations neces-
sitate AVs to invest significant time in returning to
high-demand regions. If waiting times surpass a cus-
tomer’s patience threshold, they may abandon the ser-
vice. To address this challenge, we introduce the Pri-
ority Destination Sampling Assignment (PDSA) as a
solution for guiding agents to select appropriate tasks
when supply falls short. The fundamental concept be-
hind PDSA is to prioritize each task based on its state
value V (si

t ,θ) derived from the TSD-Net. Tasks are
subsequently sampled according to their priority val-
ues. This approach increases the likelihood of AVs se-
lecting high-value tasks and being dispatched to desti-
nations with high demand. Simultaneously, tasks with
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less favorable destinations maintain a chance of being
served, thus preventing potential service gaps. The
sampling distribution is constructed as following:

Pr[τi] =
p(τi)

µ

κ

∑
j=1

p(τ j)µ
(12)

where Pr[τi] is the probability that task τi can be sam-
pled, function p indicates priority of τi, which is de-
termined by the order rank of the state value, κ spec-
ifies the total number of tasks in grid cell where τi
locates, and µ ∈ [0,1] is a factor suggesting the degree
of the priority used. The advantage of the PDSA is
that tasks with ’hot’ destinations have better chances
to be served while tasks with ’cold’ destinations will
still not be ignored completely.

The details of the PDSA algorithm are shown in
Algo.2. First, we still follow the FSFC strategy if the
number of agents is greater than tasks (Line 1-2). If
not, the priority of each task is computed by its order
rank based on the state value from the Critic of the
TSD-Net (Line 4-5). Finally, an appropriate task is
sampled by probability Pr[τi] and assigned to an agent
(Line 6-9).

Algorithm 2: PDSA Algorithm.

Input: The agent set A(gi) and the task set
T (gi) at grid gi

1 if |A(gi)| ≥ |T (gi)| then
2 return
3 else
4 Sort tasks in T (gi) based on the state

value of their destination by descending
order.

5 Compute each task’s priority by its rank
in the sorted set, p(τi) =

1
rank(τi)

.
6 for each agent agi in A(gi) do
7 Sample task τi ∼ Pr[τi].
8 Assign task τi to agent agi.
9 end

10 end

6 EXPERIMENT

6.1 Experimental Setup

Evaluation Data. Our experiments are based on a
real world city-scale dataset from the City of Chicago
during September in 2019 (Chicago, 2018), which
contains about 1.3 million records. Each record repre-

sents as a task in our AMoD System contains a num-
ber of attributes: record ID, starting time, origin, des-
tination, trip time and total trip fee.

To evaluate the effectiveness, scalability and ro-
bustness of our approach, three time periods are se-
lected, and their time temporal patterns are shown in
Fig.3. In the morning (Fig.3a), we observe that the
average number of tasks per minute increases steadily
to 50 at 9:00AM, peaking at more than 60 tasks per
minute, and fluctuating around 45 tasks per minute af-
terwards. At noon (Fig.3b), the average of the number
of tasks seems relatively stable, going up and down
between 40 and 50. The evening period is more chal-
lenging (Fig.3c). The peak of tasks per minute is
greater than 70, and then the amount decreases dra-
matically after 19:00PM.

The spatial patterns for these three time periods
are depicted in Figure 4. In the city’s hotspots (Fig-
ure 4a), zones 8, 28, 32, and 33 represent the down-
town areas, while zone 76 corresponds to the airport.
Typically, across downtown areas, the volume of tasks
during noon and evening notably surpasses that of the
morning, with the exception of zone 28, where the
task volume in the morning is slightly higher. This
phenomenon is primarily because few businesses and
activities occur in downtown areas during the morn-
ing. A similar trend is observed at the airport. Con-
versely, in the city’s common areas (Figure 4b), the
differences in task distribution across the three time
periods within each zone are less pronounced. During
the morning, tasks are more evenly distributed. This
is because residents from various neighborhoods re-
quest AVs in the morning, leading to a more balanced
task distribution across the city.

Comparison Methods. Our approach is com-
pared with the following baselines in terms of Service
Rate, Response Time, and Repositioning Time.

• Random. The available agents stochastically se-
lect one of the neighboring grid cells or current
grid cell for their relocation. This method serves
as the lower bound of the comparison.

• Soft S-D Heuristic. Based on the information of
task and agent distribution, the Soft S-D heuristic
directs AVs to locations which are generally pop-
ular, without regard to time of day. This method
is robust to the environmental parameter change.

• AS-DDQN (Zheng et al., 2022). Using the di-
rection scores obtained from the Double Deep-
Q-Network (DDQN), agents sample an appropri-
ate direction to execute. Directions with higher
scores are more likely to be chosen. This method
can discourage all AVs who are in the same places
from making the same decision.
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(a) Morning. (b) Noon. (c) Evening.
Figure 3: Temporal patterns of three time periods. The blue line represents real time tasks amount tracked by every minute
while the orange line specifies the average tasks amount within 15 minutes.

(a) Downtown and airport areas. (b) Other areas.
Figure 4: Spatial patterns of three time periods. The X-axis represents zone ID of the city, while Y-axis stands for the total
tasks amount in each time period separately.

• Soft cDQN (Lin et al., 2018). Agents make
decisions with output from the Deep-Q-Network
(DQN) and the context information of the envi-
ronment and the deployment of other agents. This
method can reduce the dimension of agents’ ac-
tion space and make the learning process effec-
tive.

• Ours. Our approach utilizes a novel neural net-
work framework, an improved learning process,
and a considerable task assignment mechanism to
make agents more sensitive and adaptive to the
dynamic properties of the environment.
Deployment. The city is partitioned into 77 cells.

The simulation cycle is set to be 1 minute and the
patience duration of passengers is assumed to be 10
minutes during the comparison. To further challenge
the simulation, the initial locations of all agents are
remote areas where tasks rarely occurs. In terms of In
our approach, the batch size is set to be 1024. The dis-
count factor γ= 0.99. The learning rate is α= 0.0005,
and constant value c1 = 0.5,c2 = 0.001.

6.2 Performance Measurements

In this work, the performance of the AMoD System is
evaluated by the following measurements.

Measurement 1: Service Rate. The Served Rate
measures the proportion of tasks that can be served by

agents in the AMoD System successfully.
Measurement 2: Response Time. The Response

Time estimates the average time duration between
rider request and pickup by an AV.

Measurement 3: Repositioning Time. The
Repositioning Time gauges the average relocation
time between when an agent completes one task and
finds another to serve.

6.3 Performance Comparison

To verify the effectiveness, scalability and robustness
of our proposed approach, we compare it with other
competitive baseline methods in terms of Service
Rate, Response Time and Repositioning Time along
with various numbers of agents within three time pe-
riods: Morning(7AM∼11AM), Noon(11AM∼3PM)
and Evening(5PM∼9PM), as shown in Fig.5. Gener-
ally, more agents means more tasks can be handled,
less tasks’ responsive time while more repositioning
time for agents themselves. In particular, several ob-
servations are made from Fig.5 as following:

1. Compared to the Random method, the Soft SD-
Heuristic attains improved results over all perfor-
mance measurements. This is because the Soft
SD-Heuristic can intentionally diffuse agents to
local areas where supply is insufficient for de-
mand.
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(a) Service Rate (Morning). (b) Response Time (Morning). (c) Repositioning Time (Morning).

(d) Service Rate (Noon). (e) Response Time (Noon). (f) Repositioning Time (Noon).

(g) Service Rate (Evening). (h) Response Time (Evening). (i) Repositioning Time (Evening).
Figure 5: Performance Comparisons of competitive approaches w.r.t. Service Rate, Response Time and Reposition-
ing Time along with various number of agents within three time periods: Morning(7AM∼11AM), Noon(11AM∼3PM)
and Evening(5PM∼9PM). The graph key is as follows: Random: , Soft SD-Heuristic: , AS-DDQN: , Soft
cDQN: , Ours: .

(a) Service Rate. (b) Repositioning Time.
Figure 6: The robustness tests of the Service Rate and the Repositioning Time along with various patience duration of
passengers.

2. The learning based methods make significant im-
provement upon the heuristic method because the
learning approaches seek to optimize the long
term benefit while the heuristic maintains a my-
opic focus on the current benefit. Also, the learn-
ing based methods consider the spatial distribu-
tion of agents and tasks globally while the heuris-

tic only cares about supply and demand locally.

3. With respect to the learning based method, the se-
ries algorithms of actor critic outperform the DQN
series. There are two reasons for this: (i) the Q
value approximator of the DQN is not guaranteed
to converge while the policy approximator of the
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actor critic has better convergence properties; (ii)
the actor critic algorithms use policy entropy to
ensure the diversity of action samples each time,
but the DQN will eventually tend to select the ac-
tion with highest Q value, even though the soft-
max function is used.

4. In terms of the DQN series, the Soft cDQN is
somewhat better than the AS-DDQN, the main
reason being that the AS-DDQN uses the rank as
a priority that is rigid for the action distribution
such that it is difficult to adapt to the dynamic of
the environments.

5. We observe that our approach outperforms other
baselines.This is mainly because the TSD-Net uti-
lizes the GRU to process the spatial information
with temporal signals such that accurate repre-
sentation features can be learned; moreover, the
PDSA can effectively allocate agents to suitable
areas by prioritizing tasks with destinations in
high-demand areas. This arrangement ensures
that agents are consistently in proximity whenever
a high-demand task becomes available.
With 900 agents and our approach, the perfor-

mances of the Service Rate and the Repositioning
Time applying various patience durations of cus-
tomers are shown in Fig.6. In terms of the Service
Rate, we observe that the fluctuation in the morning
and noon is within 3% while in the evening no more
than 1%. On the other hand, for the Repositioning
Time, the performance changes over all three time pe-
riods are within 1 minute. From this perspective, our
approach is robust and adaptive with various patience
duration settings.We also observe that Autonomous
Vehicles (AVs) spend more time repositioning dur-
ing the morning hours in comparison to the noon and
evening periods. This disparity can be attributed to
the following factors: (i) In hotspot areas, task de-
mand during noon and evening is notably higher than
in the morning, as illustrated in Figure 4a. Conse-
quently, most AVs working during these periods do
not need to invest significant time in repositioning, as
they continue to have ample opportunities primarily
within the downtown and airport regions. (ii) Un-
like the concentrated task distribution in hotspot ar-
eas during noon and evening, task distribution in the
morning tends to be more evenly dispersed across the
city, as depicted in Figure 4. AVs are compelled to
allocate additional time during the morning to reach
customers before being assigned tasks. Conversely,
tasks in business districts are more prevalent during
the noon and evening hours and are typically concen-
trated in downtown areas. This concentration allows
AVs to reduce the time needed to reach these tasks,
thereby minimizing repositioning requirements.

7 CONCLUSION

In this paper, there are four contributions to AMoD
systems. First, the TSD-Net combines both policy
and value networks to save computational cost. It
also facilitates the temporal signals behind spatial in-
formation to learn representation features. Second,
to decrease time needed to collect experiences, the
BS-AC algorithm samples experience from the Roll-
out Buffer with replacement and utilizes Stochastic
Gradient Ascent to train the parameters of TSD-Net.
Thirdly, based on the state value from the Critic of
the TSD-Net, the PDSA algorithm defines priorities
of each task and samples appropriate ones for agents.
Finally, performance comparisons are conducted to
verify the effectiveness, scalability and robustness of
our approach.

While the proposed Multiagent Reinforcement
Learning (MARL) framework has demonstrated sig-
nificant performance improvements in the field of
AMoD systems, several limitations remain that need
to be addressed in the future:

• The TSD-Net considers correlations in terms of
temporal patterns but overlooks interactions con-
cerning spatial patterns. For instance, certain grid
cells adjacent to high-demand activity areas such
as downtown or airports may exhibit sparse de-
mand themselves. However, deploying agents
around these areas might prove to be a strate-
gic choice. Leveraging Graph Neural Networks
(GNNs) (Sanchez-Lengeling et al., 2021) presents
a promising approach to processing spatial in-
formation within a graph framework. Future re-
search endeavors should focus on exploring meth-
ods to integrate GNNs into the existing TSD-Net,
enabling a more comprehensive consideration of
spatial aspects.

• In regions with low supply where agents seldom
operate, their decision-making can suffer due to
insufficient experience to train the policy network.
Consequently, satisfying demands in these areas
becomes challenging, potentially leading to inef-
ficient behavior by agents. Future research aims
to investigate methods enabling machines to gen-
erate experiences automatically corresponding to
low-supply areas. This exploration intends to fa-
cilitate proper training of the policy network, ulti-
mately enhancing the decision-making process in
underrepresented regions.
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