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In this study, we show that diffusion models can be used in industrial scenarios to improve the data aug-
mentation procedure in the context of surface defect detection. In general, defect detection classifiers are
trained on ground-truth data formed by normal samples (negative data) and samples with defects (positive
data), where the latter are consistently fewer than normal samples. For these reasons, state-of-the-art data
augmentation procedures add synthetic defect data by superimposing artifacts to normal samples. This leads
to out-of-distribution augmented data so that the classification system learns what is not a normal sample but
does not know what a defect really is. We show that diffusion models overcome this situation, providing more
realistic in-distribution defects so that the model can learn the defect’s genuine appearance. We propose a
novel approach for data augmentation that mixes out-of-distribution with in-distribution samples, which we
call In&Out. The approach can deal with two data augmentation setups: i) when no defects are available
(zero-shot data augmentation) and ii) when defects are available, which can be in a small number (few-shot)
or a large one (full-shot). We focus the experimental part on the most challenging benchmark in the state-of-
the-art, i.e., the Kolektor Surface-Defect Dataset 2, defining the new state-of-the-art classification AP score
under weak supervision of .782. The code is available at https://github.com/intelligolabs/in_and_out.

1 INTRODUCTION

Surface defect detection is a challenging problem in
industrial scenarios, defined as the task of individuat-
ing samples containing a defect (Wang et al., 2018).
The first solution involves hiring human experts: they
check each product and remove the pieces with a de-
fect. Unfortunately, human experts can be biased and
are subject to fatigue. Instead, automated defect de-
tection systems (Tsang et al., 2016; Hanzaei et al.,
2017) solve the above problems by learning classifiers
on defective and normal training samples. Unfortu-
nately, data collection requires a strong human effort
and extensive labeling times, and the collected data
has a majority of normal samples (negative samples)
since the defects (positive samples) are way less than
the normal samples. Training data becomes severely
unbalanced in this general scenario, limiting the sys-
tem’s performance.

To solve this issue, data augmentation method-
ologies have emerged as viable solutions (Zavrtanik
et al., 2021; Yang et al., 2023; Zhang et al., 2023b).
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The main principle is to augment the real defective
samples with synthetic ones to balance the class dis-
tributions. To date, the best and most widely used ap-
proach for data augmentation consists of a per-region
data augmentation (Yang et al., 2023). The idea is
to start from real negative samples, overlaying them
with regions containing texture artifacts, making them
positive. Unfortunately, this is far from being simi-
lar to a genuine defect, so we refer to that as out-of-
distribution data. In terms of detection precision, this
approach works since these data are useful to indicate
what is certainly not a normal sample, thus avoiding
false positive classifications. At the same time, this
approach does little to avoid false negative classifica-
tions since defects are usually fine-grained deviations
from normal samples, leading to low recall scores.
Diffusion models (Dhariwal and Nichol, 2021;
Rombach et al., 2022) are deep generative models
inspired by non-equilibrium thermodynamics that al-
low the sampling of rich latent spaces to generate
meaningful realistic images. In this paper, we pro-
mote using Denoising Diffusion Probabilistic Mod-
els (DDPMs) to produce fine-grained realistic defects,
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Figure 1: Idea underlying our /In&Out data augmentation approach. (Left, blue dots) The blue dots outside the bulk of negative
data could be wrongly classified as anomalies (false positives), being slightly different from most of the negative data. (Right,
yellow crosses) State-of-the-art per-region data augmentation methods (for example, MemSeg (Yang et al., 2023)) add positive
synthetic samples in that zone, which helps in deciding what is certainly not anomalous data. (Left, red dots) On the other
hand, the red dot partially outside the bulk of positive data could be, in principle, understood as a negative sample, leading to
a false negative. (Right, red crosses) Diffusion-based generated data is capable of producing defects very similar to the ones
in the bulk of positive data, helping the classifier not produce false negative classifications.

solving the above issue. Specifically, we can dis-
tinguish two different scenarios: i) when no defects
are available (zero-shot data augmentation); ii) when
some defects are available, which could be very few
(few-shot, or N-shot with N small) or in a large num-
ber (full-shot or N-shot with N large).

In the first case, a human-in-the-loop paradigm is
employed. Specifically, a human operator can drive
the generation of proper defects by exploiting their
domain knowledge. This occurs using textual strings,
which condition the generation of positive samples
asking for specific defects (e.g., “scratches”, “holes”).
Instead, in the second scenario, when anomalous sam-
ples are available, fine-tuning can be done directly on
them. In this case, human operators are unnecessary
since the model can already learn what a defect looks
like. In all the cases, we can observe that DDPM-
generated data is complementary to per-region aug-
mented out-of-distribution data, as described in Fig-
ure 1, since it allows the enrichment of the statistics of
positive data (in-distribution) ameliorating the down-
stream classification performance in terms of recall.

Due to the high complementarity of the two aug-
mentation policies, we decided to use them together,
dubbing our approach In&Out data augmentation
since it is a compromise between augmented im-
ages that are in and out-of-distribution. We test our
approach on the Kolektor Surface-Defect Dataset 2
(KSDD2) (Bozic et al., 2021). Notably, with 120 aug-
mented images, the Average Precision (AP) classifi-
cation score is .782, setting the new state-of-the-art
performance on this dataset.

2 RELATED WORK

One of the most adopted frameworks for automated
quality control is defect detection, where the goal is
to find images that contain defects. Specifically, we
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focus on weakly supervised approaches (Bozic€ et al.,
2021; Zhang et al., 2021), in which positive and nega-
tive training images are labeled at the image level, that
is, without per pixel masks. This is the cheapest and
most widely used annotation in industrial contexts.

Despite its importance and wide usage, the prac-
tice of data augmentation for defect detection received
little attention in the literature, and this paper is one
of the first that entirely focuses on it.

The most adopted pipeline for the generation of
the anomalous synthetic samples consists of a series
of random standard augmentations on the input im-
age, such as mirror symmetry, rotation, brightness,
saturation, and hue changes, followed by a super-
imposition of noisy patches on the image (Yang et al.,
2023; Zhang et al., 2023a). Interestingly, in (Zavr-
tanik et al., 2021), an ablation study focused on the
generation of synthetic anomalies leads to the fol-
lowing findings: i) adding synthetic noise images is
never counterproductive, it just diminishes the effec-
tiveness in percentage; ii) few generated anomaly im-
ages (in the order of tens) are enough to increase the
performance substantially; iii) textural injection in the
anomalies is important, or, equivalently, adding uni-
formly colored patches is not effective.

In all of these papers, it is evident that the synthet-
ically generated images are just out-of-distribution
patterns, which do not have to represent the target-
domain anomalies faithfully. We improved this setup,
being the first to focus on genuine in-distribution
defect data. A little improvement has been made
in (Zhang et al., 2023b), in which the authors intro-
duced the concept of “extended anomalies”, where
the specific anomalous regions of the seen anomalies
are placed at any possible position within the normal
sample after having applied random spatial transfor-
mations. Unfortunately, this requires segmenting the
training data, which we want to avoid.
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3 BACKGROUND

We organize this section into four different parts,
each one providing an overview of a topic related
to our work: i) DDPMs; ii) Dreambooth fine-tuning;
iii) Low-Rank Adaptation (LoRA), and iv) per-region
data augmentation.

Denoising Diffusion  Probabilistic = Models.
DDPMs are probabilistic models inspired by the
non-equilibrium statistical physics phenomenon of
diffusion (Sohl-Dickstein et al., 2015; Ho et al.,
2020). In recent years, diffusion models have
gradually become state-of-the-art in image synthesis,
surpassing GANs in performance (Dhariwal and
Nichol, 2021). One of the main advantages of such
models is the ability to guide the sampling steps
with additional input data with a technique called
conditioning. The most common form of condition-
ing is a text that describes what the expected image
should look like (Rombach et al., 2022). However,
recent developments have explored other forms of
conditioning, such as images, segmentation maps, or
logic formulas (Capogrosso et al., 2023).

Dreambooth Fine-Tuning. Dreambooth (Ruiz
et al., 2023) is a procedure for DDPMs that allows
fine-tuning the model with a small number N of
images. During the fine-tuning steps, each of the
N images is associated with a prompt defining the
identification token and the subject class. At the same
time, regularization images (images of the same class
but without the subject identification token) are used
to prevent the fine-tuning model from forgetting the
subject class learned during the original (non-fine-
tuning) training, thanks to a prior preservation loss.
This allows the DDPM to learn a new specialized
concept, represented by the identification token, with
fewer iterations and without overwriting its prior
knowledge.

Low-Rank Adaptation (LoRA). In recent years,
fine-tuning Large Language Models (LLMs) has be-
come prohibitively expensive due to the huge num-
ber of parameters. In (Hu et al., 2021), the authors
introduced Low-Rank Adaptation (LoRA), a model-
agnostic method of fine-tuning models in an effi-
cient way. LoRA has the following advantages: i)
many small LoRA modules for different tasks can be
built by a single pre-trained model; ii) optimizes only
the injected, much smaller low-rank matrices, lower-
ing the hardware requirements barrier; iii) the final
model, obtained by merging the original pre-trained
model and the low-rank matrices, has no additional
inference latency.

Figure 2: Augmented images generated by the Mem-
Seg (Yang et al., 2023) pipeline. It is evident how it pro-
vides out-of-distribution positive samples.

Per-Region Data Augmentation. With per-region
data augmentation, we refer to out-of-distribution
data augmentation procedures that superimpose noise
regions on the original image. In our study, we
will use MemSeg (Yang et al., 2023) as our out-of-
distribution data augmentation. Some examples of
images generated by the MemSeg pipeline are re-
ported in Figure 2.

4 METHOD

The In&Out data augmentation aims at producing
Nuug additional positive images. The approach can
be applied, with slightly different pipelines, on two
scenarios: i) when no positive samples are avail-
able (zero-shot data augmentation) and ii) when posi-
tive samples are available (N-shot data augmentation,
where N can be small or large). In the following, the
two pipelines are detailed; a graphical sketch is pre-
sented in Figure 3.

4.1 Zero-Shot Data Augmentation

In this scenario, we simulate that no positive samples
are available in the training set. Thus, our aim is a
zero-shot data augmentation procedure in which two
steps are performed: fine-tuning and data augmenta-
tion.

Fine-Tuning Step. Dreambooth is adopted to per-
form fine-tuning on a DDPM. To reduce training
time and lower computation requirements, we only
train low-rank update matrices by employing LoRA.
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Figure 3: General schema of our /n&Out method.

These update matrices are then summed to the orig-
inal weights, completing the fine-tuning procedure.
Specifically, we control the weight of the LoRA up-
date matrices during the merge with a parameter o: a
value close to O results in no fine-tuning, while a value
close to 1 results in the strongest fine-tuning.

In the zero-shot data augmentation, we perform
fine-tuning with a portion of randomly chosen neg-
ative samples from the training set. The number of
samples depends on the complexity of the data we
want to manipulate: the larger the intra-class variance,
the larger the number of elements to sample. In this
preliminary study, we select the number of samples
heuristically (see Section 5 for details).

Data Augmentation. In this step, we create
the N, augmented images generating N, /2 in-
distribution images and Ngg/2 out-of-distribution
images. The Ngg/2 in-distribution images are ob-
tained by exploiting the fine-tuned DDPM through
natural language prompts, describing the desired
anomalies. To define the types of defects in natu-
ral language and verify how well text expressions are
suited to generate a genuine defect for the data at
hand, it is reasonable to perform some human-in-the-
loop cycles, exploiting the expert’s domain knowl-
edge to evaluate the augmentation quality. Specif-
ically, the operator prompts textual expressions and
evaluates the generated data (total of N,,,/2), certi-
fying reasonable defects or revising expressions for
improved generations. The Ny, /2 out-of-distribution
images are obtained by the per-region data augmenta-
tion, detailed in Section 3.

This ensures that half of the augmented data will
be in-distribution, describing the visual appearance of
the defects (the diffusion-based one), while the other
half of the data will focus on specifying what is cer-
tainly not a perfect sample (the per-patch images).
After the augmentation, the final training dataset will
be formed by N, augmented positive images plus all
the original negative samples.
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Figure 4: Normal (top row) and anomalous (bottom row)
samples from the KSDD2 dataset. Note that some defects
are very difficult to find.

4.2 N-Shot Data Augmentation

In this scenario, we assume to have N images from
the positive pool of dataset images on which we per-
form Dreambooth fine-tuning with LoRA. We refer
to the cases where N ~ 5 as few-shot data augmenta-
tion. After the fine-tuning, Ny, /2 in-distribution pos-
itive samples are generated. As for the zero-shot data
augmentation scenario, the additional Ny, /2 out-of-
distribution images are obtained by the per-region
data augmentation, detailed in Section 3.

After the augmentation, the final training dataset
will be formed by N,,, augmented positive images +
N original positive images plus the negative samples.

S EXPERIMENTS

In this study, we explore the efficacy of our In&Out
data augmentation approach for defect detection on
the KSDD?2 dataset.

Dataset. The KSDD?2 contains RGB images of de-
fective production items, provided and annotated by
Kolektor Group d.o.o. The defects vary in shape, size,
and color, ranging from small scratches and minor
spots to large surface imperfections.
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Since the images are of different sizes, we stan-
dardize the dataset resolution by center-cropping and
resizing all the images to 200 x 600 pixels. The
dataset is split into train and test subsets, with 2085
negative and 246 positive samples in the training set,
and 894 negative and 110 positive samples in the test
set. At the moment of writing, the state-of-the-art AP
on this dataset stands at .733 (Bozi€ et al., 2021). We
show several normal and anomalous samples in Fig-
ure 4.

5.1 Implementation Details

In this section, we specify all the implementation de-
tails for the sake of reproducibility. All training and
inferences have been carried out on an NVIDIA RTX
4090 GPU.

DDPM Fine-Tuning. In our experiments, we use
Stable Diffusion (Rombach et al., 2022) as DDPM.
The fine-tuning process follows the Dreambooth pro-
cedure (see Section 3 for details). We used the prompt
“skt background”, where “skt” is the identifica-
tion token. As written in Section 3, the string “skt”
has no semantic meaning, and was selected to de-
fine an ID code for a new visual class. On the other
hand, “background” is the subject class, identified
as the most suited to obtain images with a homoge-
neous background. The regularization images have
been generated using the prompt “background”. The
weight of the prior preservation loss is set to 1.0 as
in the original paper. For faster training time and
lower computation requirements, we also employ the
LoRA-c3Lier low-rank adaptation, a modified version
of LoRA that also applies low-rank approximations to
3 x 3 convolutional kernels and linear layers.

The code is implemented in PyTorch. We used
AdamW8bit (Dettmers et al., 2022) as an optimizer,
with a learning rate of le —5. We kindly direct the
reader’s attention to our configuration file for a more
comprehensive exploration of the various hyperpa-
rameters involved.

DDPM Data Augmentation. After training Sta-
ble Diffusion, we use it to generate Ny,,/2 aug-
mented images. In the zero-shot scenario, we use
the prompts “skt background cracked” and “skt
background scratched” toinduce the generation of
anomalous samples. These prompts have been chosen
after a series of tests and result in images containing
plausible anomalies like the ones shown in Figure 5.
These generated images are then added to the training
set, which will be used to train the anomaly detection
model. We train and evaluate this model with four

Figure 5: Anomalous samples generated by DDPM. It is
evident how it provides in-distribution positive samples.

different seeds for each of our experiments, generat-
ing Nuue /2 new images each time to provide the most
statistically relevant results.

ResNet-50 Training and Testing. We use the Py-
Torch implementation of the ResNet-50 (He et al.,
2016) as our anomaly detection model, in which we
substitute the fully connected layers after the back-
bone to make it a binary classifier. The network is
trained for 50 epochs with an SGD optimizer, a learn-
ing rate of 0.01, and a batch size of 5.

To keep consistency with the training and evalua-
tion procedures of the KSDD2, we modify their of-
ficial implementation to accommodate our ResNet-
50 model. In particular, our setup is similar to the
weakly supervised one presented in (BoZi¢ et al.,
2021), where only the images and ground truth labels
are used to train the model. For each scenario, i.e.,
zero-shot data augmentation and N-shot data augmen-
tation, we will train three versions of our ResNet-50
model: i) using only MemSeg to generate Ny, im-
ages; ii) using only our DDPM to generate N, im-
ages; and iii) using In&Out as data augmentation, re-
sulting in N,,,/2 images generated by MemSeg and
Naug/2 generated by our DDPM.

5.2 Zero-Shot Data Augmentation

In these experiments, we emulate a situation where
no positive samples are available in the training set.
With this premise, we train our diffusion model
with only 50 randomly chosen negative samples from
the training set. We chose this number empiri-
cally and deemed it sufficient to represent the intra-
class variance of the negative samples. We train the
DDPM for 5 epochs, using as guiding prompt “skt
background” and o = 0.60.

Once the diffusion model is trained, we gener-
ate Ny, /2 augmented positive samples using prompts
specific to the dataset. In our case, we used
prompts such as “skt background cracked” and
“skt background scratched”, resulting in images
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Table 1: Results between MemSeg and DDPM when ro anomalous samples are available.

Naug APt | Precisiont | Recall Naug APt | Precision? | Recall t
MemSeg 80 | .514 (.026) | .733 (.113) | .436(.033) DDPM 80 | .547 (.086) | .427 (.301) | .695 (.194)
MemSeg 100 | .388 (.066) | .633 (.129) | .432(.054) || DDPM 100 | .532 (.028) | .387 (.277) | .714 (.286)
MemSeg 120 | .511(.050) | .683 (.054) | .470(.091) || DDPM 120 | .445(.186) | .465(.329) | .591 (.274)
Average \ AT1 (.047) \ .683 (.099) \ 446 (.059) H Average \ 508 (.100) \ 426 (.302) \ 667 (1251)
10- Precision vs. Number of augmentations 10 Recall vs. Number of augmentations
’ —— DDPM — DDPM
Memseg Memseg

0.8 — In&Out 0.8 — In&Out

S 06 _06

2 =

£0.4] = 04
0.2 0.2
0.0 0.0

10 20 0 80 100 120 150 200
Number of augmentations

Figure 6: Precision of the methods as a function of the num-

ber of augmentations. Note that MemSeg has higher overall

precision. In&Out balances this metric.

like the ones shown in Figure 5. Therefore, we pro-
duce Nyyue/2 out-of-distribution images by MemSeg,
obtaining the Ny of our In&Out approach. We
also experiment with fully-MemSeg and fully-DDPM
augmentation pipelines for comparison.

We train the ResNet-50 model on different val-
ues of Ny, and evaluate it on the original test set.
For each number of data augmentation, four differ-
ent seeds have been used to report the most statisti-
cally relevant results. We report the comparison be-
tween MemSeg and DDPM in Table 1, where the
numbers outside the parenthesis indicate the average
results over the four seeds, while the numbers be-
tween parenthesis indicate the standard deviation. As
we can see, DDPM achieves the highest AP (.547),
recorded at 80 augmented images, while also result-
ing in an overall higher mean AP when compared to
the MemSeg pipeline (.508 vs. .471).

We want to highlight the difference between the
precision and recall scores of MemSeg and DDPM.
While DDPM achieves a higher recall (.714), the
MemSeg pipeline results in a higher precision (.733).
This behavior is clearly shown in Figure 6 and 7,
where we plot the values of precision and recall of
the two methods for different N,,.

When combined in the In&Out pipeline, where
half of the augmented positive samples are provided
by DDPM and the other half is provided by MemSeg,
we obtain a huge performance boost in maximum
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10 20 50 80 100 120 150 200
Number of augmentations
Figure 7: Recall of the methods as a function of the number
of augmentations. Note that DDPM has a higher overall
recall. In&Out balances this metric.

Table 2: Results when no anomalous samples are avail-
able using In&Out. Thus, Ny, /2 samples generated with
DDPM and N, /2 with MemSeg.

Naug | APt | Precisiont | Recallt
In&Out 80 | .556 (.085) | .530(.219) | .655 (.065)
In&Out 100 | .626 (.059) | .742 (.109) | .568 (.029)
In&Out 120 | .536 (.023) | .699 (.085) | .534 (.086)
Average ‘ 573 (.056) ‘ .657 (.138) ‘ .586 (.060)

(-626) and average (.573) AP, with balanced precision
and recall metrics. These results, reported in Table 2,
suggest how combining in-distribution (DDPM) and
out-of-distribution (MemSeg) data, ameliorates pre-
cision and recall scores, helping the model better un-
derstand what an anomalous sample is.

5.3 N-Shot Data Augmentation, N Small

Within manufacturing environments, organizations
strive to minimize the occurrence of defects, resulting
in a generally restricted number of anomalous sam-
ples. In this sub-section, we put ourselves in this sit-
uation, i.e., only a minimal amount of ground truth
positive samples are available in the dataset.

To simulate this challenging setup, we randomly
select only N = 5 anomalous samples from the
KSDD?2 training dataset and use them to fine-tune the
DDPM for 49 epochs with o = 0.95. Following the
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Table 3: Results between MemSeg and DDPM when few anomalous images are available. Each training set contains N = 5

anomalous samples, plus Ny, augmented images.

Naug | APt | Precision? | Recallt Naug | APt | Precision? | Recallt
MemSeg 80 | .582 (.018) | .836 (.101) | .466 (.049) DDPM 80 580 (.045) | .542 (.270) | .634 (.212)
MemSeg 100 | .511(.086) | .686 (.082) | .527 (.069) || DDPM 100 | .526 (.075) | .610 (.063) | .477 (.081)
MemSeg 120 | .593 (.044) | .801 (.065) | .507 (.053) || DDPM 120 | .535(.063) | .659 (.127) | .491 (.046)
Average | .562(.049) | .774 (.083) | 500 (057) || Average | 547 (.061) | .604 (153) | .534 (.113)

procedure introduced in Section 4.2, we generate sev-
eral training sets induced by the different N,z of new
samples, plus the N images on which we trained the
DDPM. For the classifier, we use the same ResNet-
50 architecture. The findings of this experiment are
documented in Table 3. As we can see, the Mem-
Seg method slightly outperforms DDPM, resulting in
an average AP of .562 and .547, respectively. More-
over, MemSeg produces a maximum AP of .593 at
Naug = 120, while DDPM records a maximum AP
of .580 at Ny, = 80. The precision and recall have
similar behavior as seen in 5.2, with DDPM having a
higher recall (.634 vs. .527) and lower precision (.659
vs .836) w.r.t. MemSeg.

Table 4: Results when few anomalous images are available
using In&Out. Each training set contains Ny,; = 5 anoma-
lous samples, plus Ngye augmented images, where half sam-
ples are generated by DDPM and half by MemSeg.

Naug | AP?T | Precisiont | Recall
In&Out 80 | .531 (.041) | .507 (.220) | .655 (.126)
In&Out 100 | 578 (.041) | .450 (.343) | .761 (.245)
In&Out 120 | 575 (.025) | .635(.316) | .636 (.189)

Average | 561 (.036) | 531 (293) | .684 (.187)

Interestingly enough, in Table 4, we can see that
the In&Out pipeline does not seem to increase the per-
formance, achieving an average AP on par with Mem-
Seg (.561) while recording a slightly lower maximum
AP (.578 vs. .593). We hypothesize that, in this setup,
DDPM overfits the minimal number of anomalous
images and cannot generalize the anomalous samples
properly. This is a problem if the samples on which
we fine-tune the model are a subset of all the anoma-
lies and, thus, are not representative enough of the
entire anomalous distribution.

5.4 N-Shot Data Augmentation,
N Large

Finally, to showcase In&Out as a general data aug-
mentation technique, we explore the scenario with
more positive samples in the training set. To this
aim, we make all 246 positive samples available to
the anomaly detection model during training, in addi-

Table 5: Results when all the anomalous samples are avail-
able using In&Out. Each training set contains all the
anomalous KSDD?2 samples, plus Ny, augmented images,
where half of the samples are generated by DDPM and half
by MemSeg. Additionally, /In&Out O indicates the per-
formance achieved without data augmentation. Note that
MixSegdec (Bozi¢ et al., 2021) indicates the results re-
ported under the weakly supervised setting.

Naug | AP 1 | Precisiont | Recall
MixSegdec 733 () -(-) -()
In&Our 0 | 747 (055) | .826(.081) | 723 (.058)
In&Our 80 | 747 (022) | 764 (.046) | .734 (.032)
In&Out 100 | 775 (.013) | .868 (.050) | .720 (.026)
In&Out 120 | 782 (.030) | .906 (.064) | .689 (.030)
Average ‘ 768 (.022) ‘ .846 (.053) ‘ 714 (.029)

tion to the usual N, augmented anomalous images.
Following the procedure in Section 4.2, we use all the
N =246 positive samples from the training set to fine-
tune our diffusion model for 25 epochs with o = 0.80.
Finally, we define a baseline by training the ResNet-
50 with Ny = 0 (In&Out 0), achieving an average
AP of .747. The results are reported in Table 5.

The results of the two separate data augmentation
procedures are reported in Table 6. In this scenario,
the anomaly detection model trained with DDPM
augmented images achieves a maximum AP of .772,
outperforming both the baseline (.747) and resulting
in a higher average AP than MemSeg (.764 vs. .751).
As we can see in Table 5, In&Out achieves the highest
average AP yet (.768) while balancing the precision
and recall metrics, confirming our intuition. Notably,
with 120 augmented images, the maximum AP classi-
fication score is .782, beating the previous .733 (Bozi¢
et al., 2021) and setting the new state-of-the-art.

6 CONCLUSION

In this work, we introduce In&OQOut, a data augmen-
tation method that generates positive images using
DDPMs for in-distribution samples and per-region
augmentation for out-of-distribution samples. We fo-
cus the experimental part on the KSDD2, defining
the new state-of-the-art classification AP score un-
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Table 6: Results between MemSeg and DDPM when all the anomalous samples are available.

Naug | APt | Precision? | Recallt || Naug | APt | Precisiont | Recall
MemSeg 80 744 (.007) | .851 (.055) | .691 (.058) DDPM 80 758 (.007) | .808 (.056) | .768 (.043)
MemSeg 100 | .774 (.016) | .814(.038) | .752 (.028) || DDPM 100 | .763 (.008) | .829 (.059) | .725(.034)
MemSeg 120 | .734 (.032) | 772 (.107) | .707 (.031) || DDPM 120 | .772 (.034) | .858 (.084) | .725 (.061)

Average ‘ 751 (.018) ‘ .812 (.067) ‘ 717 (.039) H Average ‘ 764 (.016) ‘ .832 (.066) ‘ .739 (.046)

der weak supervision of .782. These results encour-
age further study on additional datasets and exploring
how textual prompts interact with DDPM, especially
when defects are very few and not limited to cracks
and scratches.
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