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Abstract: Detecting Distributed Denial of Service (DDoS) attacks are crucial for ensuring the security of applications
and computer networks. The ability to mitigate potential attacks before they happen could significantly re-
duce security costs. This study aims to address two research questions concerning the early detection of
DDoS attacks. First, we explore the feasibility of detecting DDoS attacks in advance using machine learning
approaches. Second, we focus on whether DDoS attacks could be successfully detected using a Long Short-
Term Memory (LSTM) based approach. We have developed rule-based, Gaussian Naive Bayes (GNB), and
LSTM models that were trained and assessed on two datasets, namely UNSW-NB15 and CIC-DDoS2019.
The results of the experiments show that 82–99% of DDoS attacks can be successfully detected 300 seconds
prior to their arrival using both GNB and LSTM models. The LSTM model, on the other hand, is significantly
better at distinguishing attacks from benign packets. Additionally, incident response teams could utilize a
two-level alert mechanism that ranks the attack detection results, and take actions such as blocking the traffic
before the attack occurs if our proposed system generates a high risk alert.

1 INTRODUCTION

In information security, accessibility is ensuring sys-
tem and data availability is a key aspect. Denial of
Service (DoS) attacks poses a threat to accessibility
and aim to disrupt a targeted system by overwhelm-
ing it with excessive requests or resource consump-
tion. The ultimate goal is causing prolonged ser-
vice disruption and potential financial losses (Mas-
dari and Jalali, 2016). Subsequently, Distributed De-
nial of Service (DDoS) attacks leverage compromised
devices, i.e., bots, distribute malicious traffic across
multiple sources, and thereby, raise mitigation chal-
lenges (Vishwakarma and Jain, 2020). Analyzing
DDoS attacks reveals that the frequency of incoming
packets can be used to identify sub-categories (Mas-
dari and Jalali, 2016). Packet sizes and headers also
indicate the subcategories of these attacks.

Mitigation methods developed on a rule-based
logic, namely Intrusion Detection Systems (IDS) (Liu
and Lang, 2019), can be integrated into network se-
curity systems for early detection for effective inci-
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dent response (Chan et al., 2004). This underscores
the importance of early identification to address po-
tential threats. While rule-based approaches have tra-
ditionally been the primary choice for attack detec-
tion, they lack the capability for attack forecasting.
To address the dynamic nature of network data, adap-
tive methods that learn from historical data are es-
sential. Deep learning (DL) approaches provide flex-
ibility and effectiveness in handling evolving attack
scenarios (LeCun et al., 2015). Studies utilizing DL
models for DDoS attack detection report impressive
accuracy scores ranging from 95% to 99% (Stiawan
et al., 2021; Ramzy Shaaban et al., 2019; Cil et al.,
2021).

Notably, time-based network data has led to stud-
ies employing the LSTM model for DDoS attack
classification, achieving accuracy and F1-score rates
above 95% and 90% respectively (Gaur and Kumar,
2022; Li and Lu, 2019; Zou et al., 2022). These
promising results are often reported on one dataset
representing a limited number of attacks, making it
unrealistic to expect similar performance in real sys-
tems. Furthermore, a significant drawback in studies
using DL or other machine learning (ML) methods
is their focus on detecting attack-containing network
packets only after they have entered the network. This
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limitation hinders early detection based on the behav-
ior of network traffic, a crucial aspect for real-world
applicability and reaching more benefits than post-
attack classification.

This paper aims to propose a DL-based recom-
mender system for early detection of incoming DDoS
attacks. This system can be integrated as a valuable
component into Security Information and Event Man-
agement (SIEM) systems (Catillo et al., 2022) to warn
the incident response team before an attack occurs.
Our research questions are listed below:

• RQ1: To what extent can we detect DDoS attacks
(k seconds) prior to their arrival by employing DL
techniques and network traffic data?

• RQ2: How successful is an LSTM model in de-
tecting DDoS attack datasets compared to other
rule-based and ML-based approaches?

To address these questions, we propose a recom-
mender system utilizing LSTM, GNB, and rule-based
models for detecting DDoS attacks k seconds in ad-
vance. This system generates early alerts for likely
attacks, facilitating practical integration into network
incident response teams and allowing the ranking of
alerts based on their criticality.

2 RELATED WORK

In this section, we review relevant literature on SIEM
systems and DDoS detection models. Catillo et al.
(Catillo et al., 2022) developed a big data-operated
SIEM system employing a semi-supervised deep Au-
toencoder model for anomaly detection in BG/L and
Hadoop log records, and report recall of 96–99% and
precision of 93–98%. Cinque et al. (Cinque et al.,
2018) propose a rule-based SIEM system for air traf-
fic data augmented with Latent Dirichlet Allocation,
and report 90% precision and 93% recall in detecting
anomalies.

Various works have addressed DDoS attack clas-
sification using ML methods (Wu et al., 2022; Hal-
laday et al., 2022; Ramzy Shaaban et al., 2019; Cil
et al., 2021) . We summarize studies utilizing the
same datasets and algorithms with our research in Ta-
ble 1. Each study uses different approaches for DDoS
classification, either comparing the results of differ-
ent DL methods or developing a better DL model
by using different methods together. Boonchai et al.
(Boonchai et al., 2022) compare the performance of
DNN, Autoencoder, Logistic Regression, and Naı̈ve
Bayes models for DDoS classification, while the Au-
toencoder model outperforms all with 85% accuracy.
Gaur and Kumar (Gaur and Kumar, 2022) explore bi-

nary and multi-classification approaches with LSTM
layers, reporting accuracy values exceeding 99% and
98% respectively. In their study, the features in CIC-
DDoS2019 dataset are grouped to increase the per-
formance of the models. Zou et al. (Zou et al., 2022)
propose FAMF-LSTM, a feature-attended multi-flow
LSTM model, and outperform RNN and LSTM mod-
els with over 97% accuracy and 96% recall in two
datasets. Li and Lu (Li and Lu, 2019) performed bi-
nary DDoS classification using an LSTM model and
Bayesian approach, achieving 98% accuracy and 97%
recall in their experiments.

3 METHODOLOGY

The methodological phase of the study is designed
based on recommender system guidelines (Rezaimehr
and Dadkhah, 2021) with specific details for DDoS
detection.

3.1 Data Collection

Like in all data science studies, the development
of recommender systems initiates with data collec-
tion and storing this acquired data. Datasets uti-
lized in recommender systems are categorized as ex-
plicit or implicit, contingent upon the data collec-
tion method (Rezaimehr and Dadkhah, 2021). In
our study’s context, we employed two synthetically
generated, and explicitly collected datasets that have
been widely used in DDoS attack detection. The first
of these datasets is a derived cyber-attack dataset re-
leased under the name UNSW-NB15 (Moustafa and
Slay, 2015). The second dataset is CIC-DDoS2019
(Sharafaldin et al., 2019) which is specifically built
out of known DDoS attack types.
UNSW-NB15. UNSW-NB15 dataset was created
by the Cyber Range Lab at the University of New
South Wales (UNSW) (Moustafa and Slay, 2015).
The tool, IXIA PerfectStorm was used to automat-
ically generate normal traffic data and synthetic at-
tacks for modern networks. The raw network data
in the established simulation environment has been
recorded via the tcpdump tool, and is approximately
100GB. UNSW-NB15 includes nine different attack
types apart from normal traffic data: Fuzzers, Anal-
ysis, Backdoors, DoS/DDoS, Exploits, Generic, Re-
connaissance, Shellcode and Worms.

Argus and Bro-IDS tools were utilized to de-
rive 49 different features from this dataset. The fi-
nal dataset containing 49 columns and a total of
2,540,044 rows is shared as a CSV file in (Moustafa
and Slay, 2015). In our study, we only need data
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Table 1: Related works on DDoS attack detection.

Author Model Dataset Performance

Proposed Method LSTM UNSW-NB15
CIC-DDoS2019

0.83–0.82
0.99–0.99

(Zou et al., 2022) FAMF-LSTM BoT-IoT
UNSW-NB15

0.99–1.00
0.97–0.96

(Boonchai et al., 2022) DNN Autoencoder CIC-DDoS2019 0.81–0.81
0.85–0.85

(Gaur and Kumar, 2022) LSTM (Binary)
LSTM (Multiclass)

CIC-DDoS2019 0.99–0.98
0.98–0.98

(Li and Lu, 2019) LSTM-BA ISCX2012 0.98–0.97
1 Metrics given as (Accuracy - Recall)

related to DoS attacks and benign network pack-
ets. Other attack categories were dropped from the
dataset.
CIC-DDoS2019. CIC-DDoS2019 dataset, which was
created at the Canadian Institute for Cybersecurity
(CIC), University of New Brunswick (UNB), was
generated specifically for research on DDoS attacks
(Sharafaldin et al., 2019). While creating the simu-
lation environment, the network data was generated
by 25 different users using HTTP, HTTPS, FTP, SSH
and email protocols on devices running different op-
erating systems. Since the researchers aim to sim-
ulate subtypes of DDoS attacks, data belonging to
13 different DDoS attack types known as NTP, DNS,
LDAP, MSSQL, NetBIOS, SNMP, SSDP, UDP, UDP-
Lag, WebDDoS, SYN, TFTP and SYN are available
in the dataset. The raw data contains 87 features and
70,619,331 rows of data.

3.2 Pre-Processing Data

In this study, we conducted several pre-processing
steps to enhance the efficiency of our LSTM model
for DDoS attack detection. First, categorical features
in both datasets were converted into binary features
using the one-hot encoding method. Subsequently,
we normalized all numerical features to mitigate the
risk of overfitting. To identify the most effective fea-
tures for attack detection and reduce training costs,
we trained an LSTM model with four layers, includ-
ing dropout and dense layers. The top 10 features se-
lected for both datasets are available in our GitHub
repository (Ozgun, 2023).

Given that DDoS attacks typically target specific
entities from multiple sources acting as bots, we im-
plemented additional pre-processing steps to predict
attacks occurring k seconds later. This involved dis-
tinguishing prior packets from the same source and
targeting the same destination address. To achieve
this, we applied a grouping strategy, grouping pack-
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Figure 1: UNSW-NB15 (Source IP - Destination Port) Rule
Based Data Preparation.

ets based on network addresses, utilizing a sliding
window approach to prevent overlooking attacks from
new sources.

During model training, we divided the input data
into mini-batches containing 50, 100, 150, and 200
packets. A sliding window was applied during the
mini-batch creation phase to preserve the time-series
structure of the data within each mini-batch. These
mini-batch groups were employed to detect DDoS at-
tacks in time series data after 300, 600, 1200, 1800,
2400, and 3000 packets. With an average of 100 ms
between each packet, our models could detect attacks
roughly 30, 60, 120, 180, 240, and 300 seconds in
advance.

The grouping of packets based on network ad-
dresses was crucial for the success of our approach.
For the UNSW-NB15 dataset, source IP–destination
port and destination IP–destination port were used
for grouping, while for the CIC-DDoS2019 dataset,
source IP–destination IP was employed. This innova-
tive approach allowed us to create a three-dimensional
array that fits the LSTM model framework, enabling
the model to consider reconnaissance attacks and pro-
viding a more comprehensive analysis of DDoS sce-
narios.
For Rule-Based Model. In the rule-based model,
classification decisions are based solely on the source
and destination addresses of the packets. The mini-
batches and sliding windows are visually depicted in
Figure 1, where different colors represent distinct el-
ements. It is crucial to highlight that classification oc-
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Figure 3: UNSW-NB15 (Source IP - Destination Port)
LSTM Data Preparation.

curs for a given packet when it shares the same source
IP and destination port as the first packet within its
corresponding window. For instance, packets at the
first and 221st seconds must have identical IP ad-
dresses and ports to undergo classification.
For GNB Model. In addition to grouping based
on source and destination addresses, the GNB model
was trained using the top 10 selected features. How-
ever, the GNB model inherently cannot process three-
dimensional data. Consequently, the data within each
group had to be concatenated to create a row vector.
Figure 2 visually represents the structure of data from
the UNSW-NB15 dataset in a mini-batch of 20 pack-
ets, illustrating the concatenation of different packets
to form a row vector of 1×200. The output is derived
from the packet at the 221st second.
For LSTM Model. The LSTM model is capable of
handling arrays larger than two dimensions, so the
GNB model’s operation of concatenating the data was
not performed. Instead, the three-dimensional data
was directly fed as the input to the LSTM model, af-
ter the grouping process as we did in the other models.
Figure 3 illustrates this process for UNSW-NB15.

3.3 Recommender Engine

Once essential data-related procedures are executed,
the next phase is building a recommendation engine.
In our study’s context, we assessed three different
classification-based methods to build our engine for
DDoS attack detection. This section provides details

on the models’ designs and training/test procedures.
Rule-Based Model. We employed a rule-based
model, a common method in attack detection, to as-
sess its effectiveness in comparison to LSTM and
GNB models. Rule-based models, popular among
network security experts, assess packets based on
source and destination addresses, flagging an attack if
packet numbers surpass a set threshold. While experts
can often set effective limits through observation, this
approach is prone to human error, especially when
done by non-experts, and can be easily deceived. In
our rule-based model, determining the threshold for
labeling a packet as an attack is crucial. A threshold
of one flags all subsequent packets as attacks, lead-
ing to numerous false positives. Conversely, a very
high threshold, like 200, may result in missing attacks
and generating high false negatives. We opted for two
thresholds, three and five, indicating attack criticality.
If there are more than three but less than 6 packets
with the same source and destination addresses within
our mini-batch data, subsequent packets are labeled
as potentially containing a DDoS attack (Level 1). If
there are more than five such packets, we label it as a
Level 2 attack. Fewer than three packets are marked
as benign.
GNB Model. GNB model is used as the base ML
model in our study. Unlike the rule-based model,
since features other than the source IP/port and des-
tination IP/port information are used as input, a more
efficient attack detection would be made by process-
ing the data of the reconnaissance process, especially
before the attack starts. GNB model has been reported
to produce effective attack detection in datasets con-
taining known attack types and network movements
(Belavagi and Muniyal, 2016). For this reason, we
utilize this model as a simple and robust alternative to
the LSTM model. Within the scope of our study, we
implemented the GNB model in the Python sklearn
library. We have divided the datasets as 70% train
and 30% test. We kept the same grouping used in the
rule-based model to perform detection on the same
data instances over three models.
LSTM Model. We developed a LSTM-based model,
known for its efficacy in handling time-series data
(Siami-Namini et al., 2019). Unlike GNB, LSTM
does not impose specific data distributions, and un-
like rule-based models, it accommodates information
from multiple features in multi-dimensional forms.
LSTM, with its various memory types, processes his-
torical data and adapts to changing data in deep learn-
ing approaches (Van Houdt et al., 2020), making it
suitable for detecting attacks k seconds in advance
by observing prior packets over time. Our proposed
LSTM model comprises four layers: LSTM layer
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Figure 4: LSTM Model Structure.

with 32 units, enabling the model to learn from in-
put data and maintain memory of previous inputs.
Dropout layer to prevent overfitting by randomly de-
activating neurons during training, enhancing model
robustness (Sanjar et al., 2020). Additional LSTM
layer with 16 units, capturing complex temporal pat-
terns in the data. Dense layer with a sigmoid acti-
vation function for binary classification, determining
the presence of an attack in the received packet. This
architecture is designed to effectively handle time-
series data, capture temporal dependencies, prevent
overfitting, and make binary classifications related to
DDoS attacks. Fig. 4 shows the general structure of
our model. The training and test splits as well as
grouping of data are the same as those described in
the GNB models.

3.4 Ranking

The system introduces a two-level alert mechanism
for incident response teams instead of providing bi-
nary results for detecting attacks k seconds in ad-
vance. Level 1 packets signify a likelihood of con-
taining attacks, while Level 2 packets are considered
high-risk, indicating a very probable attack. Benign
packets are classified as safe, indicating no attacks.
The ranking is based on posterior probabilities gen-
erated by the models during classification. In GNB
and LSTM models, a Level 1 alert is triggered when
the posterior probability falls between 51% and 75%,
while a Level 2 alert is generated for probabilities ex-
ceeding 75%. The rule-based model, not producing
probabilities, relies on the count of packages in mini-
batches from the same source and going to the same
destination. In this context, more than three packages
prompt a Level 1 alert, while more than five packets
trigger a Level 2 alarm.

4 RESULTS

In total, 144 different experiments were performed
with combinations of two different datasets, three dif-
ferent models, two different data grouping approaches
and 24 different experimental configurations due to
mini-batch sizes and detection windows (k seconds).
In order to discuss the results more effectively, a sam-
ple is reported in this section: Three models, two
datasets, two different groupings with two mini-batch

sizes (100 and 200 packets) and three detection win-
dows (60 and 300 seconds).
RQ1. In order to answer our first RQ, we have an-
alyzed LSTM and GNB models’ performance pre-
sented in Table 2. Please note that we have ana-
lyzed the findings on Level 1 scores only because
this level indicates that any packet with more than
50% probability is labelled as attack. Experiments
show that network traffic data can be used to effec-
tively detect 80-99% DDoS attacks (recall rates) 30
to 300 seconds in advance. The precision rates also
show that the models produce very low false positives
while detecting the attacks. When we examine Table
2 in detail, it is seen that both GNB and LSTM mod-
els distinguish attacks from benign packets in CIC-
DDoS2019 dataset successfully, although this is an
attack-intensive dataset. F1-scores of 96%–99% with
GNB and 97%–99% with LSTM are reported for de-
tecting attacks. The rates are similar for detecting
benign packets, although LSTM is slightly better in
detecting benign packets in terms of recall and F1-
score. For UNSW-NB15 dataset, which is a dataset
with 10% attack data, we observe that the LSTM
model outperforms GNB in detecting attacks: An ac-
curacy rate of 81–83%, and an F1-score of 78–81%
are achieved for detecting the packets that contain an
attack. Furthermore, we have assessed the impact of
mini-batch size and k seconds on the performance of
the LSTM model for both datasets.

We have seen that increasing the mini-batch size
slightly improves the performance, whereas increas-
ing k value does not necessarily affect the findings.
For instance, in UNSW-NB15, using mini-batch size
of 20 packets and detecting attacks 60 seconds in ad-
vance gives us an F1-score of 82%, whereas mini-
batch size of 100 packets and detecting 60 seconds in
advance gives an F1-score of 85% in case of Level 1
attacks. However, mini-batch size of 200 and k value
of 60 or k value of 300 both give F1-scores of 85%
and recall 77–79% for benign and attack packets, re-
spectively. Thus, we report higher mini-batch values
and three packet counts in Table 2. We recommend
choosing the k value as 300 seconds in order to give
the network security teams the necessary time for in-
tervention, as it has been seen as the most appropri-
ate configuration for both the accuracy of the recom-
mender made and for sending notifications in advance
of the required time.
RQ2. We compare the models’ performance with
each other to answer this RQ. Overall, LSTM out-
performs other models in distinguishing attacks from
other packets on both datasets with varying attack
rates. The rule-based model manages to achieve 59–
99% F1-Score for attacks but poorly performs for be-
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nign packets in terms of F1-score on both datasets.
The F1-score of attacks drops from 99% to 59% when
we observe UNSWNB-15 dataset, as this model tends
to classify majority of the packets as attack. This
shows us the problem with the rule-based models due
to false positive rates. When we look at the results of
GNB model in Table 2, we observe an opposite sce-
nario on UNSWNB-15 dataset: 70% F1-score is re-
ported for benign packets, whereas the F1-score rates
are very low (1%) for detecting the attacks. This
indicates that GNB model is not able to detect at-
tack packets in the context of our experimental de-
sign. When we look at the results on CIC-DDoS2019
dataset, the model reaches F1-scores above 96% for
detecting attacks, and around 81% for detecting be-
nign packets. Additionally, when we examine the
precision and recall values, we can say that GNB is
much more successful than the rule-based model, es-
pecially on CIC-DDoS2019 dataset. Upon scrutiniz-
ing the outcomes of the LSTM model, it becomes ev-
ident that it consistently outperforms other models in
distinguishing both classes in the datasets. We ob-
serve an F1-score of over 78% and 97% for detect-
ing attacks in two datasets, UNSW-NB15 and CIC-
DDoS2019 respectively.

When we assess our findings with respect to their
consistency (Avazpour et al., 2014), we can inter-
pret that the results of the experiments conducted on
UNSW-NB15 dataset, which is closer to real-life net-
work traffic, are more realistic, and LSTM shows its
effectiveness on this dataset. We need further exper-
iments to prove LSTM model’s stability on real-life
data, but our offline analysis gives useful insights on
its potential.

5 DISCUSSION

Level-Based Analysis. Our recommender system of-
fers a two-level alert mechanism, prioritizing likely
attacks for efficient incident response. Table 2 illus-
trates model performance for both alert levels. Since
each packet has a single label (benign/attack) in both
datasets, evaluating the performance involves catego-
rizing packets into Level 1 or Level 2 attacks based
on algorithmic posterior probabilities. A Level 1 at-
tack is identified if the probability exceeds 50%, and
a Level 2 attack is declared if the probability is above
75%. LSTM’s Level 2 alert performance exhibits
lower recall but higher precision compared to Level 1,
indicating conservative but mostly accurate detection.
In a real-life scenario, prioritizing Level 2 alerts can
aid incident response teams in preemptive actions like
traffic blocking before an attack unfolds. The conser-

vative nature of Level 2 alerts, with lower false pos-
itives, aligns with expert decisions. Although delay-
ing action on Level 1 alerts may miss some incoming
attacks within the next 300 seconds, configuring the
recommender system to generate forecasts and moni-
tor alert level changes can address this concern. Nei-
ther rule-based nor GNB can provide such a ranking
system in our study. Rule-based lacks probabilities,
and GNB produces probabilities close to zero or one
for selected datasets.
Training Configurations. The experimental phase
of the study starts by trying different split rates for
training, testing and validation. In addition to the
presented results, two other split rates are evaluated
for the LSTM model. One of them is split as 60%,
20%, 20% respectively for train, validation and test-
ing. The other one is similarly split into 60, 30, 10.
We observe that using a validation set improves de-
tecting benign packets in CIC-DDoS2019, as the be-
nign packets represent a minority class in this dataset,
and tuning the parameters using a validation set gen-
erates a more successful model. However, since we
cannot build the GNB model using a train-validation-
test split, the results of these different training con-
figurations were excluded from the experiments. We
continued with 70% train and 30% test data while re-
porting this study.
Grouping Strategy. While performing data process-
ing operations in the analysis part of the study, two
different grouping strategies were applied on each
dataset. These strategies simply consider grouping
the packets coming from the same source IP or go-
ing to the same destination IP. For the UNSW-NB15
dataset, we also added the destination port next to the
IP information during grouping because we have ob-
served that adding this information increases the per-
formance of attack detection. Overall, a grouping
strategy is necessary to build time-series based mod-
els and to detect incoming attacks in advance. How-
ever, we cannot clearly say which information in the
grouping matters the most. Both source IP and desti-
nation IP based groupings report similar performance
in detecting attacks 300 seconds in advance. The deci-
sion of which information to use in a grouping should
be made according to the traffic data structure.

6 CONCLUSION

We have designed and implemented a recommender
system that can be used as part of SIEM systems, with
a specific focus on detecting DDoS attacks k seconds
in advance. We have trained LSTM, GNB, and rule-
based models to answer our two RQs.
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Table 2: Performance of rule-based, GNB and LSTM models.

Dataset Group By1 Alert Level Config2 Accuracy Recall3 Precision3 F1 Score3

R
ul

e-
ba

se
d

m
od

el

UNSW-NB15 dstip-dport Level 1 100 / 60 0.56 0.15 / 0.97 0.85 / 0.53 0.25 / 0.69
UNSW-NB15 dstip-dport Level 2 100 / 60 0.58 0.19 / 0.95 0.81 / 0.54 0.31 / 0.64
UNSW-NB15 srcip-dport Level 1 100 / 60 0.50 0.28 / 0.72 0.50 / 0.50 0.36 / 0.59
UNSW-NB15 srcip-dport Level 2 100 / 60 0.50 0.29 / 0.71 0.50 / 0.50 0.24 / 0.60
UNSW-NB15 dstip-dport Level 1 200 / 300 0.53 0.09 / 0.99 0.95 / 0.51 0.16 / 0.67
UNSW-NB15 dstip-dport Level 2 200 / 300 0.55 0.14 / 0.99 0.95 / 0.52 0.24 / 0.68
UNSW-NB15 srcip-dport Level 1 200 / 300 0.49 0.19 / 0.80 0.51 / 0.49 0.28 / 0.61
UNSW-NB15 srcip-dport Level 2 200 / 300 0.49 0.19 / 0.80 0.51 / 0.49 0.28 / 0.61
CIC-DDoS2019 dstip Level 1 100 / 60 0.95 0.08 / 0.99 0.98 / 0.95 0.08 / 0.98
CIC-DDoS2019 dstip Level 2 100 / 60 0.96 0.08 / 0.99 0.95 / 0.96 0.14 / 0.98
CIC-DDoS2019 srcip Level 1 100 / 60 0.91 0.03 / 0.99 0.99 / 0.91 0.06 / 0.96
CIC-DDoS2019 srcip Level 2 100 / 60 0.92 0.05 / 0.99 0.96 / 0.92 0.10 / 0.96
CIC-DDoS2019 dstip Level 1 200 / 300 0.96 0.02 / 0.99 0.93 / 0.96 0.03 / 0.99
CIC-DDoS2019 dstip Level 2 200 / 300 0.96 0.03 / 0.99 0.93 / 0.96 0.06 / 0.98
CIC-DDoS2019 srcip Level 1 200 / 300 0.93 0.01 / 0.99 0.99 / 0.93 0.02 / 0.99
CIC-DDoS2019 srcip Level 2 200 / 300 0.93 0.02 / 0.99 0.99 / 0.93 0.03 / 0.96

G
au

ss
ia

n
N

aı̈
ve

B
ay

es
m

od
el

UNSW-NB15 dstip-dport Level 1 100 / 60 0.54 0.99 / 0.01 0.54 / 0.97 0.70 / 0.01
UNSW-NB15 dstip-dport Level 2 100 / 60 0.54 0.99 / 0.01 0.54 / 0.97 0.70 / 0.01
UNSW-NB15 dstip-dport Level 1 200 / 300 0.56 0.99 / 0.01 0.56 / 0.94 0.72 / 0.01
UNSW-NB15 dstip-dport Level 2 200 / 300 0.56 0.99 / 0.01 0.56 / 0.94 0.72 / 0.01
UNSW-NB15 srcip-dport Level 1 100 / 60 0.54 0.99 / 0.01 0.54 / 0.97 0.70 / 0.01
UNSW-NB15 srcip-dport Level 2 100 / 60 0.54 0.99 / 0.01 0.54 / 0.97 0.70 / 0.01
UNSW-NB15 srcip-dport Level 1 200 / 300 0.56 0.99 / 0.01 0.56 / 0.95 0.72 / 0.01
UNSW-NB15 srcip-dport Level 2 200 / 300 0.56 0.99 / 0.01 0.56 / 0.95 0.72 / 0.01
CIC-DDoS2019 dstip Level 1 100 / 60 0.98 0.80 / 0.99 0.99 / 0.97 0.89 / 0.99
CIC-DDoS2019 dstip Level 2 100 / 60 0.98 0.80 / 0.99 0.99 / 0.97 0.89 / 0.99
CIC-DDoS2019 dstip Level 1 200 / 300 0.98 0.77 / 0.99 0.99 / 0.97 0.87 / 0.99
CIC-DDoS2019 dstip Level 2 200 / 300 0.98 0.77 / 0.99 0.99 / 0.97 0.87 / 0.99
CIC-DDoS2019 srcip Level 1 100 / 60 0.94 0.71 / 0.99 0.99 / 0.93 0.83 / 0.96
CIC-DDoS2019 srcip Level 2 100 / 60 0.94 0.71 / 0.99 0.99 / 0.93 0.83 / 0.96
CIC-DDoS2019 srcip Level 1 200 / 300 0.94 0.68 / 0.99 0.99 / 0.93 0.81 / 0.96
CIC-DDoS2019 srcip Level 2 200 / 300 0.94 0.68 / 0.99 0.99 / 0.93 0.81 / 0.96

L
ST

M
m

od
el

UNSW-NB15 dstip-dport Level 1 100 / 60 0.82 0.84 / 0.80 0.83 / 0.81 0.84 / 0.81
UNSW-NB15 dstip-dport Level 2 100 / 60 0.82 0.92 / 0.71 0.79 / 0.88 0.85 / 0.78
UNSW-NB15 dstip-dport Level 1 200 / 300 0.82 0.79 / 0.85 0.87 / 0.76 0.83 / 0.80
UNSW-NB15 dstip-dport Level 2 200 / 300 0.83 0.89 / 0.75 0.82 / 0.85 0.85 / 0.79
UNSW-NB15 srcip-dport Level 1 100 / 60 0.82 0.84 / 0.80 0.83 / 0.81 0.84 / 0.81
UNSW-NB15 srcip-dport Level 2 100 / 60 0.81 0.91 / 0.70 0.78 / 0.87 0.84 / 0.78
UNSW-NB15 srcip-dport Level 1 200 / 300 0.83 0.83 / 0.82 0.85 / 0.79 0.84 / 0.81
UNSW-NB15 srcip-dport Level 2 200 / 300 0.83 0.90 / 0.74 0.81 / 0.85 0.85 / 0.79
CIC-DDoS2019 dstip Level 1 100 / 60 0.99 0.92 / 0.99 0.99 / 0.99 0.96 / 0.99
CIC-DDoS2019 dstip Level 2 100 / 60 0.99 0.93 / 0.99 0.99 / 0.99 0.96 / 0.99
CIC-DDoS2019 dstip Level 1 200 / 300 0.96 0.61 / 0.99 0.99 / 0.96 0.76 / 0.99
CIC-DDoS2019 dstip Level 2 200 / 300 0.97 0.70 / 0.99 0.99 / 0.97 0.82 / 0.99
CIC-DDoS2019 srcip Level 1 100 / 60 0.98 0.90 / 0.99 0.99 / 0.97 0.95 / 0.99
CIC-DDoS2019 srcip Level 2 100 / 60 0.98 0.91 / 0.99 0.99 / 0.97 0.95 / 0.99
CIC-DDoS2019 srcip Level 1 200 / 300 0.96 0.77 / 0.99 0.99 / 0.95 0.87 / 0.97
CIC-DDoS2019 srcip Level 2 200 / 300 0.96 0.79 / 0.99 0.99 / 0.95 0.88 / 0.98

1 dstip-dport: Destination IP - Destination Port. srcip-dport: Source IP - Destination Port.
2 Packet count used / detection for next k seconds
3 Metrics given as (normal / attack)

As a result of our experiments, we have success-
fully managed to propose a system that runs with an
LSTM-based model and is capable of detecting 82%
of DDoS attacks 300 seconds in advance. We chose
to use two different datasets from the literature and in-
tentionally picked these with different characteristics

in terms of attack traffic density. However they both
are synthetically generated, and in turn, we could not
fully observe how the performance of our proposed
model would be in real life. As a future work of this
study, running similar models on network data col-
lected from real environments will be pursued. Ad-
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ditionally, using this as an SIEM system component
designed for detecting DDoS attacks in a real-life sys-
tem, and evaluating its performance together with the
experts could be future research directions. This way,
we could evaluate how such systems reduce network
security costs and benefit to incident response teams.
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