Efficient Use of Large Language Models for Analysis of Text Corpora

David Adamczyk' ©? and Jan Hila!2®P

Unstitute for Research and Applications of Fuzzy Modeling, University of Ostrava, Ostrava, 701 03, Czech Republic

Keywords:

Abstract:

2Czech Technical University in Prague, Prague, Czechia, Czech Republic

Large Language Models, Embeddings, Word Representations, Sentence Classification, Efficient Pipeline.

In this paper, we propose an efficient approach for tracking a given phenomenon in a corpus using natural
language processing (NLP) methods. The topic of tracking phenomena in a corpus is important, especially in
the fields of sociology, psychology, and economics, which study human behavior in society. Unlike existing
approaches that rely on universal large language models (LLMs), which are computationally expensive, we
focus on using computationally less expensive methods. These methods allow for high data processing speed
while maintaining high accuracy. Our approach is inspired by the cascade approach to optimization, where
we first roughly filter out unwanted information and then gradually use more accurate models, which are
computationally more expensive. In this way, we are able to process large amounts of data with high accuracy
using different models, while also reducing the overall cost of computations. To demonstrate the proposed
method, we chose a task that consists of finding the frequency of occurrence of a certain phenomenon in a
large text corpus, which is divided into individual months of the year. In practice, this means that we can, for
example, use Internet discussions to find out how much people are discussing a particular topic. The entire
solution is presented as a pipeline, which consists of individual phases that successively process text data using

methods selected to minimize the overall cost of processing all data.

1 INTRODUCTION

In this work, we present an efficient text mining
pipeline for large text corpora. Text mining is a pro-
cess of extracting knowledge from unstructured text
data. It can be used to identify patterns and trends
in large text corpora, extract keywords and phrases,
classify text into different categories, and summarize
the content of text documents. It has a wide range
of applications, including market research, customer
sentiment analysis, and fraud detection.

With the growing popularity of Large Language
Models (LLMs), which excel in natural language pro-
cessing tasks, there is an increasing demand for these
applications because new opportunities become avail-
able. However, instead of relying solely on LLMs,
our aim is to design efficient pipelines that have much
lower hardware requirements and create models spe-
cialized for a given task. Our work focuses on pro-
cessing large text corpora of a given domain and we
are interested in tracking various phenomena in these
corpora. Concretely, we are interested in tracking a

https://orcid.org/0000-0002-7794-104X
@ https://orcid.org/0000-0001-7639-864X

Adamczyk, D. and Hula, J.

Efficient Use of Large Language Models for Analysis of Text Corpora.
DOI: 10.5220/0012349800003654

Paper published under CC license (CC BY-NC-ND 4.0)

given phenomenon in time.

Such problems may arise in various fields such
as sociology, psychology, or economics, where re-
searchers may be interested in analyzing the beliefs or
opinions of a population through an analysis of online
discussions. For example, one can study how opin-
ions about a given topic change in connection with
a given event. It is clear that if an event is very im-
portant, people will talk about it online and express
their opinions. By analyzing online discussions, we
can track the opinions of people and get a better un-
derstanding of how they perceive the event.

The essence of our approach is to gradually apply
several classification methods in order to effectively
balance computational cost and the speed of computa-
tion. The task we chose to demonstrate our proposed
approach is to calculate the frequencies of a moni-
tored event in individual months. In simple terms, we
want to count how often people discuss topics such
as political elections or weather in given months. For
this purpose, we will use a data set containing com-
ments from social networks, where individual com-
ments are divided by month from 2019 to 2022. A
naive approach is to perform inference for each com-
ment using a large language model. Such an approach

695

In Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2024), pages 695-705

ISBN: 978-989-758-684-2; ISSN: 2184-4313

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.



ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

is both very expensive and time-consuming. We want
to use a combination of techniques, where some ex-
cel in high speed and low computational cost but have
lower accuracy, while other techniques excel in high
accuracy but are computationally very demanding. A
cascade of these techniques forms a pipeline that first
very cheaply and quickly filters out irrelevant com-
ments and then gradually processes a smaller amount
using more accurate techniques so that the entire pro-
cess is accurate and at the same time fast with the low-
est possible computational cost.

2 RELATED WORK

Modern quantitative text analysis in sociology is
largely based on research in mass communication that
focused on the press and political propaganda in the
1930s and 1940s (Krippendorff, 2018).

In recent years, the development of natural lan-
guage processing and machine learning has offered
new opportunities for using computers for text anal-
ysis in the social sciences. Many of these methods
are described in (Macanovic, 2022), which divides the
main approaches into several categories.

The identification of phenomena in large lan-
guage corpora (Sporlein and Schlueter, 2021) used
a dictionary-based method to analyze text data from
YouTube comments on migration-related videos to
study the development of ethnic slurs against multi-
ple minority groups during the large influx of refugees
to Germany in 2015. Topic modeling is increas-
ingly being used in the humanities, literary studies,
history, and also in political science (Tornberg and
Tornberg, 2016). Many of these approaches use LDA
or Bayesian approaches to infer latent topics in news
articles, scientific journals, or blog posts.

There are analyses that focus directly on the use
of large language models in the context of their use
for the analysis of large amounts of data. Individual
analyses can also be thematically focused according
to the analyzed domain. The topic of global warm-
ing and the use of ChatGPT is addressed by (Biswas,
2023a). Another interesting domain could be the use
in healthcare (Biswas, 2023b), (Patel and Lam, 2023).
These analyses focus specifically on the use of Chat-
GPT.

Some users consider language models to be dis-
ruptive technologies, and their use is evident not
only in academia and education. The purpose of
the study (Tornberg, 2023) is to analyze data from
the LinkedIn network in the form of user comments
about the ChatGPT tool. This study shows that pla-
giarism, references, citations, and reviews of the liter-

696

ature are among the topics that raise the greatest con-
cerns among these users.

Another analysis of ChatGPT users from a group
of academics is presented in (Bukar et al., 2023). This
analysis shows a division of the academic community
into a group of enthusiasts and a group that has sig-
nificant reservations about the use of LLMs. Among
other things, it can be inferred from the comments that
a large part of the users are very impressed with Chat-
GPT’s performance and its potential to help with ac-
tivities related to research, data science, data analysis,
or writing. However, the use of this tool also raises
many ethical questions among users, especially in the
educational sector, where some activities such as writ-
ing essays may be disrupted.

The use of language models (LMs) in sociological
research is described in (Jensen et al., 2022). The au-
thors show that LMs are well-suited for tasks where
researchers are interested in a specific minority group
and cannot obtain a large amount of training data.
Their illustrative analysis contributes to the sociolog-
ical study of religion. They demonstrate that the pro-
posed method is a cheap and unobtrusive way to mea-
sure religiosity in a large population in a large geo-
graphic area. Although data annotation can be very
expensive, the described method is very affordable,
requiring only a few thousand annotations to classify
datasets of up to 10 million observations. Of note
is the high versatility of the described method. The
approach is applicable in any environment where re-
searchers want to unobtrusively measure attitudes and
beliefs, but surveys can be very expensive and high-
quality data are scarce.

Our goal is to analyze information using tools
such as LLMs, similar to the studies mentioned above.
However, we want to take a different approach than
simply using these tools for a given text analysis task.
Our contribution is the proposal of a method that de-
scribes how to perform these analyses using efficient
algorithms with much lower computational resource
requirements and overall operating costs.

3 OUR PIPELINE

Our goal is to track a given phenomenon described by
a phrase in a text corpus. To generalize the proposed
procedure and describe it in a clear and concise way,
we decided to design it in the form of a pipeline. This
allows us to fully control the data flow between the
individual pipeline components. Due to the reusabil-
ity of individual functional blocks, we decided to di-
vide the entire pipeline into three separate parts. We
will thus have a separate part for creating the dataset,



a separate part for training the model, and a separate
part for inference.

3.1 Pipeline for Creating a Dataset

1. The user selects keywords

2. We will select words that are semantically similar
to the selected keywords from the corpus

3. The resulting set of words is used to select sen-
tences from the corpus in which a word from the
set occurs.

4. We will compute embeddings for the selected sen-
tences

5. We will apply the FacilityLocation algorithm to
obtain a representative sample of data

6. We will visualize this representative sample of
data using the Atlas library for further analysis of
these data

7. We will create a dataset from the selected sen-
tences using LabelStudio, Atlas, or automatically
using the OpenAl APIL.

3.2 Pipeline for Training a Model

1. We will fine-tune the Flan-T5 model on the
dataset created by the previous pipeline

2. We will perform model distillation of the trained
Flan-T5 model to a smaller model

3.3 Pipeline for Tracking a Given
Phenomenon in a Corpus

1. We need to select all sentences that contain a key-
word or a word with a similar meaning

2. We will perform the classification of the selected
sentences using a distilled (small) model

3. We will compare the confidence scores. If the
confidence score for a given sentence is low, we
will perform the classification using the large
Flan-T5 model.

3.4 Creating a Dataset

We need to create a dataset that will be used to train
a model, which will then be used to track a phe-
nomenon of our choice in the corpus. This requires us
to first select all potentially relevant sentences from
the corpus, which can be easily done by identifying
words that describe the phenomenon and then select-
ing sentences that contain those words. This is the

Efficient Use of Large Language Models for Analysis of Text Corpora

most crude method of filtering the data and may omit
relevant sentences. Nevertheless, the user may in-
clude as many words as he wants and, by this, con-
trol the recall. We expect the user to be able to deter-
mine which keywords are of interest to them. Because
the corpus may contain similar words with the same
meaning, we first want to determine a complete set of
words on the basis of which we will filter sentences.
We will determine the complete set of words using se-
mantic similarity with the use of vector embeddings.

3.4.1 World Selection

First, we identify the individual words that describe
the phenomenon to be tracked. The number of these
words may vary depending on the context of the phe-
nomenon, for example, from 5 to 20. Because there
are often words that are similar or have the same
meaning, we want to find such words in the corpus
and take them into account. To work effectively with
words from a semantic perspective, it is necessary to
choose a suitable representation of these words. A
commonly used approach is to convert words into
their vector representation. These vectors are de-
signed to capture hidden information about the lan-
guage or analogies between words and the semantic
meaning of these words. The FastText library has
pre-trained models for 157 languages (Grave et al.,
2018). These models are freely available online, so
they are suitable for our use. We will extract only
unique words from our corpus and convert them to
their vector representation using the FastText library.

In this step, we obtain a vector representation of
all unique words from the given corpus, as well as a
vector representation of the words we selected. To
select words from the corpus that are similar to the
words we selected, we will use these vectors and cal-
culate the cosine distance between the selected words
and the words from the corpus. In this way, we will
select the most similar semantic words n to each of
the selected words using the cosine distance. In our
case n = 10. This can be done inexpensively using
libraries, such as HNSWLIB. HNSWLIB is based on
the Hierarchical Navigable Small World (HNSW) al-
gorithm (Malkov and Yashunin, 2018), which facili-
tates a fast approximate search for nearest neighbors.
By creating a multilayer structure of navigable small-
world graphs, HNSWLIB can quickly traverse data
and identify the nearest data points, which is espe-
cially useful for applications for large datasets where
speed and accuracy are critical.

The uppermost layers contain sparse data, allow-
ing rapid navigation over large distances, while the
lower layers become increasingly dense, allowing for
finer navigation. When a search query is initiated,

697



ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

the algorithm begins from the top layer and traverses
down, focusing on the approximate nearest neighbors
in an efficient manner. With the help of HNSWLIB,
we can retrieve semantically relevant words in a few
milliseconds.

3.4.2 Selection of Training Sentence

The purpose of this step is to filter out sentences that
are not relevant to our target task. We have a set of
selected keywords, and the fastest solution is to se-
lect only those sentences that contain at least one of
the selected keywords. Due to such a rough filtering,
which is also very fast, we can only work with rele-
vant data in the next steps, which significantly affects
the speed of the entire pipeline.

From the perspective of our main task, which is to
calculate the frequency of occurrence of a given phe-
nomenon in individual months, we are currently able
to go through selected sentences that contain selected
words, but we are not able to accurately determine
whether these sentences refer to our phenomenon.
This is because a single word can appear in differ-
ent contexts and thus change the meaning of the sen-
tence. Therefore, we would like to further identify
only those sentences that semantically correspond to
this phenomenon. A possible solution is to use a clas-
sifier. We want to train this classifier to accurately
identify our phenomenon, thus further removing irrel-
evant sentences that contain the selected words but are
in a different context. In the following steps, we want
to fully focus on assembling the dataset and training
the model.

As can be seen in Figure 1, the embeddings
form clusters based on their semantic similarity. We
would like to create a training dataset from sen-
tences that well represent these clusters. Therefore,
we select representative sentences in such a way that
their neighborhoods cover most of the embedded sen-
tences. This can be formalized as a facility location
problem that can be approximately solved with algo-
rithms for submodular optimization.

Submodular optimization is a mathematical
framework for finding the best subset of a set of el-
ements, such as data points, features, or tasks. Algo-
rithms for submodular optimization can be accessed
from Python libraries such as Apricot (Schreiber
et al., 2020). Apricot provides a variety of algorithms
for submodular optimization, including greedy algo-
rithms, local search algorithms, and approximation
algorithms. It also includes a number of features to
visualize and evaluate the results of submodular opti-
mization.

Facility location functions (Krause and Golovin,
2014) are a category of submodular functions that,

698

when maximized, select data points that aptly repre-
sent the entire data space. The principle behind the fa-
cility location function is the optimization of pairwise
similarities between the data points and their closest
selected point. It is imperative for the similarity met-
ric, although user-specified, to remain non-negative;
a higher value suggests increased similarity. Optimiz-
ing a facility location function can be seen as a more
greedy variant of the k-medoids algorithm. After the
initial data points are selected, subsequent selections
tend to be in the cluster centers. This function, simi-
lar to many graph-based functions, operates on a pair-
wise similarity matrix. It progressively selects points
that are more similar to those points whose most sim-
ilar counterparts remain quite dissimilar. In other
words, the data points chosen in subsequent stages
tend to represent the less represented sections of the
data. The mathematical representation of a facility lo-
cation function is:

FX,Y) =Y maxo(x,y) (1)

yey xeX

In the equation 1, f represents the function, X denotes
a subset, Y signifies the ground set, and ¢ embodies
the similarity measure between two points.

In our case, the ground set Y is the set of all sen-
tences and the subset X is the set of sentences that
we want to use for the training dataset. Therefore,
we want to minimize the function f(X,Y) over dif-
ferent choices of X. The similarity of sentences ¢
can be measured using the cosine distance between
the embeddings of sentences. To create the embed-
dings, we use the pre-trained model all-mpnet-base-
v2 (Song et al., 2020) from the Sentence Transform-
ers library (Reimers and Gurevych, 2019).

3.4.3 Data Labeling

Once we have a representative sample of sentences,
we need to label them so we can use the sentences
to fine-tune a pre-trained classifier. In Section 4, we
will demonstrate our pipeline on two examples used
to check whether it produces expected results. In
one of these examples, we track the occurrence of
sentences that express an opinion about the current
weather. Therefore, we need the classifier to distin-
guish whether a given sentence/comment is about the
weather or not. The proposed labels can thus have
values of Weather or Irrelevant. For a more detailed
division, we can choose labels such as Hot, Cold, Ir-
relevant, thereby teaching the model to also distin-
guish whether a given sentence/comment implies that
the temperature is high/low. We used three different
ways to label the sentences. Given the available tech-
nologies, we would like to give users the maximum



possible control over the assignment of labels to indi-
vidual sentences, but at the same time, we want to fo-
cus on an appropriate level of automation. Therefore,
it seems appropriate to allow for the use of multiple
approaches. The most expensive way to label is to
manually assign a label to each sentence based on the
judgment of an expert user. This can be supplemented
by other approaches that allow for partial automation,
such as finding clusters and labeling whole clusters
instead of individual examples. Finally, we have the
most automatic way to assign labels to sentences, for
example using the OpenAl APL

Manual Labeling. This kind of labeling gives the
user maximum control over the quality of the labels.
There is a wide range of software available for man-
ual labeling, and some of them allow the use of pre-
trained models, which can significantly simplify the
task. In our case, we used LabelStudio, in which we
uploaded a pre-prepared dataset containing 250 se-
lected sentences and assigned the appropriate class to
each sentence after reading it.

Labeling with OpenAI API. To maximize the au-
tomation of labeling, one can also use one of the ex-
isting commercial LLMs. In our case, we used the
OpenAl API to label another 200 selected sentences.

Labeling with Atlas. As a result of the previous
step described in Section 3.4.2, we have access to
sentence embeddings and their corresponding sen-
tences. We would like to analyze these data and po-
tentially perform topic modeling, clustering, and se-
mantic search on them. Individual sentences that form
clusters have high semantic similarity. This informa-
tion can be used for dataset construction, as it will
facilitate labeling and allow us to easily label all sen-
tences from a single cluster with a single label. In
figure 1, you can see the individual embedding clus-
ters that were obtained as part of the experiment in
Section 4.1.

This visualization was generated using the Nom-
icAl Atlas tool, which is used for the analysis and
visualization of multidimensional vector representa-
tions in a two-dimensional space and provides tools
suitable for the creation of datasets.

3.5 Training a Model

The model is the core of our entire pipeline, so it is
crucial to choose the right architecture that meets the
requirements of the tasks the model will be process-
ing. It is also essential to assemble a suitable dataset
on which the model will be trained.

Efficient Use of Large Language Models for Analysis of Text Corpora

Figure 1: The sentence clusters utilized in the experiment
4.1.

The Flan-T5 model was published in (Chung
et al., 2022). It is an instruction-finetuned version of
the TS model (Raffel et al., 2020), a popular LLM
encoder-decoder model. This extension was created
by applying the Flan finetuning procedure (Finetun-
ing language models (Wei et al., 2021)), which means
that the model is trained on a mixture of tasks, includ-
ing text generation, translation, summarization, and
question answering. As a result, it is able to perform
a variety of NLP tasks without explicit prior training
on the given task or is able to perform tasks with a
few examples by in-context learning.

3.5.1 Low-Rank Adaption

Currently, the most common approach to training
Large Language Models (LLMs) is to pre-train them
on a general data domain and then adapt the model
to a specific domain or task. With the rise of large
LLMs, it is very computationally expensive to per-
form full fine-tuning of all the network parameters.

A technique called Low-Rank Adaptation (LoRA)
(Hu et al., 2021) allows us to freeze the pre-trained
weights of the model and then inject trainable rank
decomposition matrices into each layer of the Trans-
former architecture. This allows us to very effectively
minimize the number of trainable parameters for a
given task.

Advantages:

e The pre-trained model can be shared and used
to assemble many other small LoRA modules

699



ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

for different tasks. We can freeze the shared
model and effectively switch between different
tasks simply by replacing the A and B matrices.
This also has a significant effect on the utilization
of computational resources and disk space.

The training itself is also much more efficient, be-
cause LoRA does not need to compute gradients
or maintain the state of the optimizer for a large
number of parameters. Instead, it only optimizes
the injected low-rank matrices, which are much
smaller.

A Flan-T5 XXL model with 11B parameters was
selected for training. To train with the LoORA method,
we used the Peft library (Mangrulkar et al., 2022).
Due to the size of the model, it was necessary to use
the ability to split the model across multiple GPUs
using the Accelerate library (Sylvain Gugger, 2022).

For each experiment, the model was trained with
the prompts described in Section 3.5.2. The model
distillation process is then described in Section 3.5.3.

3.5.2 Prompt Construction

The way we communicate with large language mod-
els (LLMs) is by providing a specific instruction
based on our requirements for the output. This in-
struction is called a prompt. By creating a good
prompt, we can guide the LLM to generate content
that meets our specific requirements, reduce training
costs, improve productivity, and ensure good perfor-
mance. In other words, the prompt is the key to get-
ting the most out of LLMs. By taking the time to write
a clear and concise prompt, we can help the LLM to
understand what we want and generate the best possi-
ble output.

Each prompt represents an instruction (Zhang
et al., 2023) consisting of three parts: the instruction,
which specifies the given task in a sequence of nat-
ural language, the input text {input_text}, which in
our case represents a given sentence or comment in
the corpus, and the expected output, which can be, for
example, a set of possible classes into which we can
classify the sentence or comment on the input.

The above prompts 2 were used for individual ex-
periments for the training and inference of the Flan-
TS model.

3.5.3 Model Distillation

Model distillation is a machine learning technique to
transfer the knowledge learned by a large and com-
plex model to a smaller and simpler model. This is
typically done by training the smaller model to pre-
dict the outputs of the larger model. Model distillation

700

text: {input_text} Is this text about
political election?
Options:

-Yes

-No

text: {input_text}
Does the text imply a hot weather,
cold weather or is not about weather.
Options:

-Hot

-Cold

-Irrelevant

Figure 2: Examples of used prompts: Top: prompt for an
experiment tracking political election discussion, Bottom:
prompt for an experiment tracking weather discussion.

has several advantages, including reducing the size
and complexity of large models, improving the per-
formance of small models, and increasing the robust-
ness of models to noise and adversarial attacks. How-
ever, model distillation also has some disadvantages,
such as being computationally expensive to train, es-
pecially for large and complex models, and distilled
models can be less robust than the original models
and may not perform as well on tasks that were not ex-
plicitly considered during training. In general, model
distillation is a powerful technique that can be used
to improve the performance, reduce the size, and in-
crease the robustness of machine learning models.

Methods such as parameter-efficient fine tuning
(PEFT) and pattern-exploiting training (PET) achieve
very good results in the training of Large Language
Models (LLMs). However, they are difficult to use
because they are exposed to high variability in man-
ually created prompts and typically require billion-
parameter language models to achieve high accuracy.
These drawbacks are addressed by an efficient and
prompt-free framework for few-shot fine-tuning of
Sentence Transformers (ST), called Sentence Trans-
former Fine-Tuning (SetFit) (Tunstall et al., 2022).
This simple framework requires no prompts for train-
ing or inference, and achieves high accuracy with an
order of magnitude fewer parameters and an order of
magnitude shorter training time.

As mentioned above, the technique is built on top
of models from the Sentence Transformer family, so
it is advisable to use a model that is supported within
this framework directly. Comparison in (Reimers and
Gurevych, 2019) shows that the all-mpnet-base-v2
model is the best rated in terms of quality.



3.6 Pipeline for Tracking Phenomenon

This phase requires processing the entire corpus, so
we want it to be as fast as possible. It is advisable to
process the corpus at several levels of granularity. The
first step is to select only relevant sentences from the
entire corpus. This process is identical to the selection
of sentences from the first pipeline. This will signif-
icantly reduce the number of sentences for which we
will perform inference. We then classify the selected
sentences as the second step using a distilled model.
The third step is to correct for those predictions
for which the distilled model is not confident. Here, it
is crucial to choose a threshold in a suitable way with
which we will compare the confidence that the model
returns for each predicted sentence. For each task, it is
necessary to analyze all the predictions and determine
the threshold value based on this analysis. Thanks
to the appropriately chosen threshold value, we will
only perform predictions with a large model for those
sentences for which it is absolutely necessary, and we
assume that there will be few of these sentences.

4 EXPERIMENTS

To demonstrate the results of our approach, we per-
formed two experiments. We selected experiments
that follow discussions about weather and political
elections because the results of these experiments are
easily verifiable. Both experiments were built on the
same pipeline, with the same models, and on the same
dataset. The dataset contains sentences from social
media collected from 2019 to 2022. The sentences
are also divided into individual months in each year.
On average, there are 4.5 million sentences available
per month. The entire dataset for all years contains
over 200 million sentences. The specific number of
sentences for individual years can be found in Table
1.

Table 1: Dataset sentences per year.

| Year | Sentences |

2019 | 54442253
2020 | 54715529
2021 | 54741599
2022 | 54456946

4.1 Political Elections

A use case for this experiment is that a user wants to
find out how much people comment about political
elections on social media in different months. This

Efficient Use of Large Language Models for Analysis of Text Corpora

is the simplest version of the experiment, where we
only look for sentences that are related to political
elections. On the other hand, we want to exclude all
sentences that are not related to political elections. In
essence, we want to verify the functionality of our
proposed approach in this experiment. For this ex-
periment, we have selected the keywords “election”
and “vote”, which we expect to be the most com-
mon words and semantically similar words in political
comments.

Table 2: FastText based filtering for political election exper-
iment.

] Year H 2019 \ 2020 \ 2021 \ 2022 \
Time 15.72s | 15.24s | 18.0s | 16.44s
Sentences || 42332 | 58949 | 34493 | 32412

Table 3: SetFit based filtering performance.

Year 2019 2020 2021 2022
Time || 50.80s | 68.75s | 43.51s | 38.93s

You can find information about the performance
of the individual pipeline components in table 2,
which provides information about how many sen-
tences the FastText algorithm selected based on the
given requirements and how long the filtering took.
You can see the times for classifying sentences using
the SetFit model in Table 3.

4.2 Discussion About Weather

Table 4: FastText based filtering.

[ Year [ 2019 | 2020 | 2021 [ 2022 |
Time 79.8s | 82.56s | 83.28s | 89.28s
Sentences || 161747 | 152994 | 157420 | 161617

Table 5: SetFit based filtering performance.

Year 2019 2020 2021 2022
Time || 219.54s | 212.42s | 215.45s | 216.41s

In the second experiment, we would like to analyze
user discussions about the weather in relation to the
individual months of the year. We expect that the
discussion will change over the course of the year and
that in hot months, discussion about hot weather will
be more frequent than discussion about cold weather,
while in cold months, discussion about cold weather
will be more frequent than discussion about hot
weather. For this experiment, we selected the follow-
ing keywords: heatwave, sunny, wildfire,
muggy, wet, windy, tornado, cloudy, rain,
rainy, weather, beach.

701



ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

5 RESULTS

We verified the above experiments on the dataset de-
scribed in 4. In practice, this involves determining the
frequency of occurrence of the observed phenomenon
in a corpus of text divided into 12 months for the years
2019 to 2022. For the tracking of political elections,
you can see the frequency of occurrence of such a dis-
cussion in Figure 3, 4, 5, 6. Since the original data
source is the social network Reddit and the majority
of the discussants come from the United States, we
can infer the following phenomena:

* The 2020 United States Presidential Election.
Joe Biden defeated Donald Trump and became the
46th president of the United States.

* The 2022 United States House of Represen-
tatives Elections. Republicans won a major-
ity in the House of Representatives, ending the
Democrats’ two-year majority

* The 2022 United States Senate Elections.
Democrats maintained a narrow majority in the
Senate.

Specific events may be relevant for specific
months:

e May 2020. In this month, the 2020 United States
presidential primary elections took place.

* September 2020. In this month, the presiden-
tial debates between Joe Biden and Donald Trump
took place.

* November 2020. The 2020 United States presi-
dential election took place in this month.

February 2022. The 2022 United States House
of Representatives elections took place in this
month.

April 2022. In this month, the 2022 United States
Senate primary elections took place.

¢ November 2022. The 2022 United States Senate
elections took place in this month.

The results of the second experiment, which are
described in 4.2, can be seen in figure 7, 8, 9, 10.
This experiment was about people’s discussions of
hot summer weather and cold winter weather. The
graphs show that the frequency of these discussions
corresponds to the seasons of the year. In the winter,
people discuss cold weather more often, and in the
summer, they discuss hot weather more often.

Next, we summarize our experiments in terms of
performance, which we believe is the biggest bene-
fit of the proposed approach. All experiments were
conducted on an NVIDIA DGX-1 machine. Due to
the size of the Flan-T5 model in the XXL version,

702

Frequency of political election comments per year 2019
T T T T T T T 28628

30000

T T T
BN Election comments

25000

20000

15000

Frequency

10000 +

5000

Jan  Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Months

Figure 3: Results for political election discussion, year
2019.

Frequency of political election comments per year 2020
T T T T T T

T T T T
12387
BN Election comments

40000 |
35000 [

30000 -

ncy

£ 25000

que

= 20000 - 1800

Fre

15000 -1 BB 8B BB 8B 8B 8B BB

10000 -

5000 -

0
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Months

Figure 4: Results for political election discussion, year
2020.

Frequency of political election comments per year 2021
T T T T T T T

T T T
BN Election comments

17500 [

15000

12500

10000

Frequency

7500

5000 [

2500

0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Months

Figure 5: Results for political election discussion, year
2021.

which uses 11B parameters, all 8 graphics cards were
used. One graphics card was used to work with the
SetFit model. First, we would like to emphasize that
the dataset used, described in section 4, contains a to-
tal of 218,356,327 sentences. For the prediction of
the Flan-TS5 model, we achieved an average time of



Frequency of political election comments per year 2022
T T

T T T
L4329 1445

B Election comments

14000

13079

12000

10483

10000
9212

8000

Frequency

6000

4000

2000

Jan  Feb Mar Apr May Jun Jul

Months

Aug  Sep Oct Nov Dec

Figure
2022.

6: Results for political election discussion, year

25000

20000

Efficient Use of Large Language Models for Analysis of Text Corpora

Hot/Cold frequency per year 2021

T
- Cold

17500 —--Hot

15050

15000

12500

" 10000

Frequency

7500

5000

2500

Jan  Feb Mar Apr May Jun Jul

Months

Aug  Sep

Oct  Nov  Dec

Figure 9: Results for discussion about the weather, year

2021.

Hot/Cold frequency per year 2022
T T T T T T

T T
. Hot | WM Cold

20000

17500

15000

F-17042

16342

2is

16296

15000

Frequency

10000

5000

Figure
2019.

Jan  Feb

7: Results for discussion about the

Mar

Apr  May Jun Jul
Months

Aug  Sep Oct Nov Dec

weather, year

16000
14000
12000
2 10000

8000

Frequen

6000

4000

2000

0

Hot/Cold frequency per year 2020
T

T
. Cold

16037

Jan  Feb

Mar

Apr  May Jun  Jul
Months

Aug  Sep Oct Nov Dec

12194
12500 [

11436 11360 11416

Frequency

10000 : B 9306 §----058322 ]
7500
5000 [

IO B B B BN B B B B B BN BN B

0

Jan  Feb Mar Apr May Jun Jul

Months

Aug  Sep Oct Nov Dec

Figure 10: Results for discussion about the weather, year
2022.

time of 67 hours. Here, you can see the strength of
the proposed solution, when we first select the desired
sentences, which are orders of magnitude fewer, us-
ing a very fast filtering process. We then apply the
prediction to this set using the SetFit model, which is
very fast. For sentences where the confidence of the
SetFit model is less than 0.98, we refine them using
the slower Flan-T5 model. Thanks to this, the overall
analysis can be very fast as you can see in table 6.

Table 6: Average filtering performance in minutes.

Figure 8: Results for discussion about the weather, year
2020.

0.2052 seconds, and for the prediction of the SetFit
model, we achieved an average time of 0.0011 sec-
onds. If we were to analyze the entire dataset using
only the Flan-T5 model, we would reach a total time
of 12,446 hours, and with the SetFit model, a total

| Experiment  [| FastText | SetFit | Flan-T5 |
Political Election 1.09m 3.08m | 230.07m
Weather 5.58m 11.61m | 671.93m

6 CONCLUSIONS

In this contribution, we presented a novel pipeline de-
sign for the analysis of extensive corpora, with an
emphasis on tracking specific phenomena. Our find-

703



ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

ings underscore the pivotal role of data preprocess-
ing, highlighting its impact on subsequent stages, es-
pecially when interfaced with LLMs. Our incremen-
tal approach offers several advantages, including flex-
ibility and the ability to adapt individual steps to align
with specific user goals. This ensures that users can
effectively sift through vast information sources, dif-
ferentiating between pertinent and non-pertinent data,
ultimately facilitating a more concentrated investiga-
tion of the investigated phenomenon.

However, we also acknowledge certain limitations
inherent in our approach. A significant challenge
is the preparatory phase of data curation and model
training, which we aim to alleviate in future iterations
through enhanced automation of the pipeline. Addi-
tionally, the Flan-TS model’s intensive hardware de-
mands underscore the time-intensive nature of analyz-
ing sizable corpora.

In spite of these challenges, we believe that our
approach has several advantages. Due to the way the
pipeline is designed, users are allowed to customize
the solution. Ultimately, users can decide for them-
selves how accurate they need the results at each step
and the associated computational cost of each step.
Thanks to this flexibility, it is possible for users to op-
timize the task according to their requirements, either
for computational cost and speed or for overall calcu-
lation accuracy.

ACKNOWLEDGEMENTS

The work is partially supported by grant SGS13/PiF-
MF/2023. This work was supported by the Ministry
of Education, Youth and Sports of the Czech Republic
through the e-INFRA CZ (ID:90254).

REFERENCES

Biswas, S. S. (2023a). Potential use of chat gpt in
global warming. Annals of biomedical engineering,
51(6):1126-1127.

Biswas, S. S. (2023b). Role of chat gpt in public health.
Annals of biomedical engineering, 51(5):868—869.

Bukar, U., Sayeed, M. S., Razak, S. F. A., Yogarayan, S.,
and Amodu, O. A. (2023). Text analysis of chatgpt as
a tool for academic progress or exploitation. Available
at SSRN 4381394.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fe-
dus, W., Li, E., Wang, X., Dehghani, M., Brahma, S.,
et al. (2022). Scaling instruction-finetuned language
models. arXiv preprint arXiv:2210.11416.

Grave, E., Bojanowski, P., Gupta, P., Joulin, A., and
Mikolov, T. (2018). Learning word vectors for

704

157 languages. In Proceedings of the International
Conference on Language Resources and Evaluation
(LREC 2018).

Hu, E. J.,, Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. (2021). Lora: Low-rank
adaptation of large language models. arXiv preprint
arXiv:2106.09685.

Jensen, J. L., Karell, D., Tanigawa-Lau, C., Habash, N.,
Oudah, M., and Fairus Shofia Fani, D. (2022). Lan-
guage models in sociological research: an application
to classitying large administrative data and measuring
religiosity. Sociological Methodology, 52(1):30-52.

Krause, A. and Golovin, D. (2014). Submodular function
maximization. Tractability, 3(71-104):3.

Krippendorff, K. (2018). Content analysis: An introduction
to its methodology. Sage publications.

Macanovic, A. (2022). Text mining for social science—the
state and the future of computational text analysis in
sociology. Social Science Research, 108:102784.

Malkov, Y. A. and Yashunin, D. A. (2018). Efficient and
robust approximate nearest neighbor search using hi-
erarchical navigable small world graphs. IEEE trans-
actions on pattern analysis and machine intelligence,
42(4):824-836.

Mangrulkar, S., Gugger, S., Debut, L., Belkada, Y., and
Paul, S. (2022). Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.com/h
uggingface/peft.

Patel, S. B. and Lam, K. (2023). Chatgpt: the future of
discharge summaries? The Lancet Digital Health,
5(3):e107—108.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. (2020).
Exploring the limits of transfer learning with a uni-
fied text-to-text transformer. The Journal of Machine
Learning Research, 21(1):5485-5551.

Reimers, N. and Gurevych, 1. (2019). Sentence-bert: Sen-
tence embeddings using siamese bert-networks. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Schreiber, J., Bilmes, J., and Noble, W. S. (2020). apri-
cot: Submodular selection for data summarization
in python. Journal of Machine Learning Research,
21(161):1-6.

Song, K., Tan, X., Qin, T., Lu, J., and Liu, T.-Y. (2020). Mp-
net: Masked and permuted pre-training for language
understanding. arXiv preprint arXiv:2004.09297.

Sporlein, C. and Schlueter, E. (2021). Ethnic insults in
youtube comments: Social contagion and selection ef-
fects during the german “refugee crisis”. European
Sociological Review, 37(3):411-428.

Sylvain Gugger, Lysandre Debut, T. W. P. S. Z. M. S. M. M.
S. B. B. (2022). Accelerate: Training and inference
at scale made simple, efficient and adaptable. https:
//github.com/huggingface/accelerate.

Tornberg, A. and Tornberg, P. (2016). Combining cda and
topic modeling: Analyzing discursive connections be-
tween islamophobia and anti-feminism on an online
forum. Discourse & Society, 27(4):401-422.



Tornberg, P. (2023). How to use llms for text analysis. arXiv
preprint arXiv:2307.13106.

Tunstall, L., Reimers, N., Jo, U. E. S., Bates, L., Korat,
D., Wasserblat, M., and Pereg, O. (2022). Efficient
few-shot learning without prompts. arXiv preprint
arXiv:2209.11055.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester,
B., Du, N., Dai, A. M., and Le, Q. V. (2021). Fine-
tuned language models are zero-shot learners. arXiv
preprint arXiv:2109.01652.

Zhang, S., Dong, L., Li, X., Zhang, S., Sun, X., Wang, S.,
Li, J., Hu, R., Zhang, T., Wu, E, et al. (2023). In-
struction tuning for large language models: A survey.
arXiv preprint arXiv:2308.10792.

Efficient Use of Large Language Models for Analysis of Text Corpora

705



