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Abstract: Video colorization is a challenging task, demanding deep learning models to employ diverse abstractions
for a comprehensive grasp of the task, ultimately yielding high-quality results. Currently, in example-based
colorization approaches, the use of attention processes and convolutional layers has proven to be the most
effective method to produce good results. Following this way, in this paper we propose Cosine Attention
Video Colorization (CAVC), which is an approach that uses a single attention head with shared weights to
produce a refinement of the monochromatic frame, as well as the cosine similarity between this sample and
the other channels present in the image. This entire process acts as a pre-processing of the data from our
autoencoder, which performs a feature fusion with the latent space extracted from the referent frame, as well
as with its histogram. This architecture was trained on the DAVIS, UVO and LDV datasets and achieved
superior results compared to state-of-the-art models in terms of FID metric in all the datasets.

1 INTRODUCTION

The process of colorization is present since the popu-
larization of analog photographs were originally had
produced in a grayscale, having register in the cen-
tury 14. As the photos, the videos are originally
produced without the presence of color in the se-
quence o frames. So currently due to the advances
of the computer vision we can create this informa-
tion that are missing in the original capture process-
ing. More specifically, the colorization was benefited
by the growth of the deep learning techniques, this
creating the area denoted Deep Learning Video Col-
orization (DLVC). This approach used the capacity
of models to learn the patterns present in the video
frames and a way to produce the missing information,
in this case the color.

Currently, in the literature is observed an in-
crease in the number of possible solution, as pre-
sented by Stival and Pedrini (2023) in which example-
based and fully automated colorization techniques
were being demonstrated, as well as the machine
learning techniques that are generally used in this
process. Another point that underscores the impor-
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tance of this area of research for the visual comput-
ing community can be observed in the New Trends in
Image Restoration and Enhancement (NTIRE) chal-
lenge (Kang et al., 2023), where solutions for video
colorization are proposed.

Nevertheless, despite the growth of research pa-
pers in the field of DLVC, several aspects remain open
for enhancement, with primary focus on elevating
color fidelity within sequences of frames and mitigat-
ing instances of color bleed, where object colors ex-
ceed their designated boundaries. The objective is to
improve the current state-of-the-art results, predomi-
nantly exemplified by the NTIRE challenge, while si-
multaneously devising innovative solutions to address
the existing shortcomings in current approaches.

Instead of merely augmenting the complexity of
existing models, our emphasis lies in introducing so-
lutions that leverage the problem-solving approach,
yielding enhancements that translate into tangible im-
provements in current outcomes. Hence, we introduce
two key innovations. Firstly, we leverage cosine sim-
ilarity to measure the alignment between each input
channel and the output of a singular attention module.
Secondly, we employ a shared-weight Transformer
block to process individual input channels, marking
another innovative stride in our approach. In the fol-
lowing sections, we delve into a more comprehensive
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description of our methodology, elucidating the im-
plementation details of each module.

The main contributions of our work are summa-
rized as follows:

(i) proposition of a Single Channel Attention (SCA)
method with shared weights, responsible for pro-
ducing a better feature space of the gray scale
frame and making the colorization of the frames
more accurate when compared to the original ver-
sion;

(ii) exploration of the benefits stemming from the uti-
lization of cosine similarity among the channels
within the scaled frame reveals that this novel fea-
ture space offers an improved input quality when
subjected to processing by the primary coloriza-
tion network;

(iii) creation of a channel-invariant input methodology
introduces a novel approach that can be adapted
for use in various computer vision tasks, even
when the number of channels is not uniform, ad-
dressing a broader spectrum of problems beyond
the immediate context;

(iv) validation of the use of color histograms in the
colorization process, demonstrating the signifi-
cant advantages yielded by this straightforward
technique within the DLVC process.

Our primary objective in this work was to surpass
the benchmarks provided by NTIRE. To achieve this,
we leveraged the methodologies outlined in prior re-
search contributions, introducing the Cosine Atten-
tion Video Colorization (CAVC) method. In essence,
our goals can be summarized as follows: to attain su-
perior results through the amalgamation of the SCA
technique, cosine similarity, and the utilization of
color histograms extracted from the reference image.

2 RELATED WORK

In this section, we provide an examination of the ref-
erences that have made significant contributions to
our research. We illustrate their relevance to DLVC
and illustrate examples of how these references have
enriched and complemented our methodology.

2.1 Colorization

When examining the current landscape of DLVC
approaches, two primary categories have garnered
significant attention: fully-automatic and reference-
based methods. In the former, no colorized frames are
provided as references during the inference process,

while the latter involves the use of colored frames as
references.

In this paper, we have chosen to align with the
example-based approach, wherein our methodology
involves the model’s prediction and the subsequent
propagation of color throughout the entire video.

2.2 Similarity

The practice of analyzing image similarity or repre-
senting images within latent spaces holds significant
prevalence in the field of visual computing. This
widespread adoption is primarily motivated by the ne-
cessity to quantitatively measure images while pre-
serving vital information related to textures and ob-
jects.

Prior to the emergence of deep learning, re-
searchers predominantly relied on methods that pri-
oritized pixel-level distances, including metrics like
Euclidean distance. Some advanced techniques, such
as those demonstrated in the work of Russakoff et al.
(2004), utilized Regional Mutual Information (RMI).
RMI is an approach that assesses the amalgamation
of pixels, image histograms, and the distribution of
evidential pixels to quantify image similarity.

Machine learning models deployed for computer
vision tasks predominantly rely on architectures that
prioritize pattern recognition during their training.
This trend has led to a near-complete displacement of
techniques that were not specifically tailored for deep
learning, underscoring the transformative impact of
deep learning approaches in this domain.

This shift in the paradigm of image similarity
analysis is conspicuous, as direct examination of
image data has given way to its representation in
latent spaces. An illustrative case can be found
in the research of Lee et al. (2023), which intro-
duced the Structural Embedding Network (SENet).
SENet adeptly combines image embeddings with
self-similarity information extracted from the frames,
exemplifying the evolution in image analysis tech-
niques.

Working within the domain of latent spaces, co-
sine similarity has emerged as a pivotal component in
studies requiring the generation of latent representa-
tions for samples. Its application involves comparing
these representations, with the aim of preserving the
proximity of similar samples while increasing the sep-
aration from negative samples within the new space.
Cosine similarity is a prevalent technique in computer
vision tasks, notably enhancing overall model per-
formance, particularly in scenarios where the latent
representations need to discern subtle distinctions in
small regions and intricate details within images, as

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

386



highlighted in the work developed by Nakagawa et al.
(2023).

3 PROPOSED VIDEO
COLORIZATION METHOD

Our methodology primarily focused on the creation of
a robust latent representation capable of encompass-
ing the requisite information for colorizing frames.
This approach has resulted in a potent method that
exhibits invariance to the number of input channels
and a pronounced ability to accentuate the similar-
ity and intricate details within an individual frame.
The colorization process is composed of a monochro-
matic frame, denoted as sg ∈ R3×H×W , and a refer-
ence frame, denoted as sr ∈ R3×H×W .

3.1 Model Architecture

Our colorization pipeline, known as CAVC, is con-
structed from three integral modules: Single Chan-
nel Attention (SCA), Color Extraction, and U-
Colorization. These modules interact as follows:
U-Colorization employs a conventional visual au-
toencoder architecture, featuring a pretrained Vision
Transformer (ViT) to extract color information from
the sr frame.

Our innovation is encapsulated in two pivotal as-
pects of the architecture. Firstly, the Single Channel
Attention (SCA) module plays a crucial role in pre-
processing all channels of sg, thereby elevating the
quality of feature representation. Secondly, we in-
troduce the concept of cosine similarity between the
inputs sg and the output of the SSA (Single Chan-
nel Attention) module. This information is concate-
nated and subsequently fed into the autoencoder. The
remainder of this section details the interactions be-
tween the modules and how they work internally.

3.1.1 Single Channel Attention

Creating a robust feature space for image represen-
tation is a pivotal aspect of computer vision, and the
same holds true for frame representation. In our pur-
suit of enhancing existing methods in the literature,
we introduce the Single Channel Attention (SCA)
module within our pipeline, positioned before the En-
coder. SCA serves as a preprocessing step, aiding
the Encoder in generating superior feature represen-
tations.

The functionality of SCA can be delineated into
two primary components. First, it performs an atten-
tion process on each channel of sg, yielding a new

feature space with identical dimensions to the input
channel, denoted as channelatt ∈ R1×H×W . An im-
portant aspect of the SCA implementation is its in-
variance to the number of channels present in the in-
put sample, achieved through the utilization of shared
weights. Consequently, SCA can be employed as a
texture enhancer in diverse domains where the num-
ber of input channels differs from the conventional 3
channels often found in visual computing models.

The second complementary aspect to the at-
tention process in the SCA module is the ap-
plication of cosine similarity between the current
channel being processed and the adjacent channel,
yielding channelsimilarity ∈ R1×H×W . This infor-
mation proves valuable in accentuating image de-
tails. Subsequently, we concatenate channelatt with
channelsimilarity to construct a new feature space, de-
noted as SCAfeatures ∈ R64×H×W . This feature space
effectively represents sg in a more robust manner for
the subsequent colorization process. The architecture
and information flow of SCA are illustrated in Fig-
ure 2.

Single Swin Attention Head

Channel Expansion

Cosine Similarity

C1
C2

C3

C1
C2

+

1xHxW

1xHxW

1xHxW

2xHxW

64xHxW

Similarity Features

Figure 1: The figure depicts the process of refining input
frame characteristics, situated before the U-Colorization en-
coder. It involves the Single Swin Attention Head ((a Trans-
former that has only one attention head with weights shared
between channels)), which processes each channel of sg to
generate channelatt. Subsequently, cosine similarity with
the next sg channel computes channelsimilarity, and the two
spaces are concatenated, expanding the sample channels by
64, serving as input to the coloring model.

3.1.2 Color Extraction

The quality of the feature space employed to represent
the colors within sr holds paramount importance for
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the model’s ability to discern the appropriate colors to
apply during frame colorization. To optimize this rep-
resentation’s quality, we chose to utilize a pre-trained
ViT model, specifically the vit b 32 implementation
available in the PyTorch library (Falbel, 2023). This
ViT model has been trained on the ImageNet dataset,
and we extract the output from its final layer in the
encoder. Consequently, the reference frame sr is
processed through this pre-trained network, yielding
a feature vector denoted as colorfeatures ∈ R50×768.
This representation is crucial to the decoding process
within our U-Colorization model.

3.1.3 U-Colorization

The frame coloring process was implemented through
an autoencoder approach, comprising four convolu-
tional layers and incorporating Swin attention mech-
anisms in both the encoder and decoder. In addition,
skip connections were established between these two
modules. Within this colorization architecture, there
are two noteworthy aspects that merit emphasis, as
they significantly contribute to the quality of the re-
sults.

The first noteworthy aspect involves the fusion of
color f eatures with the output of the encoder-generated
feature, enhancing the model’s comprehension of
color application. Additionally, a modification to the
original decoder architecture was made by incorpo-
rating the color histogram extracted from sr. This ad-
dition led to a marked improvement in color quality,
particularly for individual frames within the video.

In essence, U-Colorization entails two key com-
ponents: the encoder, responsible for creating a
feature space that captures essential characteristics
from the monochromatic input image sg, and the de-
coder, tasked with reconstructing this feature space
using inputs such as the encoder’s output, SCA f eatures,
color f eatures, and the color histogram derived from sr.
The CAVC pipeline, encompassing these stages, is
depicted in Figure 2.

4 EXPERIMENTS

For the evaluation of our method, we opted to employ
two metrics featured in the NTIRE challenge. The
first metric is the Fréchet Inception Distance (FID),
which assesses the quality of color within the frames.
The second metric is the Color Distribution Consis-
tency (CDC), which evaluates the effectiveness of
color propagation throughout the videos.

4.1 Datasets

To train the weights of CAVC and FCeB, we initially
conducted pre-training on the CAVC model using
the Densely Annotated Video Segmentation (DAVIS)
dataset (Voigtlaender et al., 2019). Following this
pre-training phase, we proceeded with fine-tuning on
the Large-scale Diverse Video (LDV) dataset (Yang
and Timofte, 2021) and an individual process in the
Unidentified video objects (UVO) Wang et al. (2021).

The DAVIS dataset encompasses 120 video se-
quences, segmented into 60 training videos, 30 val-
idation videos, and 30 test videos. Conversely, the
LDV dataset comprises 200 training videos and 20
validation videos and UVO for 5,000 videos for train-
ing and 250 for test. For the purpose of evaluating
our model, we exclusively utilize the DAVIS test set
and the LDV validation set at the first experiments and
UVO to check the generalization of the model.

4.2 Quantitative Methods

Our architecture underwent evaluation using two
prominent techniques that are prevalent in the lat-
est state-of-the-art methods in DLVC and the NTIRE
competition. This choice allows for a direct and
meaningful comparison of our results with other con-
temporary approaches. The utilization of both FID
and CDC proves to be highly effective, as FID as-
sesses the coloring quality within individual frames,
while CDC quantifies color propagation throughout
the video. Subsequent sections provide detailed in-
sights into the computation of both FID and CDC for
our test sets.

4.2.1 Fréchet Inception Distance

The Fréchet Inception Distance (FID), as introduced
by Heusel et al. (2017), is a metric that normalizes
its values within the range of 0 to 1. It assesses the
level of similarity between images, with a score of
0 signifying complete identity between the compared
images.

An advantage of using FID for colorization evalu-
ation is that it does not rely on a pixel-by-pixel com-
parison. Instead, it measures the similarity between
images in the latent space generated by a pre-trained
Inception V3 model (Szegedy et al., 2015).

4.2.2 Color Distribution Consistency

While FID serves as a valuable metric for assess-
ing colorization quality, an additional metric is essen-
tial to evaluate the consistency of color propagation
across video frames. To address this requirement, we
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U-Colorization

Color Extraction

Histogram

Figure 2: Overview of the complete colorization process, involving two input frames: the initial monochrome frame to be
colorized, denoted as sg, and the reference frame, denoted as sr. Initially, sg undergoes processing by the Single Channel
Attention (SCA) module, which extracts the SCA f eatures to serve as input for the U-Colorization model. Simultaneously, sr
is subjected to two color extraction modules, generating both the color f eatures and colorhistogram representations. These two
feature spaces are integrated with the output from the U-Colorization encoder. Following decoding, the result is represented
by the colored version, denoted as out put, of the initial sg frame.

opted for the Color Distribution Consistency (CDC)
metric.

Quality assessment within the CDC metric is con-
ducted using the Jensen-Shannon (JS) factor, which
evaluates consecutive frames to gauge the similarity
of color distribution between them. The resulting
value is normalized, ranging from 0 to 1, similar to
the FID metric. The calculation of CDC can be ex-
pressed as:

CDCt =
1

3× (N − t) ∑
c∈{r,g,b}

N−t

∑
i=1

JS(Pc(Ii),Pc(Ii+t))

where N represents the number of frames in the video.
Pc(Ii) denotes the normalized probability distribution
over the histogram of the image Ii across the color
channels (r,g,b). The parameter t is the temporal dis-
tance between frames being compared. Thus, the val-
ues of t are responsible for defining the window size
between the frames being evaluated.

To comprehensively evaluate the model’s capa-
bility to consistently propagate color across various
temporal distances, we employed the standard con-
figuration with three different intervals for t (t = 1,
t = 2, and t = 3). This approach allows us to as-
sess the model’s performance in propagating color
between nearby (short-term) and more distant (long-
term) frames effectively. The process is expressed as:

CDC =
1
3
(CDC1 +CDC2 +CDC4)

Hence, our choice of evaluating our model and its
various facets using both FID and CDC metrics serves
the purpose of highlighting improvements over the

current state-of-the-art methods. This comprehensive
evaluation approach allows us to demonstrate the ad-
vancements and effectiveness of our proposed model.

4.3 Training

The training of the CAVC modules was initiated with
the DAVIS dataset, encompassing 100 epochs, pri-
marily for pre-training purposes due to its smaller
size. Subsequently, the LDV dataset was employed
for 10 epochs to further refine the model results.
Overall, both phases of training were conducted
over 300,000 epochs, ensuring comprehensive model
training and optimization.

The input images were resized to dimensions of
256×256 to create batches that were well-suited for
our infrastructure. For optimization, we selected the
classic AdamW optimizer. The training process be-
gan with a learning rate of 10−4 and was linearly de-
cayed to 10−6 over the course of training. All exper-
iments were conducted on a Windows 11 computer
with the following hardware specifications: an AMD
Ryzen 5600g CPU featuring 12 cores running at 3.90
GHz and equipped with 32 GB of RAM. Additionally,
the system was equipped with an NVIDIA GeForce
GTX 1080 Ti GPU, which boasted 11,000 MB of
GDDR5 memory (NVIDIA et al., 2020).

5 RESULTS

We evaluated the quality of our model using the test
set from the DAVIS dataset and the validation set from
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LDV. This selection of datasets for evaluation was
made to ensure that our results remained comparable
to those presented in the NTIRE competition. The
quantitative results achieved in DAVIS dataset (test
set) and LDV dataset (validation set) are presented
in Table 1. The qualitative results obtained with the
proposed method in the DAVIS dataset are shown in
Figure 3.

Table 1: Results of our implementation on both the DAVIS
test set and the LDV validation dataset. These results
are compared with state-of-the-art methods from the liter-
ature and the NTIRE challenge. The methods considered
state of the art include BiSTNet (Zhang et al., 2019), Col-
orVid (Wan et al., 2020), and DeOldify (Salmona et al.,
2022).

DAVIS LDV Validation

Method FID↓ CDC↓ FID↓ CDC↓

BiSTNet 4.5e−4 5.9e−3 7.2e−4 3.3e−3

ColorVid 3.7e−4 4.6e−3 2.6e−4 2.7e−3

DeOldify 6.4e−4 5.2e−3 4.9e−4 3.8e−3

Ours 3.0e−4 5.0e−3 2.4e−4 1.9e−3

The Unidentified Video Objects (UVO) has used
to measure the capacity of the model to learn col-
orization in large datasets with very different scenes
and huge diversity of objects and colors. The training
is realized with 10 epochs in 5,000 videos and the test
has used 250 to evaluate. The results are presented in
the Table 2 and the qualitative results in Figure 4.

Table 2: Quantitative analysis comparing model results in
the UVO dataset was performed using our approach, BisT-
net, and ColorVid. The use of DeOldfy for testing was lim-
ited.

UVO

Method FID↓ CDC↓

ColorVid 1.15e−4 6.74e−3

BisTNet 1.97e−4 1.08e−2

Ours 1.69e−4 6.04e−3

6 ABLATION

During the development of this work, we identi-
fied various methods that could potentially enhance
the colorization process. In this section, we present
the alternative methods that were tested in lieu of
SCA and showcase the comparative improvements
achieved by our approach during the training phase
on the DAVIS dataset.

6.1 Cosine Similarity Impact

Initially, the SCA implementation did not incorporate
cosine similarity between the sg and channelatt chan-
nels. In practice, this omission resulted in the col-
orization process yielding inferior results compared
to the current ones.

The quantitative values for the evaluation metrics
achieved in the DAVIS dataset from this analysis are
presented in Table 3.

Table 3: Quantitative analysis that compares the effec-
tiveness of incorporating cosine similarity between the
channelatt and the adjacent channel in sg.

DAVIS

Method FID↓ CDC↓

With Similarity 4.35e−3 5.42e−2

Without Similarity 6.56e−3 5.73e−2

Examining the activation levels of the layers, we
can observe that the feature production effectively
preserves long-range textures and object shapes when
cosine similarity is applied between the output of
channelatt and the adjacent channel in sg, as depicted
in Figure 5.

6.2 Color Extraction Impact

Throughout the course of this work, the representa-
tion of colors present in sr was also thoroughly ex-
amined and evaluated. Initially, we opted to utilize
a pre-trained VGG-19 model, but the results did not
meet our expectations. As reported in Table 4, the
colorization results exhibited a substantial improve-
ment when we transitioned to a more robust and re-
cent model, specifically a ViT.

Table 4: Quantitative analysis that compares the model re-
sults when the color information from sr is extracted using
either VGG or ViT.

DAVIS

Method FID↓ CDC↓

VGG 7.5e−3 5.35e−2

VIT 5.69e−3 4.75e−2

6.3 Color Histogram

The decision to include a histogram of colors present
in sr occurred due to an issue encountered during im-
plementation, where some samples exhibited a low
presence of colors in frames. Consequently, the in-
clusion of the histogram proved to be a valuable guide
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Ground Truth sg R Deoldify (Salmona
et al., 2022)

ColorVid (Wan
et al., 2020)

BistNet (Zhang
et al., 2019)

Ours

Figure 3: Comparison of the results obtained on the DAVIS dataset with our CAVC model and state-of-the-art methods reveals
that our model achieves outcomes that are nearly identical to the original colorization, with colorization that appears more
natural than the current state of the art. The examples presented in this comparison depict the 20th frame of each video.

Ground Truth sg R ColorVid (Wan
et al., 2020)

BistNet (Zhang
et al., 2019)

Ours

Figure 4: Results obtained with our CAVC model in the UVO dataset compared with the BisTNet and ColorVid.

for distributing colors during the coloring process, as
illustrated by the results in Table 5.

Table 5: Quantitative analysis that compares the impact of
using color histogram of sr in the decoder of the coloriza-
tion process.

DAVIS

Method FID↓ CDC↓

With Histogram 3.30e−4 5.10e−3

Without Histogram 4.73e−4 5.31e−3

7 CONCLUSIONS

The application of deep learning techniques has
proven to be the optimal approach for video col-
orization, as exemplified by the NTIRE competition’s
adoption of this method. This work incorporates

traditional image processing methods, encompassing
histograms, texture refinement, and filtering, to en-
hance existing techniques and illustrate advancements
in state-of-the-art results. The addition of cosine sim-
ilarity and histograms has notably enhanced the qual-
ity of frame colorization results.

Additionally, we found that the texture refine-
ment process in the monochrome frame is effective
when combined with single-head attention as pre-
processing of the input channels. Our findings sug-
gest that this approach can be applied for enhancing
image colorization in future research.
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Figure 5: The qualitative results provide a visual repre-
sentation of how object information and texture are prop-
agated throughout the encoder network were evaluated on
the DAVIS dataset. In the first row, we see the complete
model architecture, while the second row represents the ver-
sion without cosine similarity. It is evident that details can
be effectively propagated through feature extraction when
cosine similarity is employed, reinforcing why results with
cosine similarity exhibit superior outcomes.
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