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Abstract: Burst super-resolution or multi-frame super-resolution (MFSR) has gained significant attention in recent years,
particularly in the context of mobile photography. With modern handheld devices consistently increasing their
processing power and the ability to capture multiple images even faster, the development of robust MFSR
algorithms has become increasingly feasible. Furthermore, in contrast to extensively studied single-image
super-resolution (SISR), burst super-resolution mitigates the ill-posed nature of reconstructing high-resolution
images from low-resolution ones by merging information from multiple shifted frames. This research intro-
duces a novel and effective deep learning approach, SBFBurst, designed to tackle this challenging problem.
Our network takes multiple noisy RAW images as input and generates a denoised, super-resolved RGB image
as output. We demonstrate that significant enhancements can be achieved in this problem by incorporating
base frame-guided mechanisms through operations such as feature map concatenation and skip connections.
Additionally, we highlight the significance of employing mosaicked convolution to enhance alignment, thus
enhancing the overall network performance in super-resolution tasks. These relatively simple improvements
underscore the competitiveness of our proposed method when compared to other state-of-the-art approaches.

1 INTRODUCTION

In recent times, smartphones have become the pre-
ferred choice for capturing image devices, surpassing
the popularity of traditional digital cameras (Lafen-
etre et al., 2023). While smartphone cameras have
made significant strides in enhancing image quality
and resolution, they still face limitations when com-
pared to professional DSLR cameras. A primary
limitation concerns the small sensor size, which de-
mands a fine balance between noise levels and resolu-
tion. While increasing resolution using smaller pixel
sensors is possible, it comes at the cost of compro-
mising image quality, particularly in low-light condi-
tions, where noise becomes more prominent. Further-
more, optical zoom capabilities in smartphone cam-
eras remain significantly inferior to those in profes-
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sional cameras, primarily due to physical constraints.
Large lenses, which are essential for high-quality op-
tical zoom, would be impractical in portable devices.

Given these constraints inherent to portable cam-
eras, which are progressively more demanding to
address only through sensor enhancements, coupled
with the ongoing evolution of artificial intelligence
and onboard processing capabilities, researchers have
dedicated their efforts to developing deep learning al-
gorithms aimed at improving image quality. These
techniques encompass various domains, including
super-resolution, noise reduction, and high dynamic
range (HDR).

Super-resolution (SR) is an extremely challeng-
ing and relevant task that consists of the generation
of a high-resolution (HR) image from one or several
low-resolution (LR) observations. This advancement
could potentially reduce even more the gap in image
quality between small devices and professional cam-
eras, enabling improved zoom capabilities without re-
quiring larger lenses.

In recent years, the SR community has primar-
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ily focused on the single-image super-resolution task
(SISR), where an HR image is estimated from a single
LR input. This is a very ill-posed problem, and meth-
ods strive to hallucinate high-frequency information,
which is limited from previously learned image infor-
mation. Conversely, the multi-frame super-resolution
(MFSR) approach has recently gained significant in-
terest (Figure 1). In MFSR, the objective is to recon-
struct the original HR image using multiple LR im-
ages. These images inherently feature spatial shifts
induced by natural hand movements, and recent re-
search (Wronski et al., 2019) has convincingly shown
that these shifts can produce multiple aliased repre-
sentations of the underlying scene. This phenomenon
allows for the aggregation of subpixel information
from several images of the same scene, thereby mit-
igating the ill-posed nature of single-image super-
resolution.
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Figure 1: Evolution of the number of publications biyearly
in major conferences or journals since 2003 dedicated to the
topic of multi-frame or burst super-resolution, according to
Web of Science.

This work develops a simple but effective deep-
learning method, denoted as Simple Base Frame
Burst (SBFBurst), to address the burst image super-
resolution problem. This is particularly significant
given the context previously outlined. Additionally,
our emphasis is placed on RAW images, as they con-
tain more information than processed ISP (Image Sig-
nal Processing) RGB images, potentially leading to
improved accuracy in high-resolution image recon-
struction.

The main contributions of this work are as fol-
lows:

• Proposition of a simple but effective deep convo-
lutional architecture that benefits from base frame
guidance and deformable convolution (Dai et al.,
2017) for solving burst image super-resolution.

• Experimental evaluation of the effectiveness of in-
corporating the base frame guidance into the con-
volutional network flow design, whether through
concatenation or skip connections.

• Use of SpyNet (Ranjan and Black, 2017) on
a mosaicked convolutional feature map (Cilia
et al., 2023) to obtain optical flows between
frames, which can guide the deformable convolu-
tions (Dai et al., 2017; Chan et al., 2022) to obtain
features with better alignment.

• Development of mixed gradient loss (Lu and
Chen, 2019) in order to guide our network to a
better edge reconstruction.

• Contrary to some methods, the proposed method
can deal with an arbitrary number of frames in
an invariant permutation way without losing ac-
curacy.

• Our experiments, conducted on both synthetic and
real-world datasets, indicate that our approach not
only surpasses state-of-the-art methods in both
quantitative and qualitative measures but also ex-
hibits efficient inference capabilities (Figure 2).
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Figure 2: Comparison of performance and runtime on Syn-
theticBurst dataset (Bhat et al., 2021a). Our method out-
performs others, even when utilizing a smaller number of
frames.

The text is structured as follows. In Section 2,
we provide a concise overview of relevant works in
the field of super-resolution literature, with a particu-
lar focus on multi-frame super-resolution. Following
that, in Section 3, we introduce our proposed method,
providing an in-depth explanation of the architectural
design and loss function. Moving forward to Sec-
tion 4, we describe the adopted experimental setup,
present the results we have obtained, and engage in
a thorough discussion comparing our findings with
other relevant approaches from the literature. Addi-
tionally, we include a brief ablation study to under-
score the effectiveness of our architectural choices.
Finally, in Section 5, we conclude our discussion with
some final remarks and outline some directions for fu-
ture work.
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2 RELATED WORK

Single Image Super-Resolution (SISR). SISR has
been a longstanding field of research in computer vi-
sion that focuses on reconstructing a high-resolution
image from its degraded low-resolution version. Sig-
nificant strides have been made in this field thanks to
deep convolutional learning-based approaches. Since
the first work, SRCNN (Dong et al., 2015), numer-
ous other learning-based methods have emerged in an
effort to address this problem.

Some studies have focused on refining archi-
tectural designs (Kim et al., 2016a; Shi et al.,
2016a; Zhang et al., 2018c; Haris et al., 2018; Lim
et al., 2017), including recursive learning (Kim et al.,
2016b; Ahn et al., 2018), progressive reconstruc-
tion (Wang et al., 2015; Lai et al., 2017), atten-
tion mechanisms (Zhang et al., 2018b; Dai et al.,
2019; Zamir et al., 2020), generative adversarial net-
works (Ledig et al., 2017; Wang et al., 2019), vision
transformers (Lu et al., 2022) and different loss func-
tions (Johnson et al., 2016; Lugmayr et al., 2020).
However, even with all these improvements, it is still
really hard to recover rich details for real-world im-
ages because of the extremely ill-posed nature of this
problem.
Multi-Frame Super-Resolution (MFSR). In order
to address the challenging nature of ill-posed prob-
lems in SISR, the concept of MFSR has been intro-
duced. MFSR involves the fusion of pixel data from
multiple images of the same scene, each with some
spatial displacement, thereby providing supplemen-
tary sub-pixel information to enhance the quality of
image reconstruction (Tsai and Huang, 1984; Hardie,
2008).

The journey of MFSR began with (Tsai and
Huang, 1984), who introduced a pioneering fre-
quency domain approach, assuming that the transla-
tions between input images are known. HighRes-
Net (Deudon et al., 2020), on the other hand, was
explicitly tailored for satellite imagery. It implicitly
aligns each frame with a reference frame and employs
recursive fusion techniques to enhance image quality.

DBSR (Bhat et al., 2021a) took a step further
by introducing a weighted-based fusion mechanism,
which predicted element-wise weights between the
base frame and the other frames, allowing for more
precise fusion. They have also introduced a real-
world dataset named BurstSR, which has played a
crucial role in motivating and encouraging new re-
search endeavors in this field. The evolution con-
tinued with MFIR (Bhat et al., 2021b), which ex-
tended this fusion mechanism by diving into deep
feature space to handle both SR and denoising.

LKR (Lecouat et al., 2021) advances proposing an
end-to-end approach for joint image alignment and
super-resolution from raw burst inputs.

Recent developments in the field, such as BIP-
Net (Dudhane et al., 2022), have recognized the im-
portance of comprehensive fusion. BIPNet introduces
a pseudo-burst fusion strategy by fusing temporal fea-
tures channel-by-channel, resulting in a more robust
approach. However, it is worth noting that BIPNet re-
quires fixing the input frame number, which can be a
limitation in specific scenarios.

Another work (Cilia et al., 2023) introduces a
novel convolutional block, namely mosaicked convo-
lution feature extractor (MCFE), in order to improve
feature extraction directly from raw mosaicked sen-
sor data. The key concept behind MCFE is to extract
high-level features while preserving the Bayer color
arrangement. Through a series of experiments, the
authors demonstrated the effectiveness of this block
and presented competitive results.

In addition to fusion strategies, some recent
works (Dudhane et al., 2023; Mehta et al., 2023) have
explored the use of inter-frame attention-based mech-
anisms to enhance feature interaction. These mech-
anisms enable cross-attention on the channel or spa-
tial dimension, leading to better information exchange
among frames. While these approaches hold great
promise, it is essential to acknowledge that they can
be computationally intensive.

3 PROPOSED METHOD

In this section, we present an in-depth explanation
of our burst super-resolution network, SBFBurst. It
takes multiple low-resolution RAW images captured
quickly in a burst as input and performs denoising,
demosaicking, and super-resolution simultaneously,
resulting in a high-quality RGB output. Since burst
images might have slight misalignments due to quick
capture, they provide extra information for super-
resolution. By effectively combining all the burst
data, our network can better reconstruct the scene,
resulting in a higher-quality output than single-frame
methods.

Figure 3 contains an overview of the proposed ar-
chitecture. Our network takes a series of RAW im-
ages captured in a burst, denoted as {bi}N

i=1, where
N can be of any size. Each image, represented as
bi ∈ RW×H , contains the RAW sensor data from the
camera.

Before proceeding further, we independently ex-
tract feature representations from each unshuffled
burst b̂i, resulting in {pi}N

i=1.
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Figure 3: The overall architecture of the proposed SBFBurst for raw image burst super-resolution, which follows a compre-
hensive pipeline to transform a RAW burst of degraded images into a clean, high-quality RGB image in five main components:
the preencoder, alignment module, encoder, fusion, and decoder. The preencoder relies on a series of residual blocks for fea-
ture extraction from each burst. Subsequently, deformable convolutional alignment is employed to align these bursts, aided by
SpyNet (Ranjan and Black, 2017), and MCFE (Cilia et al., 2023). Following alignment, each burst is concatenated with the
reference frame, generating a deeper embedding by the encoder. All embeddings are then subjected to a fusion process (Bhat
et al., 2021a) that reduces to a single one. Finally, the decoder block plays a crucial role by upsampling the fused embedding,
which is concatenated with the base frame feature. Additionally, it maintains a skip connection with an upsampled version of
the base frame.

Subsequently, we perform alignment and warp-
ing of each feature map pi to align them with the
reference frame, denoted as b1. This alignment is
achieved using offsets estimated through mosaicked
convolution (Cilia et al., 2023), SpyNet (Ranjan
and Black, 2017), and deformable convolutions (Dai
et al., 2017).

Additionally, we employ a secondary deeper en-
coder to create deep feature representations, guided

by the base frame p1, leading to {ei}N
i=1.

In the fusion process, we utilize an attention-based
module built upon the approach presented in (Bhat
et al., 2021a). This module predicts fusion weights
at the element level, enabling the network to dynam-
ically select the most relevant information from each
image within the burst. This process produces a uni-
fied feature map denoted as ê.

Finally, the merged feature map ê, along with the
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base frame representation p1, is fed into the decoder
module. This module gradually upsamples the input
feature map, enhanced by a skip connection derived
from the pixel shuffle operation applied to the base
frame b̂1. This process generates the ultimate RGB
image denoted as y ∈RsW×sH×3, where s is the super-
resolution factor.

The following subsections detail each module of
our proposed method and the loss function.

3.1 Preencoder

We begin by arranging the raw Bayer pattern into
2×2 blocks along the channel dimension, yielding
a 4-channel image at half the initial resolution (b̂i ∈
RW

2 ×H
2 ×4). This lower-resolution image (b̂i) is subse-

quently passed through the encoder, which consists of
an initial convolutional layer followed by a sequence
of residual blocks, yielding 64 feature maps for each
burst. This process could be represented in Equa-
tion 1.

pi = Preencoder(b̂i) (1)

3.2 Alignment

The absence of precise information regarding pixel-
level displacements among the images is one of the
main problems faced in burst super-resolution. Sev-
eral elements, such as scene changes and overall cam-
era motions, could have been responsible for these
displacements. It becomes essential to align the infor-
mation to effectively fusion multiple frames. Our ap-
proach tackles this challenge using the SpyNet (Ran-
jan and Black, 2017) for optical flow estimations and
deformable convolutions (Dai et al., 2017) for pixel
alignment refinements.

We decided to build an alignment module that re-
lies on bi instead of b̂i. This could be preferable be-
cause bi keeps spatial information, which may be im-
portant for a better optical flow estimation. Firstly, we
employ two mosaicked convolutional layers on each
flattened RAW image burst (bi) to avoid disrupting the
Bayer color arrangement, generating 16 maps. These
maps are then downsized to 3 by 1x1 convolutional
layers to obtain a suitable input for the pre-trained
SpyNet designed for RGB images.

SpyNet is able to calculate calculating dense
pixel-wise optical flow vectors denoted as f̂i ∈
RW×H×2 between each burst image bi. However,
as our network relies on wrapping the feature maps
pi ∈ RW

2 ×H
2 ×2, f̂i ∈ RW×H×2 should be reduced by

half. To achieve the desired optical flow output, we
apply average pooling followed by element-wise mul-
tiplication with a factor of 0.5 on f̂i, as the displace-

ments were reduced by half on the unshuffle operation
of burst bi. This results in the final pixel-wise flow
information fi ∈ RW

2 ×H
2 ×2, which not only captures

global camera motion but also accommodates any ob-
ject motion within the scene, concerning to the base
image b̂1.

The estimated flow vectors, fi, are subsequently
employed to warp the preencoded feature maps pi to
align with the base frame. These aligned maps are
further refined using a deformable convolutional net-
work (DCN) inspired by BasicVSR++ (Chan et al.,
2022), which outputs the final aligned maps denoted
by p̂i.

This entire process could expressed in Equa-
tions 2 and 3.

fi = FlowEst(bi,b1) (2)

p̂i = DCN(Wrap(pi, fi), fi, p1) (3)

3.3 Encoder

The encoder process takes as input the aligned fea-
ture map (p̂i) concatenated with reference feature
(p1). These concatenated maps subsequently passed
the initial convolutional layer followed by a sequence
of residual blocks, yielding 64 feature maps for each
burst, expressed in Equation 4.

ei = Encoder(p̂i, p1) (4)

3.4 Fusion

The fusion module’s purpose is to combine informa-
tion from individual burst images ({ei}N

i=1) to create a
unified feature representation called ê. In this study,
we adopt the fusion module introduced by (Bhat et al.,
2021a), an attention-based method that adaptively
merges information based on factors such as image
content and noise levels.

The fusion process relies on aligned embeddings
ei and flow vectors fi to estimate attention weights for
each embedding. It is worth noting that, unlike the
approach outlined in (Bhat et al., 2021a), we chose to
employ the embeddings ei in their raw form without
projecting them into a lower dimension, as initially
suggested by the authors.

Subsequently, this merged feature map (ê) serves
as input for a decoder module responsible for produc-
ing the final output. The dependences of ê follows
Equation 5,

ê = Fusion({ei, fi}N
i=1) (5)
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3.5 Decoder

The decoder module is responsible for generating the
high-resolution RGB output image from the fused
feature map ê. Initially, we concatenate the base fea-
ture map p1 with fusion embedding ê, then pass it
through a residual network.

To achieve the desired resolution of sH × sW , we
employ sub-pixel convolution (Shi et al., 2016b) for
upsampling. This operation is also applied to the
base frame image (b̂1), and the data is merged using
element-wise summation at each appropriate resolu-
tion. Lastly, we apply a final convolution operation
to obtain the ultimate RGB image output (Ŷ ). This
whole process could be expressed in Equation 6.

Ŷ = Decoder(ê, p1, b̂1) (6)

3.6 Loss Function

In our training process for both real and synthetic
track models, we employ mixed gradient loss (Lu and
Chen, 2019) with l1 to assess the model’s prediction
errors, defined in Equation 7.

MixGE(Y,Ŷ ) = l1(Y,Ŷ )+λ(l1(G(Y ),G(Ŷ ))) (7)

where l1 stands for the mean absolute error function
and G represents the gradient function obtained from
the Sobel operator. Additionally, λ is a weighting fac-
tor applied to the gradient differences, effectively pe-
nalizing high-frequency reconstructions such as edges
aligned with the objective of the super-resolution task.

4 EXPERIMENTS

This section presents the experimental setting, results,
discussion, and an ablation study achieved through
the proposed burst image super-resolution method.

4.1 Experimental Settings

In this subsection, we describe the datasets used in the
experiments, training settings and evaluation metrics.

4.1.1 Datasets

As in previous works (Bhat et al., 2021a; Bhat et al.,
2021b; Dudhane et al., 2022), our approach is sub-
jected to comprehensive evaluation using both syn-
thetic and real-world datasets, as provided by the au-
thors of (Bhat et al., 2021a). The synthetic dataset
comprises 46,839 RGB images sourced from the
Zurich RAW to RGB Dataset (Ignatov et al., 2020)

by Canon 5D Mark IV DSLR Images. This dataset
serves for generating sets of low-quality RAW burst
images through random translations, rotations, and
the introduction of additional noise in the RGB-to-
RAW inverse camera pipeline (Brooks et al., 2018).
This process yields synthetic low-resolution and noisy
burst images.

The real-world dataset, known as BurstSR, in-
cludes 5,405 RAW burst patches captured in real-
world conditions using a Samsung Galaxy S8 smart-
phone, each with dimensions of 160×160 pixels. The
corresponding high-resolution images are obtained
from a Canon DSLR camera.

For our evaluation, we used a validation set con-
sisting of 300 synthetically generated images (sized
at 96×96 pixels) and 882 real-world patches (sized at
160×160 pixels).

4.1.2 Training Settings

In our training and testing procedures, we adhere
to established conventions. Initially, our model un-
dergoes training using the synthetic dataset and sub-
sequently undergoes fine-tuning with the real-world
dataset.

Throughout all experiments, we maintain a fixed
scale factor s set to 4. During both synthetic and
real training phases, we employ the MixGE loss func-
tion with parameter λ set to 0.01, as detailed in Sec-
tion 3.6, to optimize the entire model. When train-
ing with real-world data, as the ground truth images
are not initially aligned with the input data, we in-
corporate an aligned MixGE loss that accounts for
both spatial and color disparities between the low-
resolution (LR) input bursts and high-resolution (HR)
ground truth. This alignment process involves ini-
tially matching the ground truth image with the super-
resolved image using a pre-trained PWC-Net (Sun
et al., 2018). This loss function enables the model to
learn the generation of HR images that closely align
with the ground truth, considering both spatial and
color information.

For both datasets training, we employ the AdamW
optimizer with exponential decay rates of 0.9 and
0.999. During synthetic training, we conduct 500
epochs with a batch size of 16, starting with an ini-
tial learning rate of 2×10−4 and halving it at epochs
80, 120, 280, 350, 410, and 460. To facilitate bet-
ter convergence, we freeze the weights of the pre-
trained SpyNet for the first 130 epochs. In each
training batch, HR images are cropped to dimensions
of 384×384 pixels, and 14 burst LR image patches
(96×96) are randomly synthesized based on the HR
image.
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For real-world training, we fine-tune the model,
which was originally pre-trained on synthetic data, for
an additional 80 epochs. This fine-tuning process em-
ploys a batch size of 8, beginning with an initial learn-
ing rate of 5×10−5 and then reducing it by half every
15 epochs.

Our implementation of the proposed method is re-
alized using the PyTorch framework and takes advan-
tage of an NVIDIA Tesla A100 GPU, with comple-
tion times of approximately 3 days for synthetic and
1 day for real-world scenarios.

4.1.3 Evaluation Metrics

We adhere to the established evaluation protocols and
datasets utilized in prior studies (Bhat et al., 2021a;
Bhat et al., 2021b; Dudhane et al., 2022) to assess our
approach.

Our evaluation metrics encompass the peak
signal-to-noise ratio (PSNR), structural similarity in-
dex measure (SSIM) (Wang et al., 2004), and learned
perceptual image patch similarity (LPIPS) (Zhang
et al., 2018a). While these metrics can be directly
employed for synthetic datasets, we employ aligned
PSNR, SSIM and LPIPS for assessing our model on
real-world data, as has been the practice in previous
works (Bhat et al., 2021a; Bhat et al., 2021b; Dud-
hane et al., 2022).

4.2 Results and Discussion

We compare SBFBurst with state-of-the-art burst
super-resolution approaches including HighRes-
Net (Deudon et al., 2020), DBSR (Bhat et al., 2021a),
LKR (Lecouat et al., 2021), MFIR (Bhat et al.,
2021b) and BipNet (Dudhane et al., 2022).

Table 1 presents the quantitative results for both
testing datasets. When comparing SBFBurst to Bip-
Net, our approach surpasses 0.26dB and 0.38dB in
terms of PSNR on synthetic and real data, respec-
tively, without substantially increasing the number of
parameters. It is noteworthy that these improvements
are nearly equal on both synthetic and real datasets,
indicating the potential for our approach to generalize
effectively when fine-tuned on diverse datasets.

When dealing with a variable number of in-
put frames, our method also exhibits superior per-
formance compared to the previous ones, as visu-
ally demonstrated in Figure 4. Notably, our SBF-
Burst achieves comparable results using only 4 in-
put frames, matching the performance of DBSR (Bhat
et al., 2021a), which requires 14 frames. More-
over, even with just 10 frames as input, our SBFBurst
achieves performance on par with MFIR (Bhat et al.,
2021b).
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Figure 4: Comparison in terms of PSNR with other ap-
proaches when facing variable input frame numbers on Syn-
thetic Dataset (Bhat et al., 2021a). It is worth noting that
BipNet encounters a limitation in handling input of variable
sizes during prediction.

For a visual representation of our results using
both synthetic and real-world data, please refer to Fig-
ures 5 and 6. The visual representations in Figures 5
and 6 illustrate that our SBFBurst method excels in
recovering highly detailed textures with better color
while exhibiting fewer artifacts compared to alterna-
tive approaches.

For instance, in the 1st row of Figure 5, our
method excels in producing a clean and denoised sig-
naling cone, preserving all the crucial details. Simi-
larly, in the 4th row of Figure 5, our method shows
superior edge reconstruction for Venetian blinds, un-
derscoring its capability to effectively handle high-
frequency information. In contrast, all other ap-
proaches failed to handle the noisy details.

Furthermore, our method demonstrates its profi-
ciency in restoring additional information from real-
world burst images, as we can see in Figure 6. In the
third row, SBFBurst practically eliminates ghosting
artifacts on letters, a challenge often unaddressed by
other methods. Moreover, there is an enhancement in
color continuity, as evidenced by the letter “r” when
compared to the MFIR method.

4.3 Ablation Study

In our ablation study, we rigorously evaluate the ef-
fectiveness of our alignment module and the guid-
ance provided by the network’s base frame. Table 2
presents a comprehensive summary of our results as
we progressively incorporate the proposed mecha-
nisms, indicated by checkmark symbols (✓).

Our baseline experiments begin with the architec-
ture excluding base frame guidance, denoted as p1 on
the encoder, p1 and b̂1 on the decoder, and the align-
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Table 1: Comparison between SBFBurst and the other approaches. The best one marks in red and the second best are in blue.
All results are reported for a 4× super-resolution task.

Methods Authors #Parameters Synthetic Real-World

PSNR (dB) ↑ SSIM ↑ LPIPS ↓ PSNR (dB) ↑ SSIM ↑ LPIPS ↓
HighResNet (Deudon et al., 2020) 34.78M 37.45 0.924 0.106 46.64 0.980 0.038
DBSR (Bhat et al., 2021a) 13.01M 39.17 0.946 0.081 47.70 0.984 0.029
LKR (Lecouat et al., 2021) - 41.45 0.950 - - - -
MFIR (Bhat et al., 2021b) 12.13M 41.55 0.964 0.045 48.32 0.985 0.023
BipNet (Dudhane et al., 2022) 6.66M 41.93 0.967 0.035 48.49 0.985 0.026

SBFBurst 7.64M 42.19 0.968 0.036 48.87 0.987 0.022

HR Image Base frame DBSR MFIR BIPNet SBFBurst Ground Truth
Figure 5: Qualitative results of a comparison between our and other approaches in Synthetic Dataset (Bhat et al., 2021a).

ment module applied directly to the unshuffled
image, following prior work (Bhat et al., 2021a).

The introduction of the Base Frame Decoder en-
tails the inclusion of p1 and b̂1 in the decoder, while
the Base Frame Encoder involves the addition of p1
to the decoder. Lastly, the MCFE Alignment rep-
resents the incorporation of mosaicked convolutional
features on a flattened image, which serves as a strat-
egy to preserve spatial information during the align-
ment process.

As illustrated in Table 2, it becomes evident that
all the relatively straightforward enhancements con-
tribute incrementally to our baseline method. These
improvements play a crucial role in driving our base-
line method to surpass all the state-of-the-art ap-
proaches, as evidenced in Table 1.

Table 2: Ablation experiments to assess the impact of SBF-
Burst’s contributions, we evaluate PSNR performance on
the SyntheticBurst dataset for a 4× super-resolution task.
Our findings indicate that simple design decisions, such as
base frame guidance and preserving spatial information on
raw alignment can lead to significant improvements.

Improvements AS1 AS2 AS3 AS Final

Baseline ✓ ✓ ✓ ✓
Base Frame Decoder ✓ ✓ ✓
Base Frame Encoder ✓ ✓
MCFE Alignment ✓

PSNR (dB) 41.34 41.58 42.12 42.19
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HR Image Base frame DBSR MFIR BIPNet SBFBurst Ground Truth
Figure 6: Qualitative results of a comparison between our and other approaches in Real World Dataset BurstSR (Bhat et al.,
2021a).

5 CONCLUSIONS

This research presents a significant advancement in
addressing the burst image super-resolution problem,
presenting a straightforward yet highly effective deep-
learning method. By focusing on RAW images and
leveraging base frame guidance, deformable convolu-
tion, SpyNet, and mixed gradient loss, this work has
made several key contributions to the field. Impor-
tantly, the proposed method demonstrates remarkable
performance versatility by accommodating an arbi-
trary number of frames without sacrificing accuracy.

Through comprehensive experiments on synthetic
and real-world datasets, this approach not only out-
performs existing state-of-the-art methods in both
quantitative and qualitative assessments but also
demonstrates its efficiency in terms of inference
speed. Therefore, this research opens up new pos-
sibilities for improving the quality of high-resolution
image reconstruction, with broad implications for var-
ious applications in image processing, especially on
portable cameras.

While the contributions of this work are indeed
promising, there remain several directions that could
be explored to further enhance burst image super-
resolution techniques. Firstly, addressing the chal-
lenge of scenes featuring fast-moving objects, which

represents a significant hurdle in this field. More-
over, it would be desirable to explore ways to reduce
computational complexity to make it more suitable
for real-time applications on resource-constrained de-
vices. Furthermore, developing new evaluation meth-
ods tailored to real-world scenarios is crucial for a
better assessment of the methods, as aligned versions
of traditional metrics such as PSNR, SSIM, or LPIPS
might be biased for methods that employ aligned loss
on training. Overall, these future efforts aim to push
the boundaries of burst image super-resolution and
unlock even greater potential for its application in var-
ious domains.
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