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Cybersecurity standards play a vital role in safeguarding the Internet of Things (IoT). Currently, standard
compliance is assessed through manual reviews by security experts, a process which cost and delay is often
too high. This research delves into the potential of automating IoT security standard testing, focusing on the
ETSI TS 103 701 test specification for the ETSI EN 303 645 standard. From the test specification, 56 tests
are relevant for the network attack threat model and considered for automation. Results from the research
are promising: basic network security tools can automate 52% of these tests, and advanced tools can push
that number up to 70%. For full test coverage, custom tooling is required. The approach is validated by
creating automation for a real-world IoT product. Test automation is an investment, but the results indicate
it can streamline security standard verification, especially for product updates and variants. Data from other
testing activities can be used to reduce the effort. Automating the security standard testing would enable the

certification of a large number of IoT products for their lifetime.

1 INTRODUCTION

Cybersecurity standards play a vital role in safeguard-
ing the Internet of Things (IoT). Effective and inde-
pendent assessment of security standard compliance
is essential to build trust to the systems we depend
on. The need to improve the cybersecurity of IoT de-
vices has been widely recognized. The lack of secu-
rity in IoT will undermine the users’ trust and hamper
the adoption of new products. (Matheu et al., 2020;
Traficom, 2023)

The current security assessment techniques are
complex and must be performed by cybersecurity ex-
perts. Major challenges are the high cost, delays
to product launch, re-certification as products have
to be updated, and overall scalability to cover the
huge number of products in the market (Matheu et al.,
2020). A potential solution would be to replace man-
ual work with automated tool-based verification.

Different products have different security needs
and thus the rigor of security certification evaluation
should vary (ECSO, 2017). An entry-level security
certification may be sector-agnostic and performed as
self-certification. Third-party certification is required
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for higher-level assurance. An entry-level assessment
may only consider the interface of the product, i.e. a
black-box assessment. A high-level certification may
require inspection of design information, source code,
etc. Security assessment can examine the product,
the vendor and its processes, or both. The product-
based approach allows assessment by customers or
third parties without visiting vendor premises. When
a new product version is released, a re-certification is
required. To avoid full re-certification, only the mod-
ified parts of the product may be assessed or the ven-
dor is given the freedom to perform updates without
invalidating the certificate (ECSO, 2017).

1.1 Certification and Standards

Many different IoT security standards, guidelines,
and best practices exist (Cirne et al., 2022; Kakso-
nen et al., 2022; Khurshid et al., 2022; Matheu et al.,
2020). The requirements are usually generic in nature
and verification requires the creation of test cases and
review actions. This may bring inconsistencies and
variation to the evaluations done by different evalua-
tors and for different products.

However, there are some relevant standards which
have a test specification. ETSI EN 303 645 is a rec-
ognized consumer IoT security standard with accom-
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panying test specification ETSI TS 103 701 (ETSI,
2020; ETSI, 2021). ETSI EN 303 645 is used as
the basis for Finnish, Singaporean, and German cy-
bersecurity labels (BSI, 2023a; CSA, 2023; Trafi-
com, 2023). ETSI EN 303 645 can be considered
sector-agnostic which requirements are applicable for
most consumer loT products. The Common Criteria
for Information Technology Security Evaluation (CC)
is a third-party certification scheme standardized as
ISO/IEC 15408 (CC, 2022). CC is sector-agnostic,
but its large set of optional requirements can be mixed
and matched to suit different needs. Requirements
can be also tailored using operations. The CC pro-
tection profiles are predefined collections of require-
ments for specific product sectors. However, the cost
and complexity of CC certification seriously hinder
its adoption for IoT (Matheu et al., 2020).

There are also national and industry-specific certi-
fication schemes. The Federal Office for Information
Security (BSI) of Germany has published security re-
quirement guideline TR-03148 and a test specifica-
tion specific for consumer broadband routers (BSI,
2023c; BSI, 2023b). ioXt is an industry-driven se-
curity certification scheme by the i0Xt Alliance (i0Xt
Alliance, 2023), which specifies requirements and test
cases. It supports both self-certification and third-
party certification by base and sector-specific require-
ments.

1.2 Common Security Tools

There exists a large pool of open source security tools
to probe various aspects of IT security (Kaksonen
et al.,, 2021). The most popular tool categories are
network scanning, packet capture and injection, web
security, and disassembly.

The use of tools is not usually dictated in secu-
rity standards, but it is up to the evaluator to select
the tools, if any. ETSI TS 103 701 especially dis-
cussed this: ”Due to the heterogeneity of consumer
IoT devices ... test groups in the present document
are formulated in a generic manner. Thus, the present
document does not describe specific tools or detailed
step-by-step instructions” (ETSI, 2021, p. 10). The
continuous emergence of new attacks and vulnerabili-
ties would call for automated monitoring, testing, and
mitigation tools (Cirne et al., 2022).

1.3 Related Studies

Model-based testing (MBT) is an often suggested se-
curity testing automation approach for IoT systems
(Lonetti et al., 2023; Matheu et al., 2020; Matheu
Garcia et al., 2024). MBT facilitates automated test
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case generation. For example, Matheu-Garcia et al.
present a risk-based MBT approach for automated
IoT cybersecurity certification (Matheu-Garcia et al.,
2019). However, the downside is that the generation
of comprehensive security test cases requires a very
detailed model. It is indicative, that MBT research pa-
pers tend to concentrate on testing of specific product
components, such as the implementation of a commu-
nication protocol (Lonetti et al., 2023; Matheu-Garcia
et al., 2019).

Manufacturer Usage Description (MUD) is orig-
inally intended for IoT devices to signal the kind
of network access they require to function properly
(Rekhter and Li, 2019). So far, MUD has not been
embraced by the industry and use has not caught up.
However, the research community has noted it and
many extensions have been proposed to make it more
comprehensive for MBT and other uses (Lonetti et al.,
2023; Matheu Garcia et al., 2024).

Penetration testing is an expert analysis method,
where the expert analyzes the system to find vulner-
abilities (Johari et al., 2020). The tester assumes the
role of an attacker. Fuzzing is a popular and effective
security testing method and it can be performed even
over the network (Takanen et al., 2018).

The amount of research focusing on the use of
common tools for IoT security testing is limited. Kak-
sonen et al. use common security tools to test se-
curity requirements derived from different security
specifications (Kaksonen et al., 2023a). Lally and
Sgandurra provide a mapping from vulnerabilities
identified in the OWASP IoT project into testing in-
structions, methodologies, and tools to use (OWASP,
2018; Lally and Sgandurra, 2018). Rollo lists some
tools and techniques applicable to high and medium-
level security certification (Rollo, 2017). Dupont
et al. presented tool-based automation of risk as-
sessment in an agile iterative development process
(Dupont et al., 2023). Tools are run on each iter-
ation for continuous and automatic risk assessment.
Tools also are used to automate penetration testing
(Abu Waraga et al., 2020; Akhilesh et al., 2022; Si-
boni et al., 2019). Fuzzing is by nature a tool-based
approach (Takanen et al., 2018). Usually, the com-
mon tools have a supporting role in research, e.g. for
capturing protocol traffic (Matheu et al., 2020).

The use of proprietary functionality, even for com-
mon tasks like authentication, makes it difficult to au-
tomate IoT security assessment. This is described by
Waraga et al. as "Assessing the security of [oT devices
is difficult due to the wide variety and functionality of
IoT devices” (Abu Waraga et al., 2020, p. 15). The
same issue is raised by Matheu et al. (Matheu et al.,
2020).
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None of the aforementioned publications pro-
pose implementing security standard testing using the
common security tools.

1.4 Research Objectives

The focus of our research is the use of common se-
curity tools for IoT security standard testing. As full
automation is unlikely to be feasible, we first identify
the tests for which automation is a priority. Then, we
study which types of common tools are applicable and
what is achievable coverage for the test automation.

The structure of the remainder of this article is as
follows. In Section 2, we examine the security test
specification ETSI TS 103 701 to understand which
tests should be automated, which common tools are
applicable, and what is achievable automation cover-
age. In Section 3, we create a proof-of-concept test-
ing framework and present test automation for a real-
world IoT product. Finally, we provide discussion
and conclusions.

2 STANDARD TESTING
AUTOMATION

In this section, we go through a security standard ver-
ification and consider automating it. The threat model
used in this research is an attack over a network, either
from the Internet or from the local network. We ex-
clude non-network-based interfaces from the security
analysis. As the most common vulnerabilities in IoT
are related to HyperText Transport Protocol (HTTP)
servers and other network-exposed services, we think
this is a reasonable starting point for IoT security test-
ing (Kaksonen et al., 2023b; OWASP, 2018).

Verdicts of automated tests are assigned without
manual work by the evaluator. As someone needs
to create the automation, this does not mean auto-
matic certification. However, automation may per-
form repetitive tasks, such as running the same checks
for many interfaces or services. Automation also sup-
ports continuous standard compliance checks during
iterative product development. Especially useful au-
tomation should be in re-certification after product
updates or certifying product variants.

2.1 Test Specification ETSI TS 103 701

In our analysis, we use ETSI TS 103 701 which is a
test specification for security standard ETSI EN 303
645 (ETSI, 2020; ETSI, 2021). The standard is well
recognized and the use of an existing specification
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prevents us from biasing tests to match the available
tools. The standard covers customer IoT device secu-
rity and device interactions with associated services,
such as backend services or mobile applications. The
associated services themselves are out of scope. ETSI
TS 103 701 specifies the following verification pro-
cess steps (ETSI, 2021):

1. Identification of the device under test (DUT)

2. Defining the pro-forma implementation confor-
mance statement (ICS)

3. Providing the required implementation extra in-
formation (IXIT)

4. Verification of the ICS
5. Security assessment and test verdict assignment
6. Assignment of the overall verdict

Steps 1-3 are performed by the vendor and 4-6 by the
test laboratory. ICS specifies the standard require-
ments implemented by DUTs and vendor processes.
Pro-forma ICS is the proposal from the vendor, which
the security assessment then accepts or rejects. IXIT
provides extra information required in the security as-
sessment, e.g. network topology, services, software
components, and so on. The test laboratory then veri-
fies the requirements and assigns the verdicts.

The ETSI EN 303 645 is made up of 67 secu-
rity provisions, i.e. requirements. Provisions can be
mandatory, optional, or recommended. ETSI TS 103
701 defines groups of test cases to test the confor-
mance for the provisions. There are conceptual and
functional test cases. A conceptual test checks the
conformity of ICS to requirements and a functional
test probes the DUT or other artifacts. Many of the
tests are difficult to verify automatically without ex-
pert judgment. For example, consider the following
provision (ETSI, 2020, p. 19).

Provision 5.5-1. The consumer IoT device
shall use best practice cryptography to com-
municate securely.

The provision can be tested by the following test cases
and fest units (ETSI, 2021, p. 52-54):

e Test case 5.5-1-1 (conceptual).

a) Appropriate security guarantees are specified

b) The security guarantees are achieved by the
used communication mechanism

¢) The communication mechanism uses best prac-
tice cryptography

d) There are no known vulnerabilities for the com-
munication mechanism

e Test case 5.5-1-2 (functional).



a) The implementation is using the specified com-
munication mechanism

The test units 5.5-1-1 a) and b) require expert opin-
ion about the appropriateness and sufficiency of the
product design. The verdict assignment is based on
the intended usage of the product and IXIT. The test
units 5.5-1-1 ¢) and d) are more mechanical compari-
son to best practices and known vulnerabilities. They
are subject to change as the best practices and at-
tacks evolve. The test unit 5.5-1-2 a) checks that the
product implementation is indeed using the specified
mechanisms.

Table 1: ETSI TS 103 701 test categories and test unit
counts (C is conceptual, F is functional).

Test units C F
All, Ty 226 | 124 | 102
IXIT and ICS review, Tx 106 | 106 -
Cross-references, T¢ 14 8 6
Product security tests, 7p 106 10 96
- Security perimeter tests, Tg 56 10 46
- Product Ul tests, Ty 50 - 50

Table 2: ETSI TS 103 701 test targets referenced in the
product tests 7p.

Test target | Test target description

AuthMech Authentication mechanisms

UserInfo User documentation and other info

UpdMech Software update mechanisms

ReplSup Isolation and hardware replacement

SecParam Stored security parameters

ComMech Communication mechanisms

NetSecImpl | Implementations of network and secu-
rity functions

SoftServ Implementations of service authoriza-
tion and access control

Intf Network, physical, and logical inter-
faces of the DUT

SecBoot Secure boot mechanisms

ExtSens External sensing capabilities

ResMech Resilience mechanisms for outages

TelData Telemetry data

DelFunc User data deletion functionalities

UserDec User decisions

UserIntf User interfaces

ExtAPI Externally accessible APIs

InpVal Data input validation methods

There are a total of 226 test units. Table 1 shows

the test unit categories, the symbol denoting the cat-
egory, and the number of test units in it divided into
conceptual and functional tests. The symbol refers
to both conceptual and functional test units. All test
units are denoted with Ty and |Ty| = 226. IXIT and
ICS review Ty tests are for reading and validating the
IXIT and ICS. The specification contains some cross-
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reference tests Tc which refer to other test units. We
ignore them to avoid double counting. The product
security tests Tp exercise or probe the product or its
components or source code, e.g. the aforementioned
5.5-1-1c¢) and d) and 5.5-1-2 a).

The threat model is an attack through a network,
and the relevant tests target the network interfaces and
the protection layers behind them. We call these se-
curity perimeter tests Ts. The other product tests are
different User interface (UI) tests Ty. The focus of
this research is the 56 Ty tests. This does not mean
that 7y is not important, as e.g. a bad UI may lead
users to make decisions bad for the system security.

ETSI TS 103 701 IXIT is made up of 29 differ-
ent types of information. For example, all commu-
nication mechanisms are listed under 17-ComMech:
Communication Mechanisms” with identifier, de-
scription, security guarantees, cryptographic details,
and resilience mechanisms specified for each mecha-
nism (ETSI, 2021, p. 101). The specification does not
provide any generic term for these, we use the term
test target. The test targets are used in the test speci-
fications to point the focus of the test, e.g. the afore-
mentioned 5.5-1 test units refer to ComMech. Table 2
lists the test targets used in 7p.

2.2 Automation of ETSI TS 103 701

We examined the automation potential of ETSI TS
103 701 tests by studying the test unit descriptions,
test targets, and features of the available security tools
(ETSI, 2021).

The choice of proper tools is mostly affected by
the test target. For example, a network tool can probe
network interfaces and communication, while a static
analysis tool can probe software. Table 3 lists the test
targets from 7p, T, and Ty with the tool types that
can be used to automate the tests. The test and tool
types are listed in rows and the test targets in columns.
When a test type applies to a test target, the number
of relevant test units is given in the table cell. The
Share column gives the proportion relative to 7p tests,
e.g. Ts tests are 53% of Tp and tests by basic tools are
27% of Tp.

The tools are divided into basic, advanced, and
custom tools. The basic tools are network-based and
should be easy to deploy in most cases. Network
scan tools are used to find network hosts and services.
There are also search engines for hosts and services
on the Internet. Network capture tools record network
traffic for analysis. Protocol-specific tools can check
the correctness and use of the best practices on a pro-
tocol basis, such as HTTP, Trasport Layer Security
(TLS), or Secure SHell (SSH). An important group
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Table 3: ETSI TS 103 701 product test targets mapped to the product security tests 7p, security perimeter tests 7, types of

tests and test tools, and UI tests T;.

Shares given as the percentage of Tp.

AuthMech
UserInfo
UpdMech

Test target

DelFunc

Share

—
—
o]
[a—
[

Product security tests Tp 1

| UserDec

—| Userlntf

—
—

100%

u| 3| ReplSup
Ww| W SecParam

W
[ee}

Security perimeter tests Tg | 8

&+~ ComMech

w| w| NetSecImpl
w| Wl SoftServ

~| o Intf

©| W SecBoot

—| w| ExtSens

u| v ResMech
| & TelData

—| —| ExtAPI

—| —| InpVal

53%

Basic tools

27%

[\
—_

Network scan and capture

—

-
—
—_

W
W

Protocol-specific

Web page availability 3 2

Advanced tools

9%

MITM 1

Input validation

Password brute-forcing 1

Code analysis

Network/power switch 1

Custom tools

16%

Access control

Functional 2 2

Unauthorized update 3

Internal properties 3

Ul tests Ty

47 %

Document review 11 3

1 2 1

Ul usage 314131

1 115

Physical inspection 1

2 1

are the various Web security tools. Web page avail-
ability tool, which can be a simple script, checks that
a document is available on the Internet. Together the
basic tools cover 52% of Ts and 27% of Tp.

The advanced tools require more work to be de-
ployed, as they must be configured for the purpose
and can be intrusive and not suitable for all envi-
ronments. Man in the middle (MITM) tools try to
break encryption by infiltrating the network connec-
tions. [Input validation tools try to find flaws in
the parsing of external input. This is often done
by fuzzing. Password brute-forcing tools check that
password-guessing attempts over the network are
throttled. Code analysis refers to various tools in-
specting source code and other development arti-
facts. Software composition analysis (SCA) tools
are used to identify the used software components
and libraries. SCA tools may also check if the soft-
ware contains known vulnerabilities. Network/power
switches are devices which allow programmatically
switch network connections or power on and off.
They can be used to simulate outages to test DUT be-
havior in error situations. Together the advanced and
basic tools cover 70% of Ty and 37% of Tp.

The custom tools must be specifically created on
a per-product basis. These tools often require to drive
DUT into specific states and coordination with the
backend. Access control testing verifies that access
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to critical resources is appropriately granted or de-
nied depending on the provided credentials. Func-
tional tests check that a DUT performs an intended
functionality. Unauthorized update testing tools in-
ject modified update packages to check for the proper
response. Internal tools check DUT internal compo-
nents, such as secure storage of critical parameters. If
custom tools can be implemented for all tests, the ag-
gregate T tool coverage would be 100% and Tp cov-
erage 53%.

The remaining 47% of Tp are UI tests. Document
review ensures that the required aspects are clearly
presented in the user documentation. UI usage refers
to the actual use of the DUT user interface. Physical
inspection is required to check the physical proper-
ties of the DUT casing. It has been assumed that Ul
tests must be performed manually, but with additional
effort they could be automated, as well. A change de-
tection tool can check if a document has been updated
since a review. UI automation tools can be used to
drive UI which can be controlled programmatically,
e.g. web UL With change detection tools, the product
test 7p automation coverage can be raised to 70% and
by adding UI automation up to 96%.

The problem with test coverage is that without Ul
automation, a user must actively exercise the prod-
uct to go through its different states and functions.
This may be alleviated if the security testing takes ad-



vantage of actions performed in other testing. Net-
work captures may be taken while the product is used
for other purposes. Non-intrusive tests, e.g. network
scans, may be performed in parallel with other uses of
the product. Code auditing may take place for normal
quality control, but its results can be reused as evi-
dence of security tests. Security testing done by only
observing the DUT is called passive security testing
(Mallouli et al., 2008).

2.3 Mapping Tool Capabilities and Tests

Security tools are unlikely to be specifically designed
for security standard testing and the standard tests
may not be designed to be automated. Thus, the rool
capabilities and test verdict assignments are not nec-
essarily well aligned and must be mapped.

Mapping the two can be fairly straightforward,
e.g. consider the aforementioned test units 5.5-1-2 a)
and 5.5-1-1 c¢) and d) (ETSI, 2021, p. 52-54). An up-
to-date protocol-specific tool can check that the pro-
tocol is used, best practice cryptography is applied,
and no known vulnerabilities are present.

More mapping logic is required e.g. for the seven
Intf network interface tests. The tests aim to check
that the interfaces match IXIT, no undocumented in-
terfaces exist, interfaces are enabled or disabled as
stated, and no extra information is disclosed. For
them, the matching tool type is Network scan and
capture, but these tools produce lists of observed net-
work nodes, services, ports, connections, etc., not ver-
dicts. The automation must compare the tool output
to the network interface definition Intf and assign test
pass or fail verdicts as appropriate.

Automating some test units requires interpretation
of the test purposes. For example, there are eight Up-
dMech update mechanism perimeter test units. The
test unit 5.3-2-2 states that the test lab must a) ’devise
functional attacks to misuse the update mechanism”
and then b) “attempt to misuse each update mecha-
nism on the base of the devised adverse actions and
assess whether the design of the mechanism (...) ef-
fectively prevents the misuse” (ETSI, 2021, p. 34).
Automating the test unit a) is likely to require the cre-
ation of a custom test tool for misuse attempts of the
update mechanism. The tool should be capable of in-
serting a malicious update package and checking that
the update mechanism rejects it. However, common
security tools can be used to check the secure delivery
of the update packages over the network using stan-
dard protocols. Thus, an entry-level b) test is possible
with basic tools, e.g. by TLS protocol tool.

The update mechanism test 5.3-6-2 a) is a check
if updates are enabled by default, which is checked
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by observing an update attempt from traffic capture.
The tests 5.3-7-1 c) and d) are about proper encryp-
tion for update protection, which are checked using
protocol-specific tools. The tests 5.3-9-1 c) and d) are
for integrity and authenticity verification of the up-
date, which requires the custom tool. Finally, test 5.3-
10-1 ¢) aims to verify that there are no undocumented
update channels via network interfaces. It is consid-
ered a pass, if there is no unknown network traffic
from a DUT. An undocumented update channel inside
other expected traffic would not be detected.

It is noteworthy, that an unexpected connection
in network capture will make many test cases fail,
such as several Intf interface tests and the UdpMech
test 5.3-10-1 ¢). Thus, there are test failures which
are false positives and true positives, but determining
which is which requires an expert analysis. However,
this is only required if an impact assessment of the
failure is required.

3 CASE STUDY

We implemented a proof-of-concept framework for
studying the automation of ETSI TS 103 701 tests.
Then we applied the framework in a case study of
real-world IoT product testing of Ruuvi Tags and
Gateway (Ruuvi Innovations Ltd, 2023). The man-
ufacturer was updated on our activities.

ol Annota Test o rdictlogic 1oSt
adapters tions _targets gic  ases
Tool 1 [la| TT jﬂ
o System A 4 /]
Uix
Tool 2 — Mo l:}g' on
e TT '
Tool 3 Gyl 2 ] Assign ¢
o Tool o ° Read verdicts o
° results 2 o_annotations }ﬂ
[la T
Annotate { [ 1B
= B o

Figure 1: The proof-of-concept framework overview. Tool
results are read by tool adapters and mapped into annota-
tions on the test targets. Test case verdict logic reads anno-
tations to assign test verdicts.

3.1 Tool Data Collection and Verdict
Assignment

We designed and implemented a proof-of-concept
framework which digests output from different secu-
rity tools, maps the output into test targets, and as-
signs test verdicts. The framework is passive, the test
tools must be invoked separately. Running the tools is
outside of the scope of this research.
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Figure 2: Ruuvi system overview with test targets relevant to the case study.

The functional overview of the framework is given
in Figure 1. The output from the tools is read and
converted to normalized format by the fool adapters.
Then, the system model is used to find out the relevant
test target by an address or other location information.
For example, a host service may be identified by IP
address, protocol, and port. The system model must
contain the network nodes, services, network connec-
tions, protocols, software components, etc. The ac-
quisition of the system model is beyond this paper,
it can be created for this purpose or a model can be
reused (Kaksonen et al., 2023b; Lonetti et al., 2023).

Once the test target is resolved, it is anno-
tated based on the tool results. Annotation in-
dicates the checks performed by the tool. The
annotations a tool adapter may assign is depen-
dent on the tool’s capabilities. For example,
a TLS test tool adapter may assign the annota-
tions protocol-tls=true, tls-best-practices=
true, and tls-no-known-vulns= true. The tool
can identify TLS services or connections, check if
they follow TLS best practices, and whether known
vulnerabilities are detected. Table 4 lists the tool ca-
pabilities used in the case study. Finally, verdict logic
contains rules to assign verdicts to tests based on the
annotations in the respective test targets. For exam-
ple, the above annotations may be read by the logic
for the aforementioned 5.5-1-1 c) and d) and 5.5-1-2
a).

The proof-of-concept framework is available as
open source software. It is hosted in GitHub
https://github.com/ouspg/tcsfw.git.

3.2 Ruuvi Tags and Gateway IoT

As a case study, we use the proof-of-concept frame-
work for security testing of Ruuvi Gateway and Tags
IoT devices (Ruuvi Innovations Ltd, 2023). Figure 2
shows the overview of the Ruuvi system relevant to
the case study, including the relevant test targets.
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The system is made up of Ruuvi Bluetooth Low-
Energy (BLE) Tags, which broadcast sensor data
ExtSens, such as temperature and humidity, over the
communication mechanism ComMech-1. The Gate-
way collects the data and uploads it to a cloud ser-
vice using TLS over ComMech-2. The Gateway
gets automatic updates UpdMech-3 over the connec-
tion ComMech-3. The Gateway is set up and con-
trolled by the User using a browser over an HTTP
connection ComMech-4. The user is authenticated
by a factory-generated password using the mecha-
nism AuthMech-2. The user is provided with the vul-
nerability disclosure policy UserInfo-1 and published
support period UserInfo-2, available on the Internet.
The Gateway has HTTP API ExtAPI-2. The Gate-
way has a BLE interface Intf-1 and Ethernet/WiFi
interface Intf-2. The Tags have BLE interface Intf-
3. The Gateway validates input from the BLE broad-
casts InpVal-1 and HTTP InpVal-2. The Gateway
provides additional connectivity options, but they are
not enabled by default and are not included in this
presentation.

We target automating the security perimeter tests
Ts. The test targets DelFunc, UserDec, and UserIntf
only have tests in Ty, thus they are excluded. Also,
ReplSup was excluded, as it is not relevant for Ruuvi
which components can be updated. This leaves 14 test
targets to test, of which we implemented automation
for seven. The security perimeter tests relevant to the
14 test targets TS, contains 51 test units.

The Ruuvi product has Finnish Cybersecurity La-
bel, thus it should fulfill selected requirements from
ETSI EN 303 645 (Ruuvi Innovations Ltd, 2022).
However, the acceptance process does not use ETSI
TS 103 701 and ICS and IXIT have not been created.
The information we use in the case study is collected
from the statement of compliance and by inspecting
the product and its documentation (Ruuvi Innovations
Ltd, 2022; Ruuvi Innovations Ltd, 2023).



Table 4: Case study tool capabilities, the test targets (and the
number of test units) they apply to, and the used tools. The
capabilities with tool references a) to f) are automated and
marked by green color. Red capabilities are not automated.

Tool capabilities Test targets
(test units)
Only the defined connections are | ComMech(1),
present @ UpdMech(2)
Only the defined network nodes are | Inrf(4)
present
Only the defined services are | AwthMech(2),
present ® ExtAPI(1), Int f(3)
Document is available on the Inter- | ExtSens(1),
net © ReplSup(2),
Userlnfo(3)
DUT basic functions work ReplSup(2),
ResMech(2)
Code review has been performed NetSecImpl(2)
Bad input is rejected (fuzzing) InpVal(1)
MITM attacks are detected ComMech(1),
UpdMech(1)
Malicious update is rejected UpdMech(3)
Boot with modified firmware fails SecBoot (1)
Critical parameter modification SecParam(1)
Default password is strong AuthMech(2)
TLS protocol is used © ComMech(3),
TLS best practices are followed € UpdMech(3)
No TLS vulnerabilities are found ©
Only the defined SW is used (SCA) | NetSeclmpl(1)
Data storage is secure SecParam(2)
Telemetry data is properly used TelData(2)
Web best practices are used @ InpVal(1)
Network or power disconnect ReplSup(1),
ResMech(3)
Defined auth. protocol is used AuthMech(1),
SoftServ(1)
Auth. best practices are followed AuthMech(1)
Auth. brute-forcing is prevented AuthMech(1)
No auth. vulnerabilities are found AuthMech(1)
Access is granted/rejected properly | SoftServ(2)
Used tools: a) Tcpdump, Hcidump, b) Nmap, Cen-
sys, Tcpdump, Hcidump, c¢) Python script, d) Mitm-
proxy, e) Testssl.sh, f) ZAP

Common security tools are used to implement the
test automation. Table 4 lists the tool capabilities, the
test targets (with test unit counts), and the names of
the used tools. The capabilities with a tool references
a) to f) are automated. For example, the capability
”Only the defined connections are present’” is applied
to one communication mechanism CommMech test
unit and two update mechanism UpdMech test units.
This capability is provided using tools Tcpdump and
Hcidump.

The used tools and their descriptions and home
pages are listed in Table 6. The local networks are
scanned with the Nmap tool. The remote backend in-
formation is fetched from the Censys Internet search
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engine. IP network traffic is captured by Tcpdump
and BLE traffic by Hcidump tool. TLS services are
checked using Testssl.sh. TLS session man-in-the-
middle attacks are attempted using MITMProxy. The
availability of web-based documentation is checked
by a Python script. Web services are scanned by ZED
attack proxy (ZAP). The collection of network traf-
fic requires the product to be used to trigger the vari-
ous product functions. The following actions are per-
formed.

1. The Ruuvi Tags and Gateway are powered up.

2. The user connects to special setup WiFi of the
Gateway, configures the system, and disconnects.

3. The Gateway is connected to the Data backend
and Code repository for data upload and updates.

For data collection, we use a Raspberry Pi 3 as WiFi
gateway between the Gateway, User browser, and In-
ternet (Raspberry Pi Ltd, 2023). The setup allows to
record and control all traffic between DUTs and the
Internet. The tools are run manually, either from a
normal computer or from the Raspberry Pi, and the
tool output is collected for analysis. The resulting net-
work traffic is captured and stored with other tool out-
puts. The data is analyzed by the framework to assign
verdicts for TS/ test units.

Table 5: Ruuvi case study test targets, covered test units
/ all units, and test target explanations TS/A The green and
red color marks the targets covered and not covered by the
tools, respectively.

Test targets | Test | Explanation

units
AuthMech | 2/8 | HTTP server at Gateway
UserInfo 3 /3 | Two Internet-provided documents

UpdMech 5/8 | Gateway updates by TLS
SecParam -/3
ComMech 4/4 | BLE, HTTP, 2 x TLS
NetSecImpl | -/3

SoftServ -/3

Intf 717 | Gateway and Tag interfaces
SecBoot -/2

ExtSens 1/1 | Tag sensors

ResMech -/5

TelData -/12

ExtAPI 1/1 | Gateway HTTP API
InpVal -/ 1 | Gateway HTTP and BLE

Tests T, | 45% | Covered 23 /51 test units

3.3 The Achieved Coverage

Table 5 summarizes the achieved coverage. From the

51 Ruuvi security perimeter tests TSI, 23 are automated
for 45% coverage.
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Table 6: The used security tools, short tool descriptions, and tool home pages.

Name Description Home page

Apktool Android APK analysis tool https://ibotpeaches.github.io/Apktool/
Black Duck | SCA service (commercial) https://protecode-sc.com/

Censys Internet search service https://search.censys.io

Hcidump Bluetooth Low Energy recorder | https://www.bluez.org

Nmap Network scanner https://nmap.org

Ssh-audit SSH test tool https://github.com/jtesta/ssh-audit
Testssl.sh TLS test tool https://testssl.sh

Tepdump Traffic recorder https://www.tcpdump.org

ZAP Web security scanner https://www.zaproxy.org/

More automation could be implemented to in-
crease the coverage. Adding authentication protocol
and brute-force tests, static code analysis, and input
validation test would raise the TSI coverage to 63%.

With custom tools for testing access control, unau-
thorized update handling, security boot, and teleme-
try, the coverage would be 80%.

Adding automation tests for network and power
interruptions, e.g. using controllable power and net-
work switches, would add 10 %-points.

ETSI TS 103 701 includes a review of the vendor
processes for monitoring vulnerabilities and issuing
security updates, but no tests to look for vulnerabil-
ities in the product software. The scope is limited
to 10T devices, the mobile applications and backend
servers are excluded. We implemented the following
security testing automation beyond these limitations:

* Verification of the backend service security pos-
ture by Censys, Testssl.sh, and Ssh-audit tools.

» Using a SCA tool to extract the software bill
of materials (SBOM) for verification and known
vulnerability checking using Black Duck service
(commercial).

* Inspecting communication content between User
browser and other services by HAR data collected
by Web browser (Odvarko, Jan, 2007).

* Unpacking Ruuvi Mobile Application by Apktool
tool to check the application permissions.

* Parsing of release history of software components
in Code Repository by Github API to resolve the
update frequency (GitHub Inc., 2023).

The used tools and their descriptions are in Table 6.

4 DISCUSSION

We analyzed the ETSI TS 103 701 security test spec-
ification to study the proportion of the tests which
could be automated with common security tools
(ETSI, 2021). Of the 226 test units in the specifica-
tion, 106 are product tests and 120 are inspections of
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the conformance documentation. Of the product tests,
53% are security perimeter tests relevant to the threat
model of network-based attacks and 47% are differ-
ent types of UI tests. Basic network security tools
allow the automation of 52% of the security perime-
ter tests and 70% coverage is reachable by the use of
advanced tools. With custom tools, the perimeter au-
tomation coverage can rise towards 100%. The UI
tests are made up of user documentation reviews, ac-
tual UI tests, and physical inspection. These could
also be covered by automation, if suitable tools are
available or can be created.

Secondly, we created a proof-of-concept frame-
work, which assigns test verdicts based on output
from common security tools and performed a case
study with Ruuvi real-world IoT product. In the
case study, 45% of the security perimeter test verdict
assignments were automated using network-based
tools. This could feasibly rise to 90% by introducing
more advanced and custom tools.

The proof-of-concept framework we created is it-
self passive, it reads output from different tools. Se-
curity testing effort may be decreased by mixing the
invocation of the security tools with other testing ac-
tivities. For example, traffic captures can be recorded
whenever the system is exercised. This lessens the
cost of security testing and increases the chances that
security is assessed. The downside is that the test cov-
erage is decreased if not all product functionality is
exercised. However, some security tests appear better
than no security tests. When higher coverage is re-
quired, dedicated security testing must be performed.

Automated security tests enable security verifi-
cation without security experts and security self-
certification. Tests that failed during the verification
must be resolved. A failure may indicate a security
vulnerability, a security-neutral change in a DUT, or
a flaw in the automation. As many tests are based
on the same result data set, a single root cause may
manifest itself as many test case failures, e.g. an un-
expected network connection may cause many differ-
ent interface tests to fail. The proportion of flaws by
bugs in the test automation is hard to estimate but in



a study of unit tests in Java code 31-53% of failures
were attributed to tests rather than being a real bug
(Hao et al., 2013). Discovered vulnerabilities must
be fixed by the vendor, but fixing the tests may re-
quire the original author of the automation to be avail-
able. The resolution of test failures in automated self-
certification requires a new process, warranting a fu-
ture research topic.

4.1 Efficiency and Coverage

The creation of automation for security tests is addi-
tional work. The exact effort is hard to estimate, as
it depends on the product and extend of test automa-
tion. Impact of the required work can be managed by
starting from testing of basic network features and ex-
tending towards full certification automation. Regular
testing by the automation helps to avoid regression in
security.

The impact on cost and delay is compensated
when several test targets, product versions, or con-
figurations must be tested. The use of security tools
reduces the effort to create the tests. Work can be re-
duced by reusing tests between projects. The reuse
can be by the vendor or the testing laboratory, or
by having a library of test cases for a standard. A
solid benefit from automation should come from re-
certification of the product after updates, which may
be self-certification if the coverage of the automatic
test cases is sufficient. The certification of product
variants should receive similar benefits.

Automated security tests should be at least as
thorough as the manual tests would be. Ideally, the
automation increases coverage by performing more
checks than a manual tester can accomplish. Further,
a protocol-specific security tool may be able to per-
form more extensive verification than a test created
for one product only. An up-to-date tool tests the
product against the latest best practices and known
vulnerabilities. However, the use of a generic tool
may leave some aspects of a security requirement
untested, unless the test is customized or accompa-
nied by manual verification. In the general case,
the efficiency and coverage of automation in security
standard testing remains an open question.

The use of open source and other tools for secu-
rity standard testing raises the question of how much
trust we can place on them. This should be com-
pared to the level of trust we are placing in the evalu-
ators performing the assessment work. A maintained
and commonly used tool, e.g. Nmap, can likely be
trusted to give accurate information. Results from a
tool without a good reputation should be more care-
fully reviewed. It would be best to have at least two
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tools for a testing capability in case one of them be-
comes unmaintained and is no longer updated. As
there should be a regular assessment of the quality
of work of the evaluators, there should be regular re-
views about the quality of used tools. To promote the
quality of open source tools used in commercial cer-
tifications, the projects behind them should be sup-
ported.

4.2 Improving Security Testing
Automation Coverage

Although we automated a significant portion of the
relevant tests, there is room for improvement. To raise
the coverage, we propose several improvements:

* JoT products should use more standard compo-
nents and protocols that have common tools avail-
able for testing. For example, authentication may
be difficult to test due to nonstandard implemen-
tation.

e Security requirements should be made more
testable and automation-friendly. For example,
a description of the attack surface should be re-
quired, as it can be verified by tools.

* New tools should be created to fill the gaps be-
tween requirements and automated testing.

There are [oT frameworks which provide common
functionality for IoT products (Ammar et al., 2018;
CSA, 2022). In the best case, this could increase
the testability of IoT, if the frameworks are accom-
panied by tools to verify the proper use of the frame-
work security features. This could cover authentica-
tion, updates, data encryption, and other framework
functions.

Most existing IoT security standards share a com-
mon set of requirement categories, but there is a lot of
variation in the requirement details (Kaksonen et al.,
2022). The majority of the requirements are present
only in one or a few specifications. This makes it hard
to comply with many specifications. If those require-
ments can be checked by automation, then automation
mitigates the problem, but if they all call for custom
tools, then they hinder automation.

All security standards and test specifications
should be available in machine-readable format. For
example, the Common Criteria is available as XML
documents (CC, 2022). This provides a good start-
ing point for automation, as the information does not
need to be extracted from PDF documents or such.
The authors of this paper have found the extraction of
machine-readable data from specification documenta-
tion especially cumbersome and error-prone.
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4.3 Comparison to Related Studies

The existing research of IoT security testing automa-
tion emphasizes MBT to generate the tests (Lonetti
et al., 2023). We employ common security tools,
which enables us to simplify the overall system
model, as custom test cases get replaced by the ca-
pabilities of the tools. This approach allows us to
present a more comprehensive automation of security
standards, while the existing research predominantly
offers only partial experiments. Test tools are used by
some existing research (Lally and Sgandurra, 2018;
Kaksonen et al., 2023a; Abu Waraga et al., 2020).
Compared to them, we map the tool capabilities to
security standard tests.

We agree that it is difficult to test the IoT sys-
tems due to their heterogeneity (Abu Waraga et al.,
2020; Matheu et al., 2020). We also agree that the use
of standard IoT technologies would support increas-
ing test automation for IoT security testing (Lonetti
et al., 2023). However, we see that this could happen
through new security tools which can test standard
implementations, rather than using standard models
for test case generation. A share of the future research
should be directed towards improving the testability
of the IoT, e.g. by standard components, protocols,
and frameworks, rather than trying to test whatever
constructions the IoT vendors come up with.

4.4 Threats to Validity

We base our research on ETSI EN 303 645 secu-
rity standard and ETSI TS 103 701 test specifica-
tion. All findings may not apply to other standards.
When using security standards that don’t specify test
cases, their design is additional work. As the ETSI
EN 303 645 emphasizes generic network security re-
quirements, there are many well-known high-quality
tools to use to implement the automation. The cre-
ation of automated tests may be far more challenging
for sector-specific standards which focus on processes
and design security, or emphasize the security of in-
ternal components. Future research on automation of
other security standards would provide more insight
into this question.

Even with well-specified tests, there is ambiguity
on the exact evidence required to assign a verdict.
This may increase or decrease the coverage of au-
tomation, depending on the chosen interpretation. We
chose to automate the tests from the established speci-
fication ETSI TS 103 701 to avoid biasing tests which
are easy to automate. From these tests, we suggest the
use of a tool when it can significantly cover the intent
of the test. In the future, if the tool developers and
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standard requirement authors get more aligned, it will
be easier to see which tests can be automated by tools
and which cannot be.

S CONCLUSIONS

This paper appears to be the first attempt to automate
IoT security standard testing using common security
tools. We achieved high automation coverage in the
security perimeter tests relevant to the threat model
of network attacks. We created a proof-of-concept
framework for automated security testing and pro-
vided a real-world case study. Our research shows
that automation could help to solve some of the ma-
jor problems in IoT certification, the lack of expert
personnel and the cost and delays associated with the
certification of multiple product versions and config-
urations.
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