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Achieving long-term goals becomes more feasible when we break them into smaller, manageable subgoals.

Yet, a crucial question arises: how specific should these subgoals be? Existing Goal-Conditioned Hierarchical
Reinforcement Learning methods are based on lower-level policies aiming at subgoals designated by higher-
level policies. These methods are sensitive to the proximity threshold under which the subgoals are considered
achieved. Constant thresholds make the subgoals impossible to achieve in the early learning stages, easy to
achieve in the late stages, and require careful manual tuning to yield reasonable overall learning performance.
We argue that subgoal precision should depend on the agent’s recent performance rather than be predefined. We
propose Adaptive Subgoal Required Distance (ASRD), a drop-in replacement method for subgoal threshold
creation that considers the agent’s current lower-level capabilities for appropriate subgoals. Our results
demonstrate that subgoal precision is essential for HRL convergence speed, and our method improves the

performance of existing HRL algorithms.

1 INTRODUCTION

Hierarchical reinforcement learning (HRL) performs
remarkably well on complex tasks, unsolvable by flat
methods (Gehring et al., 2021; Giirtler et al., 2021;
Nachum et al., 2018; Levy et al., 2017; Ghosh et al.,
2019; Eysenbach et al., 2019). This is because the
control of sequential decision making in complex dy-
namical systems is often easier to synthesize when
decomposed hierarchically (Nachum et al., 2019). The
high-level agent breaks down the problem into a series
of subgoals to be sequentially executed by the low-
level policy. To illustrate this concept, consider how a
child learns to walk: they don’t need to master it per-
fectly from the beginning; instead, they initially grasp
the fundamental dynamics of the skill and then progres-
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sively refine it as they go along (Adolph et al., ). This
hierarchical approach simplifies learning higher-level
skills while continuously improving basic abilities.

Most existing works in Goal Conditioned HRL
(GCHRL) assume fixed criteria of subgoal required
distance (SRD), i.e. a radius of the region in the state
space, which the agent should reach to accomplish a
subgoal (Nachum et al., 2018; Giirtler et al., 2021;
Lee et al., 2022). In a sparse reward setting, if the
lower-level (LL) policy achieves SRD within a higher-
level (HL) action time, it receives a positive reward.
Notably, SRD is usually predefined by a human expert
or found using a hyperparameter search (Chane-Sane
et al., ; Colas et al., ; Liu et al., 2022).

However, two serious issues can arise from a prede-
fined SRD when the HL policy is not well-trained. If
the SRD is too small, it can create subgoals that are too
narrow and impossible to achieve. As a result, the LL
policy may never accomplish any subgoal, making it
difficult to learn anything. However, if the SRD is too
large, the LL policy may learn to reach given subgoals
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Figure 1: Conceptual illustration of the SRD impact on algo-
rithm performance. Fixed SRD yields high-performing algo-
rithms only when adjusted to agent capabilities. However,
in practice, it usually needs to be found using fine-tuning.
Thus, too wide or narrow SRD may limit LL policy accuracy
in subgoal reaching and result in lower performance.

imprecisely, leading to clumsy control and unsatisfac-
tory progress in the main task. Thus, this approach is
sensitive to SRD and works only with expert domain
knowledge or after meticulous SRD tuning (Fournier
et al., 2018). In this work, we empirically demonstrate
this sensitivity.

We recognize this limitation in GCHRL and ad-
dress it by adjusting SRD along the training. We ar-
gue that precision is more prominent in later train-
ing phases but may be eased initially. Thus, the
SRD should depend on the agent’s recent performance
rather than be fixed. We propose a simple method that
adapts the SRD to the current performance of the agent
as measured during the training process, forming a cur-
riculum of subgoal thresholds (Figure 1). We indicate
that curricular approaches were widely surveyed re-
garding exploration (Portelas et al., 2020; Zhang et al.,
2020b; Li et al., 2021); however, few works explored
it in the context of subgoal reachability issue (Fournier
et al., 2018), especially in HRL.

This work closely examines the problem of tuning
SRD in GCHRL. Our contributions are as follows:

1. We show that HRL methods are highly sensitive to
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subgoal precision and environment goal precision.

2. We propose Adaptive Subgoal Required Distance
(ASRD), a novel, easy-to-implement method adapt-
ing SRD that boosts training robustness, improves
final policy performance and simplifies the hyper-
parameter tuning procedure.

3. We perform an extensive analysis of the proposed
method, showing that it allows us to obtain higher
control precision faster.

2 PROBLEM STATEMENT

We consider the typical RL setup (Sutton and Barto,
2018) based on a Markov Decision Process (MDP): An
agent operates in its environment in discrete time ¢ =
1,2,.... At time ¢ it finds itself in a state, s; € S, per-
forms an action, a; € A4, receives a reward, r; € R, and
the state changes to s,+1. The agent is trained to maxi-
mize the discounted rewards sum E(Y;_oY'r;1|s;) for
each state s; where Yy € [0, 1) is the discount factor.
We assume that effective hierarchical control is
possible in this MDP. Let there be L > 1 levels of
the hierarchy. Each [/-th level defines an MDP with
its state space 5!, its action space 4/ and rewards.
For the highest level S© = § and for the bottom level
a'=21. Taking action at [-th level, [ > 2, af , launches
an episode of the MDP at [ — 1-st level. a defines the
goal in this lower-level episode and may specify the
time to achieve this goal, thus the states and rewards
in this episode are co-defined by af . Once this episode
is finished, another action at /-th level is taken.
Actions at the /-th level are defined by a policy,

d~ml(lsh, I=L,...,1, 1)

where sﬁ is the state of the agent perceived at /-th level

of the hierarchy at time 7. For / < L, the goal of the
episode at level / is for a certain state projection, f(s;),
to approach a given goal g' € G’ (optionally, g~ is the
environment goal in the current episode). For [ < L,
G' = A1 The f! function, f' : § — G'*!, usually
just extracts certain coordinates from its vector input.
For [ < L, the state sf also includes a subgoal of /-th
level gf. SRD value €' > 0 specifies the precision with
which the policy ! must approach the state projection
f'(s;) of subgoal g'. The reward for the I-th level r/
depends on the successful approaching of f!(s;) in the
assumed time.

The overall task considered in this paper is to learn
the hierarchy of policies (2) so that the expected sum
of future discounted rewards is maximized in each
state at each hierarchy level.
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3 RELATED WORK

Hierarchical Reinforcement Learning (HRL) is a
framework that introduces hierarchy into control by
decomposing a Markov Decision Process (MDP) into
smaller MDPs. This approach enhances structured
exploration and facilitates credit assignment (fam-
ily=Vries et al., ), particularly in scenarios with sparse
rewards (Pateria et al., ; Nachum et al., 2019). HRL
comprises three main branches: option-based (Sut-
ton et al., 1999; Barto and Mahadevan, 2003; Pre-
cup, 2000; Bagaria and Konidaris, 2019; Shankar
and Gupta, 2020), skill-based (Eysenbach et al., 2018;
Sharma et al., 2019; Campos et al., 2020), and goal-
based.

Our research primarily focuses on the goal-
conditioned hierarchical reinforcement learning
(GCHRL) approach, where the high-level policy com-
municates with a lower-level policy (Schmidhuber,
1991; McGovern and Barto, 2001; Vezhnevets et al.,
2017; Zhang et al., 2020a). In this setup, the high-
level policy typically returns a subgoal that conditions
the lower-level policies. Consequently, the low-level
policy is rewarded for approaching the designated sub-
goal. Nevertheless, training a hierarchy of policies
using prior experience introduces non-stationarity is-
sues (Jiao and Tsuruoka, ), as selecting subgoals for
lower-level policies can yield different results due to
policy changes during learning. To address this chal-
lenge, various methods of subgoal re-labelling have
been proposed.

Levy et al. (Levy et al., 2017) introduced hierar-
chical experience replay (HAC), employing hindsight
experience replay, where actual states achieved are
treated as if they had been selected as subgoals. On
the other hand, Nachum et al. (Nachum et al., 2018)
presented HIRO, a method based on off-policy cor-
rection, where unattained subgoals in transition data
are re-labelled with alternatives drawn from the dis-
tribution of subgoals that maximize the probability of
observed transitions.

Furthermore, recent advancements have enhanced
high-level guidance and introduced timed subgoals in
Hierarchical Reinforcement Learning with Timed Sub-
goals (HiTS) (Giirtler et al., ). This method enhances
the precision of communication between hierarchical
levels, which is particularly crucial in dynamic envi-
ronments.

Nevertheless, as far as we can tell, there is a notable
absence of literature on utilising varying SRD within
a hierarchical setup, even though there is an extensive
body of knowledge concerning subgoals impact on
exploration (Portelas et al., 2020; Zhang et al., 2020b;
Li et al., 2021). In HRL, varying subgoal criteria

emerge naturally due to the ongoing training of low-
level and high-level policies. Therefore, we must gain
a deeper understanding of this interaction.

3.1 Varying Subgoal Achievement
Criterion in Sparse Reward GCHRL

In most of the GCRL methods (Levy et al., 2017;
Giirtler et al., ), the goal (or subgoal) is reached when
the distance between each of the corresponding ele-
ments of the current state and the subgoal state gﬁ is
smaller than €' > 0. Thus, the goal is not reached when
part of the achievement criteria is unsatisfied. This for-
mulation enforces strict control over goal-conditioned
policy. However, (Fournier et al., 2018) shows that
reachability is poor at the beginning of the training
and adaptive strategies of SRD improve the training
efficiency in flat RL.

The SRD impacts the performance of goal-
conditioned RL (Liu et al., 2022), especially GCHRL
methods with sparse rewards on every level. This is be-
cause HRL methods like HAC (Levy et al., 2017) and
HiTS (Gehring et al., 2021) use a mechanism to test if
the subgoals defined by the higher level are attainable.
This mechanism, dubbed testing transitions, results
in additional penalties for HL if generated subgoals
are not reachable by the deterministic LL policy. As
a consequence, HL policy is encouraged to produce
mostly reachable subgoals.

However, the frequent cause of failure of GCHRL
methods with sparse rewards and testing transition
mechanism arises from the wrong ratio of HL rewards
environmental and reachability (Levy et al., 2017).
Usually, the environment yields sporadic positive feed-
back for task completion, and reachability rewards
are designed a priori by the algorithm author. The
failure manifests itself with optimization of reacha-
bility rather than environmental return, which results
in easily achievable subgoals that do not lead to task
progression. In practice, there is a narrow range of
possible penalty values for testing transitions that do
not interfere with environmental reward, i.e. balances
these two sources of the reward signal. Thus, for ef-
ficient learning of the HRL method, there is a need
to either find a proper hyperparameter of the percent-
age of testing transitions or €’ that defines the subgoal
SRD.

We propose a new method that effectively identi-
fies suitable SRDs to address this limitation. Unlike
Fournier’s approach (Fournier et al., 2018), our method
does not make any assumptions about the SRD and
instead learns it directly from past experience. This
makes our approach more flexible and applicable to a
wider range of scenarios with limited prior knowledge
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Figure 2: During the training, the average distance to the
subgoal, i.e. subgoal error, decreases over time due to higher
LL policy precision. In this symbolic diagram, black dots
represent the subgoal position, while green circle represents
SRD. We propose SRD defined as the function of recent
distances to subgoals to consider current LL performance.
As the training progresses, the distribution errors approach
a distribution determined by the physical constraints of the
manipulator.

about the problem domain.

4 ADAPTIVE SUBGOAL
REQUIRED DISTANCE (ASRD)

Within our approach, SRD is designated online for a
given fraction of recent final episode states to have got
close enough to their goals. The method’s primary goal
is to aid the training robustness in finding a proper SRD
and, as a result, increase higher final performance. The
following sections call the proposed method adaptive
subgoal required distance (ASRD).

Specifically, at the end of every (I + 1)-level action
we store the distances to the subgoal g,/ < L in a
buffer B. We use a cyclic buffer of maximum size
N. We define a new SRD, €, based on the distances
stored in the buffer B'. Specifically, j-th element of
the subgoal equals the quantile of order g of the j-th
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Require : s/, g/
Ensure :/-level episode ended at ¢
Store (g! — f'(s!)) in a FIFO buffer B’ of max
size N;
if size(B') = N then
for j:=1,...,dim(G') do
/* Calculate new SRD for each

goal dimension */
Slj =0y ({|d,| de Bl})
end
else
/* If the buffer is not yet
filled, use a fixed SRD */
gl i=e¢l

end
Algorithm 1: ASRD algorithm, to be run after gath-
ering the final state of the /-th level episode.

elements of the distances stored in the buffer B!
&)= 0, ({l¢): d € B'}) @)

where Q, denotes the quantile of order g of its argu-
ment. At the beginning of the training, when there is
not enough data in the buffer to accurately determine
the quantile, we use a fixed SRD 86. We present our
ASRD method in Algorithm 1.

It is worth noting that the higher dimensional the
subgoal, the lower the chances of successfully reach-
ing it, which has already been shown in (Gehring et al.,
2021). The overall likelihood of achieving a subgoal
results from the conjunction of probabilities of achiev-
ing the subgoal criteria per element.

5 EMPIRICAL RESULTS

Our experiments aim to evaluate the effect of the pro-
posed mechanism of ASRD in GCHRL methods with
sparse reward in terms of SRD robustness. Specifically,
we compare the performance of baseline GCHRL
methods with their equivalent enhanced with ASRD.

In particular, we verify the following hypothesis in
this section:

* HO: performance of HRL methods is highly sensi-
tive to environment goal required distance.

» HI: the proposed method of varying SRD aids the
robustness of the training process of GCHRL with
sparse rewards.

* H2: adjustable SRD allows obtaining higher con-
trol precision faster.
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5.1 Experimental Setup

We evaluate our method for two goal-conditioned hier-
archical algorithms, namely HAC (Levy et al., 2017)
with fixed-length subgoals and HiTS (Gehring et al.,
2021) with timed subgoals, both using hindsight expe-
rience replay (Andrychowicz et al., 2017). These two
methods are used because both use sparse rewards on
every hierarchy level. We assess the effectiveness of
our method using the same hyperparameters for HAC
and HiTS as those in (Gehring et al., 2021), without
making any changes. Results are reported across 4 dif-
ferent environments (shown in Figure 3) where spatial
and timed precision of subgoal reachability is crucial
in order to achieve high performance:

1. Drawbridge: The agent controls a ship travelling
on a straight river. Its goal is to cross the draw-
bridge the moment it opens. Therefore, the agent
must synchronise its actions with the position of
the drawbridge and accelerate early enough to pass
it without hitting it and losing all of the momen-
tum. It is impossible for the agent to actively slow
down the ship — this makes this simple problem
challenging as it requires the agent to learn to wait.

2. Pendulum: This environment is based on the clas-
sic problem in control theory and consists of a pen-
dulum attached at one end to a fixed point, and the
other end being free. The agent’s goal is to apply
torque on the free end to swing it into an upright
position, each time starting with a random angle
and velocity. Despite being conceptually simple,
this problem requires a sequence of properly timed
swings to finish in the desired position.

3. Platforms: In this environment, the agent starts on
the lower level and must get to the upper level us-
ing a pair of moving platforms. The first platform
moves up and down independently of the agent’s
actions, while the second platform is only activated
when the agent steps on a special button. In this
challenging scenario, the agent must learn to syn-
chronize the activation of the second platform with
the position of the first, and then use both to get to
the higher level.

4. UR5Reacher: The agent’s task is to move a robotic
arm, which it controls by rotating its joints, to a
specified location. Because the joints affect each
other’s position, it must learn and synchronise
these interdependencies. Decomposing this prob-
lem into a sequence of sensible subgoals can solve
it much faster than using flat RL.

Our method considers distances to subgoals over
the most recent 1000 HL actions. It calculates a pre-
defined quantile of them to use as an SRD in the fol-

Figure 3: The environments used in our experiments.
From the left: Drawbridge, Pendulum, Platforms and
UR5Reacher.

lowing HL action. In the following experiments, we
use three different quantiles of orders 0.1, 0.25, and
0.5 for adapting SRD with different target goal achiev-
ability. It is worth noting that the proposed method
reduces the burden of tuning every element of subgoal
achievement criteria (which may be as big as state
space) separately. Instead, using the proposed method
one can replace this tunning with a grid search for one
scalar (quantile) that works best.

5.2 HO: Sensitivity to Goal Required
Distance

We recognize that the task of achieving sparse reward
heavily depends on the environmental goal required
distance. In particular, the task becomes harder if the
environmental goal requires higher precision. Environ-
mental requirements might not be fulfilled if the agent
does not adjust subgoals precision to learn fine-grained
control. This issue is depicted in Figure 4, which il-
lustrates how the need for greater precision affects the
agent’s ability to achieve the environmental goal.

In our observations, we found that when we in-
creased the necessary precision by 4 and 10 times, both
algorithms were affected, but HAC showed a greater
sensitivity. Furthermore, when comparing vanilla
HAC and HiTS to cases where the ASRD mechanism
was used, we noticed that the former two algorithms
took longer to reach their final performance. Notably,
our method only slightly delayed convergence in sce-
narios where environmental precision remained un-
altered, but it enhanced performance in cases with
disturbances.
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Figure 4: Sensitivity to environmental goal required distance
on URSReacher environment for HAC and HiTS with and
without ASRD. In the legend, numbers describe the coeffi-
cient by which we scaled the environmental goal required
distance. The smaller the number, the harder the task of
reaching the environmental reward.

5.3 Hl: Robustness of GCHRL Training
to Varying SRD

To test the sensitivity of the considered HRL methods
to the SRD parameter, we disturb its value fine-tuned
by their authors. Specifically, we scale them with
a predefined factor called the SRD multiplier. We
examine the agents’ performance with and without
ASRD in this setting. In particular, we evaluate agents’
performance based on the average success rate from
the final training performance, i.e. last 10% of time
steps, to reduce the noise in the results.

We show the aggregated results obtained by the
base HAC and HiTS algorithms with constant SRD
and with SRD adapted by our method in Table 1 for
better clarity. The results of methods enhanced with
ASRD are the same or higher for almost all environ-
ment/algorithm/SRD multiplier combinations for at
least one quantile. The performance of agents in the
undisturbed scenario, i.e. where SRD Multiplier is 1,
our method yields a boost in performance for every
environment/algorithm combination except for HiTS
in the Platforms environment.

The SRD Multiplier has a greater impact on
the final outcome of the HiTS algorithm than the
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tested ASRD variations on Pendulum, Platforms, and
URSReacher environments. On the other hand, the
HAC algorithm is more affected by the initial SRD
on Drawbridge and UR5Reacher. HAC achieves a
low average success rate on the Platforms environment
regardless of SRD. However, when using SRD adapta-
tion with ¢ = 0.25 and g = 0.5, it consistently achieves
a higher success rate compared to the base algorithm.

For all environments, HAC with SRD adaptation
obtains good results when using g = 0.25, although
for Drawbridge, it obtains even better results using
q = 0.1 and for UR5Reacher using g = 0.5. HiTS with
SRD adaptation obtains good results using any ¢ value,
however, the best g value varies between environments.
The best results on HiTS with SRD adaptation obtains
using ¢ = 0.25 for Drawbridge, g = 0.1 for Pendulum,
q = 0.5 for Platforms, and any g for UR5Reacher.

Our method helps address the issue of varying lev-
els of achieved testing transitions by defining SRD
based on recent data. The level of testing transitions
success is determined by the quantile and the explo-
ration of the lower level, which in our experiments
forces it to stay low along the training. As a result, our
method improves the training stability of HiTS and
HAC. However, it should be noted that the quantile
order hyperparameter should be tuned per environment
because there is no clear indication of one quantile that
performs best across all environments. Also, due to the
inherent noisiness of sparse reward HRL, the reported
standard deviations indicate a significant discrepancy
in performance across runs. Overall, adaptive SRD re-
sults in faster algorithm convergence to optimal policy
in HiTS and a boost in the performance of HAC, which
without our method cannot solve the Drawbridge envi-
ronment.

5.4 H2: Adaptive SRD Convergence

In this section, we closely examine the impact of
ASRD on agents’ precision, defined as a distance to the
subgoal, i.e. subgoal error, at the end of the HL action.
We also explore the implications of using different
length time windows in ASRD. Given the current ca-
pabilities of the lowest level, we would assume that
adaptive SRD should result in sufficiently demanding
but still realistic subgoals.

To calculate the distance to the subgoal, we store
the vectors representing the final state of the agent
and the subgoal state for each HL action. We then
subtract the state vector from the subgoal vector and
calculate the /; norm of this difference. By splitting the
data acquired in this way into 3 equal-sized parts from
different training phases, we observe how precise our
agent was in reaching subgoals and how its capability
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Table 1: Comparison of final average success rates for different environments, algorithms, adaptive SRD quantile orders, and
initial SRD value multipliers. Q order of ’-” denotes the base algorithm with constant SRD. The reported averages and standard

deviations are calculated using five different seeds.

SRD Multiplier
Env Method  Q order 0.25 1 2 4

- 60.1-£30.4

HAC 0.1
0.25th 66.9-£22.4 65.8+£27.4 78.2+21.6 76.6:£28.7 65.4£5.2

Drawbridge 0.5th [O7EONTT 45448 24839 99497 1994273

HITS — §1tm
0.25th
0.5th 83.632.7

HAC 47.3+333 733£115 66.015.0 77.1£13.6 64.9£23.9
0.1th 41.8430.5 50.8:£36.1 58.6:£27.0
0.25th 34.1431.4 51.1433.8

Pendul 0.5th 42.6:£36.2 57.4£27.6 75.1£8.2
] ] 70.8+7.3

HITS 4, 1
0.25th 75.2+18.5
0.5th 79.4£7.9
- 37.0£36.3 27.6£17.5 43.5£29.2

HAC aun 5432397 __
0.25th 49.7437.3 37.8+38.0 45.1£39.9 44.4:£39.3 35.7+34.1
0.5th 39.6:3.1 55.9421.8 35.1£18.2 27.4+26.9 48.0+23.4

Platforms

— 66.8£46.4 75.8+£24.2 66.7+47.1
0.1th 67.4+34.5 69.9+29.4 64 2+35.5
0.25th 64.4£43.2 61.6:+41.1 60.5+41.3
0.5th 8 5724382

HAC  o1m
0.25th

UR5Reacher 0.5th
HiTS

0.1th

- 93.1+3.0
0.25th
0.5th

evolved during the training.

Indeed, the effect of squashed subgoal error dis-
tribution across training can be observed in Figure 5.
It shows that, from the beginning of the training, our
method makes the agent more focused on finishing
closer to the assigned subgoal. Because, during the
training, the LL performance increases and HL learns
what the lower level is currently capable of, subgoals
are getting gradually more reachable in terms of dis-
tance as the training progresses.

We analyzed how the window length influence the
adaptive SRD method by comparing the average suc-
cess rates of HAC+ASRD and HiTS+ASRD for dif-
ferent window lengths, namely 50, 500, and 1000. In
Table 2 we report the results of this experiment for
each environment.

Clearly, HiTS method is less susceptible to window
length changes in terms of final average performance
than HAC. However, HiTS and HAC exhibit the high-

est variance in results in the Platforms environment,
which is the hardest among tested environments. There
is also a considerable difference between HAC perfor-
mance in Drawbridge and Pendulum environments
which indicates higher dependence on window length
for HAC. The highest results for HiITS+ASRD are ob-
tained using shorter window lengths, while there is no
clear relation between window length and performance
for HAC.

It is important to not that HAC and HiTS differ in
how they determine the length of their high-level (HL)
actions. HAC uses fixed times, whereas HiTS learns
the optimal timing for each HL action. As a result,
the length of HL actions may vary greatly between
these two algorithms. This difference in action length
can cause a delay between the current low-level (LL)
capabilities and the subgoal distances recorded in the
distances to the subgoal replay buffer. In fact, this is
particularly noticeable in the HiTS algorithm, where
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Figure 5: Normalized histograms of the distances to the subgoals throughout training on the Platforms-vI environment. In
both cases (left: vs. HAC, right: vs. HiTS), our method leads to distributions with smaller mean and variance. The distribution
change across training is evident for the HITS+ASRD method where subgoal error forms distribution with a significantly

thinner tail than HiTS.

using a smaller window length for learning HL actions
leads to better performance in every environment.

Table 2: Influence of window length on ASRD performance
for HiTS and HAC algorithm. The final success rate’s re-
ported averages and standard deviations are calculated using
multiple seeds.

Window length
Env Method 50 500 1000

Drawbridee  HAC 8894157 8774173 985418
& HiTS  99.9+ 0.1 98.5+ 1 99.9 + 0.1
Pendulum HAC  8/0:30  760E165 S00L71
wu HiTS 914426  903+28  91.1+3.6
Platform HAC  210:298 S06E147 351+182
atlorms HITS 993402 6404453 7574228

HAC 998X 01 99502 998401

URSReacher  gipg 100+ 0 100+ 0 100+ 0

6 DISCUSSION AND FURTHER
WORK

We consider the ASRD a step forward in formulat-
ing suitable subgoals in the control task for GCHRL,
especially in a sparse reward setting. The proposed
method leads to higher results in 7 out of 8 environ-
ment/algorithm combinations while using the original
SRD proposed by HAC and HiTS authors. While
disturbing the SRD by the predefined multiplier, our
method significantly boosts performance in most cases.
However, our method’s main limitation is that no sin-
gle quantile order or window length universally works
for all environments. Further research is needed to des-
ignate these parameters without trial-and-error tuning.

We speculate that environment dimensionality and,
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as a consequence, subgoal dimensionality are critical
factors in determining the optimal quantile order for
ASDR. This is supported by the monotonic tendency
for performance increase/decrease in Table 1 with re-
spect to the quantile order.

The relation between window length and perfor-
mance is clear for HiTS. The window length should be
short to consider only the most recent HL actions and
LL capabilities. However, there is no clear prescrip-
tion for window length in HAC, as it appears to be
more environment-specific. Further research is needed
to understand this difference.

One promising avenue for future research involves
the development of adaptive masks for state vectors.
These masks would identify critical state coordinates
that could be used as subgoals, with varying levels of
importance assigned to each component. This would
enable the subgoal vector to be composed of coor-
dinates with highly disparate levels of importance
for successful task completion without sacrificing
the agent’s performance. Additionally, the proposed
method could be extended to scenarios where each
coordinate of the subgoal vector has its quantile or-
der, allowing less important elements to use higher
quantiles. This way, only key subgoal elements would
determine the reachability bottleneck.

7 CONCLUSIONS

Our work addresses a significant limitation in GCHRL
algorithms by proposing a novel method that adapts the
subgoal range dynamically based on the agent’s recent
performance. We show that fixed subgoal ranges can
lead to either too narrow or imprecise subgoals, which
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hinder the learning process. Our adaptive approach
improves training robustness and method performance
while simplifying the hyperparameter tuning proce-
dure. Our findings also suggest that our method leads
to higher control precision and faster convergence in
most cases. Overall, our work contributes to the on-
going effort to improve HRL methods, especially in
subgoal reachability issues in sparse reward GCHRL.
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