
An Improved PUF-Based Privacy-Preserving IoT Protocol for Cloud
Storage

Cédrick De Pauw a, Jan Tobias Mühlberg b and Jean-Michel Dricot c

École Polytechnique de Bruxelles, Université Libre de Bruxelles, Av. Roosevelt 50, 1050 Bruxelles, Belgium

Keywords: SRAM PUF, Extended Lifetime, Supply Chain Security, Embedded Devices.

Abstract: The IoT technology allows many types of personal data to be measured by many kinds of devices and sensors,
and to be sent over the Internet for various applications. However, this data transmission has to be secure and
the privacy of the users should ideally be preserved. In this work, we propose a SRAM PUF-based privacy-
preserving IoT protocol for cloud storage based on an existing protocol from the literature. Proposals are
made to increase the supply chain security of the PUF construction used by a device, to extend the secure
lifetime of this device by increasing the number of keys it may generate and avoiding reboot-based attacks,
and to allow a PUF construction to be used for different applications. These proposals only require changes
on the device enrollment and on the master key generation procedure, leaving the PUF construction, the fuzzy
extractor construction and the cryptographic key derivation unchanged. Benefits and limitations of this new
protocol are evaluated and security objectives achieved with these proposals are analyzed.

1 INTRODUCTION

The Internet of Things (IoT) technology has signif-
icantly grown in popularity and raised new security
and privacy issues. With the use of IoT devices, more
and more personal data is exchanged and some man-
ufacturers underestimate potential security threats in
their product (Babaei and Schiele, 2019). Moreover,
sensitive data may be exposed to third-party infras-
tructure during transport and processing, where this
data may then be monetized without consent.

Strong cryptographic primitives and protocols
may not be suited for IoT devices which should be in-
expensive and often have limited resources in terms
of computing power or battery autonomy (Babaei
and Schiele, 2019; Ashur et al., 2018). There-
fore, dedicated protocols are proposed in the liter-
ature. Common solutions for keys storage rely on
power-backed volatile memory or non-volatile mem-
ory (NVM) (Mostafa et al., 2020), both solutions be-
ing vulnerable to attacks (Mostafa et al., 2020). Phys-
ically unclonable functions (PUFs) were proposed to
address the key storage problem and to provide se-
cure and lightweight authentication and session keys.

a https://orcid.org/0009-0002-1223-3285
b https://orcid.org/0000-0001-5035-0576
c https://orcid.org/0000-0002-8539-9940

PUFs are based on established concepts, i.e., identi-
fication or randomness extraction from the measure-
ments of manufacturing variations, which have pre-
viously been used for document and hardware iden-
tification (Graybeal and McFate, 1989; Herder et al.,
2014; Anderson, 2021; Rührmair, 2022).

Prior research proposes to use the PUF construc-
tion for one application only. For constrained de-
vices, however, it would be beneficial to re-use a
PUF construction for different applications, in com-
parison with storing distinct cryptographic keys in a
NVM (Ferreira, 2022). Commonly, the PUF usage
is also limited, e.g., to a certain number of encryp-
tions. This approach limits the lifetime of the PUF
and thereby often the life span of the device, in par-
ticular for devices that frequently send sensitive data.
E.g., the protocol proposed by Ashur et al. (2018) re-
lies on electronic fuses to prevent the reuse of memory
segments that were previously used to generate keys.
Here, the PUF construction is limited to one-time and
one-application use with an electronic fuse being con-
sumed on every reboot, which presents an attack vec-
tor and imposing limitations on the secure lifetime of
a device. Finally, application service providers of-
ten perform the enrollment of the PUF, which poses
a problem in case of a supply-chain compromise.
In Ashur et al. (2018), master keys are extracted at
the manufacturing site and provided to the user via

De Pauw, C., Mühlberg, J. and Dricot, J.
An Improved PUF-Based Privacy-Preserving IoT Protocol for Cloud Storage.
DOI: 10.5220/0012326000003648
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 10th International Conference on Information Systems Security and Privacy (ICISSP 2024), pages 725-732
ISBN: 978-989-758-683-5; ISSN: 2184-4356
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

725

Quick Response (QR) codes. Although these QRs
is sealed in a tamper-evident packaging, it could be
compromised at earlier stages. Foreseeing options for
the user to parameterize and extract new keys would
thwart such attacks and extend the lifetime of devices.

Contributions. We propose improvements
to Ashur et al. (2018) towards a privacy-preserving
cloud storage protocol which takes the PUF construc-
tion lifetime into account, which allows the user to
reset and manage their key generation parameters,
and which can be used to protect data associated to
distinct applications. We select Ashur et al. (2018)’s
protocol for its privacy-preserving properties: unlink-
ability, anonymity and pseudonymity, confidentiality
and plausible deniability. Our proposal inherits these
properties and improves the master key generation
process in terms of flexibility and sustainability.

Specifically, our proposal allows for all memory
segments of the PUF to be reused in order to derive
a unlimited number of keys, to roll out these keys af-
ter a reset, and hence to extend the secure lifetime of
the device. This “unlimited” number of keys is possi-
ble due to the use of three distinct random numbers, a
PUF response and different hash computations, mak-
ing the key generation sequence hard to predict. The
improved protocol shall further allow the user to re-
configure the key generation parameters for different
applications. Finally, if enough memory is available
on the device, it should be possible to simultaneously
use the PUF construction for different applications.

The scope of this contribution is defined by the
following objectives:

• Propose improvements to the PUF (and device)
enrollment and the key generation procedure of
Ashur et al. (2018)’s protocol;

• Perform an analysis of the security objectives
achieved by this improved protocol.

2 BACKGROUND

This section introduces required PUFs concepts and
presents Ashur et al. (2018), on which our work is
based, in detail.

2.1 Physically Unclonable Functions

A physically unclonable function is a physical func-
tion built from an integrated circuit (IC) and relying
on the physical variations introduced by the manufac-
turing process of some components (Mostafa et al.,
2020; Herder et al., 2014). A PUF is used to gener-
ate challenge-response pairs (CRPs): as illustrated by

Figure 1, a challenge is a sequence of bits given as in-
put to the function, while a response is a sequence of
bits obtained as output from the function for a given
challenge (Babaei and Schiele, 2019; Mostafa et al.,
2020; Herder et al., 2014).

PUF 1011 . . .010

Response

0110 . . .100

Challenge

Figure 1: PUF challenge-response pair.

This section will introduce main PUF properties
and the static random-access memory (SRAM) PUF
architecture, on which the current work relies.

PUF Properties. PUFs obey two main proper-
ties: identifiability and physical unclonability (Maes,
2013; Schrijen, 2018; van der Leest and Tuyls, 2013).
These properties are defined as follows (Maes, 2013).

Identifiability. A PUF circuit can precisely be iden-
tified based on its generated CRPs.

Physical Unclonability. A PUF circuit can not be
physically reproduced even if an adversary con-
trols its manufacturing process.

The identifiability of a PUF is only possible due
to its reproducibility, also called reliability (Schrijen,
2018), and uniqueness (Maes, 2013; Schaller et al.,
2014; Maiti et al., 2012). These properties are briefly
defined and illustrated below (Maes, 2013).

Reproducibility. A PUF circuit reproduces the same
response for a given challenge with a high proba-
bility.
Let the reference response to a challenge be the
response obtained for the first trial. Let another re-
sponse be obtained for any trial i > 1. The repro-
ducibility is illustrated by Figure 2, where high-
lighted bits are bits ensuring this property.

PUF01101010 10110010

Tr
ia

l1

PUF01101010 10110010

Tr
ia

li

= =

Figure 2: PUF reproducibility.

Uniqueness. Two PUF circuits generate distinct re-
sponses for a common challenge with a high prob-
ability.
Let us consider responses from any PUF i and any
PUF j ̸= i to the same challenge. The uniqueness
is illustrated by Figure 3, where highlighted bits
are bits ensuring this property.

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

726

PUF i01101010 10 1 1 0010

PUF j01101010 10 0 1 1101

= ̸=

Figure 3: PUF uniqueness.

When the response of a PUF to a challenge is used
for security applications, e.g. as a key, it is necessary
to ensure additional properties (Maes, 2013; Maiti
et al., 2012; Schaller et al., 2014).

SRAM PUF. A SRAM PUF is a silicon PUF which
uses variations in the manufacturing of SRAM cells
(Herder et al., 2014; Maes, 2013) as a source of ran-
domness. The manufacturing of a SRAM cell induces
physical differences between its two inverters (Maes,
2013) that will lead the SRAM cell to one of its two
stable states on power-up, i.e. either “1” or “0”. When
the difference between inverters from a SRAM cell is
small, the cell may be metastable (Maes, 2013) be-
fore getting its default value with a certain probability.
Thus, an algorithm like fuzzy extractor can be used to
provide a reliable PUF response extraction (Mostafa
et al., 2020; Schrijen, 2018; Kang et al., 2013).

If such a PUF receives a challenge, the response
may be generated by reading a set of cells determined
by the challenge, e.g. a fixed number of cells selected
based on a given address. It reads initial binary values
from each selected SRAM cell on power-up to obtain
a sequence of bits that will serve as the response from
its CRP. SRAM PUF responses may be seen as a set
of physically obfuscated keys (POKs) (Maes, 2013).

2.2 Ashur et al. (2018)’s Protocol

We build upon Ashur et al. (2018) and propose a cloud
storage method in the following sections. The pro-
tocol uses a SRAM PUF as a basis for a privacy-
preserving tracking system that allows for end-to-
end encryption between IoT devices and application
users. A new pair of ephemeral key and identity is
generated for each message, by applying a key deriva-
tion function (KDF) with a key domain separator on a
session key which is obtained from a hash chain.

Context. The tracking application using the se-
lected protocol may be summarized as follows:
1. A tag is attached to personal belongings of a user

and the user collects tag master keys by scanning
a QR code provided with the tag;

2. The tag collects IDs from emitting beacons, used
for the tracking, on Bluetooth Low Energy (BLE)
at regular intervals;

3. The tag regularly sends, using Long Range
(LoRa), the encrypted list of observed beacons,
whose length is fixed, to dedicated LoRa Wide
Area Network (LoRaWAN) gateways, first, and
through a dedicated secure communication chan-
nel, eventually relying on intermediary servers
and Transport Layer Security (TLS), to the appli-
cation server using an ephemeral pseudonym de-
rived from a PUF-based master key;

4. The corresponding user can collect location his-
tory data of its device from the application server
(through Tor) and determine the device location.

Protocol Description. Ashur et al. (2018) propose
to use a SRAM PUF based on a SRAM which is suf-
ficiently large to be partitioned into m > 1 segments.
Each segment produces a PUF response which is then
used to generate a new master key ktag, similarly to
what Aysu et al. (2015) proposed and as illustrated by
Figure 4. The latter is reproduced, and its uniformity
and integrity are guaranteed, by using a robust version
of the fuzzy extractor proposed by Kang et al. (2014).

At boot, a segment is selected and the correspond-
ing ktag is used as the genesis of a hash chain of length
v. Each hash value obtained from this hash chain is a
session key ki which is given to a KDF together with a
domain separator d to generate a one-time pseudonym
p and a one-time encryption key kAE . Once the KDF
input is consumed, the next session key in the chain
is computed. Once the end of the hash chain has been
reached, the next SRAM segment is used to generate
a new master key. The previous steps are also illus-
trated by Figure 4. To provide backward secrecy, the
SRAM segment selection relies on m fuses. Once a
segment has been used, the corresponding fuse is de-
stroyed and the segment becomes unreachable.

Each message (p,c, t) sent to the server by the
tag contains a one-time pseudonym p, the cipher-
text c and the message authentication tag t generated
from an authenticated encryption with associated data
(AEAD), the associated data being the pseudonym.
The user can send a request for the pseudonym p,
and receives all entries for this pseudonym from the
server. While the response may contain collisions,
these cannot be decrypted.

The hash chains of the tag and the user terminal
may become desynchronized. Knowing the transmis-
sion interval between messages, an upper bound on
the number of messages sent since the last successful
request can be computed and all pseudonyms related
to the tag can be requested. This synchronization is
performed, one request at a time, with a random de-
lay between requests to avoid the linking between the
tag and the user terminal and between pseudonyms.

An Improved PUF-Based Privacy-Preserving IoT Protocol for Cloud Storage

727

Segment 1

Segment 2

...

Segment m

SRAM

ktag,i
Reading

order H

d

p kAE

KDF

k0

H

d

p kAE

KDF

k1

H

d

p kAE

KDF

kr

Figure 4: Memory segments are used in turn to produce a master key ktag,i; the generation of one-time authenticated encryption
keys kAE and corresponding pseudonyms p from a master key is performed using a hash function H, a key derivation function
KDF and a domain separator d (Ashur et al., 2018).

Limitations. The main limitation of Ashur et al.
(2018)’s protocol is the number of keys which may
be generated. Even though it is not a problem in the
context given by Ashur et al. (2018) — a lifetime
of 5 years is obtained from 100 memory segments
used as master keys, each generating 438 session keys
and providing encryption for, at most, 18.25 days of
records — it may not be sufficient for other applica-
tions. As such, the approach imposes a planned ob-
solescence for the PUF. Another issue is the method
used to share keys with the user; the master keys are
fixed and the user can not generate new keys if the
previous ones were compromised or if an additional
set of keys is required for a specific application.

3 PROPOSED SOLUTION

3.1 Threat Model

The application context from Ashur et al. (2018) is
easily generalizable: sensing devices send data to re-
mote terminals, eventually for distinct applications.
The data passes through untrusted third-party servers
before being fetched by the terminals.

Following the MITRE (2007) classification, our
work aims to mitigate communications and, eventu-
ally, supply chain attacks. These domains of attack
are non-exhaustively illustrated below:

Communications. A first possible attack on commu-
nications is a flooding attack. An adversary may
perform a denial of service (DoS) attack by over-
flowing the server with a large quantity of pack-
ets and saturating either the server database or the
channel. The user would have to download more
entries, including fake ones, for each of their re-
quest. A second attack consists in the cryptanal-
ysis of the traffic in order to find the content of
messages and obtain cryptographic keys. If fu-
ture generated keys depend on the keys which are
found, the security of future communications is
compromised.

Supply Chain. An adversary may interact with the
device and its QR code before its delivery to the
user. It would then be possible for the adversary to
inject a spyware into the device, to collect master
keys from the QR code or to alter it, or to clone
the PUF if they act early in the supply chain.

3.2 Improved Protocol

Ashur et al. (2018)’s protocol can be “improved” by
implementing together all the following proposals,
which are described one by one to clarify their pur-
pose. First, let xi be the key of size K, associated to
segment i, being the result of a hash function H im-
plemented in the fuzzy extractor proposed by Kang
et al. (2014), i.e. the key previously denoted by ktag in
Ashur et al. (2018); it is referred as a “PUF response”.
Let also ktag,i be the master key associated to segment
i. For simplicity, we assume that every hash function
H used in this work provides an output of K bits.

Proposal 1. The first proposal allows the re-use of
memory segments by cycling over them, i.e. jump to
segment 1 after segment m has been used. Since the
re-use of previously generated master keys should be
avoided, fresh master keys are generated on each cy-
cle for each memory segment. Nonces help to achieve
this goal, but they should be produced in a predictable
way to retrieve data encrypted with generated keys.

Here, a genesis nonce g1 is given as initial input to
a hash chain. For each cycle k and for each memory
segment i, the hash value ri,k of K bits is generated on
the fly and a fresh master key ktag,i,k = xi⊕r1,i,k is ob-
tained, similarly to what is done with the one-time pad
(OTP) encryption (Stallings, 2022). The result ktag,i,k
is then used as a fresh master key (Algorithm 1).

Proposal 2. When iterating over the memory seg-
ments, an adversary may determine which segment
generates the current master key if they know the it-
eration order of the segments. This second proposal
consists in the pseudo-randomization of the order in
which memory segments are visited. For each cycle,

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

728

generate g1 = {0,1}K ;
foreach cycle k in cycles do until end of service

foreach segment i in memory segments do
// generate new nonce
r1,i,k← H(g1);
// generate new master key
ktag,i,k← xi⊕ r1,i,k;
// overwrite with nonce
g1← r1,i,k;

end
end

Algorithm 1: Master key re-freshing when cycling.

a nonce is generated using a hash chain and a gen-
esis nonce g2, as previously, and helps to determine
the segment order. The randomization pseudo-code
given by Algorithm 2 is inspired by a countermea-
sure against side-channel attacks proposed by Witte-
man (2017) and may be used for a memory providing
a number of segments m which is a power of two.
However, it may be adapted, depending on the needs,
when the number of segments is not a power of two.

generate g2 = {0,1}K ;
foreach cycle k in cycles do until end of service

// generate new nonce
r2,k← H(g2);
for i from 0 to m−1 do for each memory

segment
j← (i+ r2,k) AND (m−1);
generate key from segment j;

end
// overwrite with nonce
g2← r2,k;

end
Algorithm 2: Cycle randomization, inspired by Wit-
teman (2017).

Proposal 3. While the second proposal obfuscates
the order in which memory segments are accessed, if
an adversary manages to discover a PUF response and
an iteration-ordered sequence of master keys from a
cycle, they may XOR the known response with all mas-
ter keys, apply H on the results to obtain new potential
hash values, XOR these values with the next master key
in the captured sequence, for each master key, and re-
peat the process. The adversary succeeds once they
retrieve a part of the g1 hash chain and, hence, obtain
associated PUF responses. This attack is possible be-
cause of the link between master keys in the genera-
tion procedure. A possible improvement is to perform
the master key generation from the first proposal us-
ing ktag,i,k = xi⊕H(r1,i,k||r2,k). This trick allows to
break the apparent link between master keys.

Proposal 4. Previous proposals mask the PUF re-
sponses, cut links between the different master keys
and make the segment order unpredictable for an ad-
versary. However, to generate master keys on a termi-
nal, PUF responses and corresponding genesis nonces
must be stored on it. Thus, if they are retrieved by any
malicious software on a terminal, the security of mas-
ter keys dedicated to other applications resides in the
ignorance of their genesis nonces. A method to pre-
vent the leakage of the PUF responses, and hence a
loss regarding the security of the master key genera-
tion for other applications, is to use per-application
PUF responses. This method does not use responses
as described in proposal 3 but replaces xi by yi with
yi = H(xi||r3,i), where r3,i is a nonce, dedicated to
one memory segment i and to one application, which
should be computed with r3,i = H(s+ i), where s is a
random value of K bits used as a seed and i is the seg-
ment index. By doing so, the pseudo-randomization
of the segment order does not require to re-compute
a hash chain for r3,i on each iteration, in the worst
case. With this last proposal, the final expression to
compute the master key is the following:

ktag,i,k = yi⊕H(r1,i,k||r2,k)

= H(xi||H(s+ i))⊕H(r1,i,k||r2,k)

As a consequence, the enrollment must be per-
formed by the user by connecting the device exploit-
ing the PUF to their terminal. The application soft-
ware exchanges genesis nonces with the device, and
generates nonces if it does not have a random number
generator, retrieves the PUF CRPs, the i-th response
being yi, and manages data securely.

Depending on the application, the genesis nonces
may either be stored in NVM and be overwritten as
the cursor moves along the hash chain, i.e. previous
values cannot be accessed anymore, or a copy may
be created and updated such that the original value
may be retrieved from the NVM. However, the first
option is more interesting for security reasons and is
therefore recommended. Finally, in order to recover
from a reboot, current iteration in the current cycle
should be stored in the NVM.

4 DISCUSSION

4.1 System Properties

Benefits and limitations of our proposals are dis-
cussed below:

Benefit 1 - Lifetime. The lifetime of the PUF, as it is
the case for the lifetime or the security of the tag,

An Improved PUF-Based Privacy-Preserving IoT Protocol for Cloud Storage

729

is significantly extended by cycling over memory
segments to generate new master keys.

Benefit 2 - Supply Chain Security. The security of
the PUF supply chain is improved as no QR code
allows one to collect all master keys. Instead, the
enrollment is performed by the user themselves by
connecting the PUF to the software managing the
secure storage of the nonces and the CRPs.

Benefit 3 - Increase Difficulty for the Adversary.
By adding per-iteration nonces to the PUF
responses, the discovering of these responses is
made harder for the adversary. Moreover, they
must retrieve the seed used for loop randomiza-
tion and determine the current cycle to find the
order in which memory segments are read.

Benefit 4 - Helper Data Overhead. The helper data
overhead caused by the use of new nonces is re-
duced by using hash chains; only three random
numbers are stored for an eventually large num-
ber of cycles over the memory segments.

Benefit 5 - Per-Application Keys. By generating
two new genesis nonces with an “application-
specific” enrollment, considering the device
exploiting the PUF has enough memory to
store additional helper data or the previous
helper data is overwritten, it is possible to pro-
duce per-application keys using the same PUF
responses.

Limitation 1 - Synchronization Data Overhead.
The fuzzy extractor used by Ashur et al. (2018),
initially proposed by Kang et al. (2014), does not
require to store any random number in the helper
data it generates. Moreover, no constant has to be
saved to allow the recovery of the current iteration
after a reboot. These additional data require an
extra space which is not negligible. However,
thanks to the proposed use of the hashing chains
to generate nonces, this overhead may be limited
to (3K +T)A bits, A being the number of distinct
applications relying on master keys generated
from the PUF, K being the number of output bits
generated by the selected hash function, T being
the size in bits of the smallest word allowing to
store the maximum number of iterations, i.e. the
number of memory segments, per cycle (e.g. 1
byte is sufficient to iterate over maximum 256
memory segments, hence t = 8). This estimation
only stands if no copy of the genesis nonces is
stored, as previously recommended.

Limitation 2 - Additional Computations.
Additional computations are introduced to
generate the new master keys. Note that the
PUF construction and the fuzzy extractor are

identical to the ones used in the original protocol
design, and the method to derive pseudonyms
and associated keys remains unchanged too. The
additional computations can be evaluated in terms
of hash computations. To generate new master
keys for each cycle with our four proposals,
one hash computation is required to obtain r2,k
for the current cycle, one hash computation is
required per memory segment to obtain r1,i,k,
and three hash computations are required per
memory segment to obtain a master key with
ktag,i,k = H(xi||H(s + i))⊕H(r1,i,k||r2,k). Thus,
4m+1 additional hash computations are required
per cycle and per application, m being the number
of memory segments used by the PUF.

Limitation 3 - Impact on Backward Secrecy.
When a master key is discovered, the protocol
from Ashur et al. (2018) limits the number of
compromised messages to the hash chain length
L. In the worst case, the improvement proposed
in this work allows an adversary to discover CL
messages if they uncover the new PUF responses
and the genesis nonces, where C is the number of
cycles performed over the memory segments.

Limitation 4 - Storage of Genesis Nonces. The two
genesis numbers and the application seed must be
stored in an NVM which may be read or manipu-
lated if not secure. This may help the adversary to
find PUF responses and impact backward secrecy,
as described in the previous limitation. However,
if genesis nonces are overwritten during the pro-
cess, the forward secrecy should be preserved.

4.2 Security Analysis

The selected protocol provides several security ser-
vices (Ashur et al., 2018; Nieles et al., 2017; Boyd
et al., 2020; Shostack, 2014; Mees, 2020); none of
these are altered by our proposals.
Data Integrity. Any unauthorized information ma-

nipulation during a message transmission is de-
tected. This service is guaranteed thanks to the
authenticated encryption.

Data Origin and Entity Authentication. The
source of the message is authentic. Data integrity
is required for this service. This service is
guaranteed thanks to the authenticated encryption
with associated data.

Confidentiality. Unauthorized parties do not have
access to the message content. This service is
guaranteed thanks to the authenticated encryption.

Anonymity and Pseudonymity. It is impossible to
distinguish an entity from other entities, or to link

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

730

an entity to an action or a message. This service
is guaranteed by the use of one-time pseudonyms,
by introducing collisions between pseudonyms
and by transferring all entries corresponding to a
requested pseudonym on user’s request.

Unlinkability. It is impossible to link two or more en-
tities, actions or messages. This service is guar-
anteed by using one-time pseudonyms, by forcing
the tag to send encrypted messages of fixed length
at random intervals and by allowing the user to
connect via Tor.

Plausible Deniability. The identity of any actor, e.g.
the source of a message, can not be proven by
another entity. This is performed thanks to the
pseudonymity and the unlinkability.

Backward Secrecy. The leakage of previously gen-
erated keys does not allow an adversary to dis-
cover future keys. It is not possible to find keys
related to unexplored memory segments, nor to
find master keys of new cycles except if nonces
and PUF responses are known.

Forward Secrecy. The leakage of previously gener-
ated keys does not allow an adversary to discover
other keys generated in the past. It is not possible
to find master keys of previous cycles, except if
PUF responses and previous nonces are known.

5 RELATED WORK

Maes (2013) presents the different PUF properties
in details and describes different PUF architectures.
Two types of applications based on PUFs are illus-
trated: authentication and key generation.

Cambou et al. (2022) proposes a PUF-based
method to generate session keys to establish a secure
client-server channel based on password sets provided
by the users. Zheng et al. (2023) proposes to use a
trusted server as a starting point to provide peer-to-
peer mutual authentication and encryption, and Gua-
jardo et al. (2010) presents a combination of PUFs
and biometrics to link patients and health monitor-
ing devices to transmitted measurements for remote
healthcare applications.

Lounis and Zulkernine (2021) analyses the secu-
rity of fifteen IoT-dedicated authentication protocols,
lists PUF-related threats and draws lessons from pro-
tocol misconceptions for future designs. Similarly,
Mall et al. (2022) presents a survey of PUF-based au-
thentication and key agreement (AKA) protocols for
the IoT, wireless sensor networks and smart grids. It
describes threats affecting them and compares their
performance and their security.

Regarding applications, Skoric et al. (2007) and
van der Leest and Tuyls (2013) propose to use a
SRAM PUF as a secure key storage module, and
Schrijen (2018) proposes a method based on a SRAM
PUF to securely provide root keys to devices and to
secure software images. Other works present anti-
counterfeiting mechanisms (Schaller et al., 2014).

Rührmair (2022) provides a tutorial to achieve
secret-free security and avoid PUF secret extraction
risks. Examples illustrate how standard PUF con-
structions are not secret-free and why more advanced
constructions present the secret-free property. Del-
vaux (2017) analyses the security of fuzzy extractors,
as vectors of attacks on PUFs, and Müelich (2020) de-
scribes attacks on PUFs and solutions to prevent side-
channel attacks on fuzzy extractor components.

Finally, Ferreira (2022) proposes a privacy-
preserving authenticated key exchange protocol,
based on a preshared pair of identity and master key,
to derive new ephemeral identities and session keys.

6 CONCLUSION

We make four proposals to improve the privacy-
preserving device tracking protocol by Ashur et al.
(2018). These proposals improve the lifetime of the
PUF, reduce risks related to the supply chain security
and make the key generation less predictable for an
adversary. We also enable a single PUF to generate
keys for distinct applications, at the cost of a slightly
higher power consumption and data overhead.

As future work, we envision to explore addi-
tional privacy-oriented objectives, e.g. unobservabil-
ity, content awareness and policy and consent com-
pliance (Deng et al., 2010). Unobservability — both
anonymity regarding entities, actions and messages,
and undetectability of dummy entities, actions and
messages — is most relevant for application. There-
fore, it would be interesting to propose a privacy-
preserving mechanism to only allow authorized user
to generate dummy traffic, while also rate-limiting
this traffic. Cryptanalysis (Kraleva et al., 2023) of our
proposals should be performed to evaluate if the gen-
eration of an unlimited number of keys is realistic.

ACKNOWLEDGEMENTS

This research is supported by the CyberExcellence
program of the Wallon region of Belgium under GA
#2110186.

An Improved PUF-Based Privacy-Preserving IoT Protocol for Cloud Storage

731

REFERENCES

Anderson, R. (2021). Security Engineering A Guide to
Building Dependable Distributed Systems. Wiley &
Sons, Limited, John.

Ashur, T., Delvaux, J., Lee, S., Maene, P., Marin, E.,
Nikova, S., Reparaz, O., Rožić, V., Singelée, D., Yang,
B., and Preneel, B. (2018). A privacy-preserving de-
vice tracking system using a low-power wide-area net-
work. In CANS, pages 347–369. Springer.

Aysu, A., Gulcan, E., Moriyama, D., Schaumont, P.,
and Yung, M. (2015). End-to-end design of a puf-
based privacy preserving authentication protocol. In
Güneysu, T. and Handschuh, H., editors, CHES 2015,
pages 556–576. Springer.

Babaei, A. and Schiele, G. (2019). Physical unclonable
functions in the internet of things: State of the art and
open challenges. Sensors, 19(14):3208.

Boyd, C., Mathuria, A., and Stebila, D. (2020). Protocols
for Authentication and Key Establishment. Springer.

Cambou, B., Telesca, D., and Jacinto, H. S. (2022). PUF-
protected methods to generate session keys. In LNNS,
pages 744–764. Springer.

Delvaux, J. (2017). Security Analysis Of PUF-Based Key
Generation And Entity Authentication. PhD thesis,
KU Leuven.

Deng, M., Wuyts, K., Scandariato, R., Preneel, B., and
Joosen, W. (2010). A privacy threat analysis frame-
work: supporting the elicitation and fulfillment of
privacy requirements. Requirements Engineering,
16(1):3–32.

Ferreira, L. (2022). Privacy-preserving authenticated key
exchange for constrained devices. In ACNS, pages
293–312. Springer.

Graybeal, S. N. and McFate, P. B. (1989). Getting out of
the starting block. Scientific American, 261(6):61–67.

Guajardo, J., Asim, M., and Petković, M. (2010). To-
wards reliable remote healthcare applications using
combined fuzzy extraction. In ISC, pages 387–407.
Springer.

Herder, C., Yu, M.-D. M., Koushanfar, F., and Devadas, S.
(2014). Physical unclonable functions and applica-
tions: A tutorial. Proceedings of the IEEE, 102:1126–
1141.

Kang, H., Hori, Y., Katashita, T., and Hagiwara, M. (2013).
The implementation of fuzzy extractor is not hard to
do : An approach using puf data. In 2013 SCIS.

Kang, H., Hori, Y., Katashita, T., Hagiwara, M., and Iwa-
mura, K. (2014). Cryptographic key generation from
puf data using efficient fuzzy extractors. In 2014
ICACT. IEEE.

Kraleva, L., Mahzoun, M., Posteuca, R., Toprakhisar, D.,
Ashur, T., and Verbauwhede, I. (2023). Cryptanalysis
of strong physically unclonable functions. IEEE OJ-
SSCS, 3:32–40.

Lounis, K. and Zulkernine, M. (2021). More lessons:
Analysis of puf-based authentication protocols for iot.
Cryptology ePrint Archive, Paper 2021/1509. https:
//eprint.iacr.org/2021/1509.

Maes, R. (2013). Physically Unclonable Functions: Con-
structions, Properties and Applications. Springer,
2013 edition.

Maiti, A., Gunreddy, V., and Schaumont, P. (2012). A
systematic method to evaluate and compare the per-
formance of physical unclonable functions. In Em-
bedded Systems Design with FPGAs, pages 245–267.
Springer.

Mall, P., Amin, R., Das, A. K., Leung, M. T., and Choo,
K.-K. R. (2022). Puf-based authentication and key
agreement protocols for iot, wsns, and smart grids: A
comprehensive survey. IEEE JIOT, 9(11):8205–8228.

Mees, W. (2020). Pragmatic cybersecurity. Independently
Published, Place of publication not identified.

MITRE (2007). Common Attack Pattern Enumeration and
Classification. Last visit: 2023-05-15.

Mostafa, A., Lee, S. J., and Peker, Y. K. (2020). Phys-
ical unclonable function and hashing are all you
need to mutually authenticate IoT devices. Sensors,
20(16):4361.

Müelich, S. (2020). Channel coding for hardware-intrinsic
security. PhD thesis, Universität Ulm.

Nieles, M., Dempsey, K., and Pillitteri, V. Y. (2017). An
introduction to information security. Technical report,
National Institute of Standards and Technology.

Rührmair, U. (2022). Secret-free security: a survey and
tutorial. Journal of Cryptographic Engineering.

Schaller, A., Arul, T., van der Leest, V., and Katzenbeisser,
S. (2014). Lightweight anti-counterfeiting solution for
low-end commodity hardware using inherent PUFs. In
TRUST, pages 83–100. Springer.

Schrijen, G. J. (2018). Physical unclonable functions to the
rescue: A new way to establish trust in silicon. In
2018 Embedded World.

Shostack, A. (2014). Threat modeling. Wiley.
Skoric, B., Schrijen, G.-J., Tuyls, P., Ignatenko, T., and

Willems, F. (2007). Secure key storage with PUFs. In
Security with Noisy Data, pages 269–292. Springer.

Stallings, W. (2022). Cryptography and Network Security
Principles and Practice, Global Edition. Pearson Ed-
ucation, Limited, 8 edition.

van der Leest, V. and Tuyls, P. (2013). Anti-counterfeiting
with hardware intrinsic security. In 2013 DATE, pages
1137–1142.

Witteman, M. (2017). Secure application programming in
the presence of side channel attacks.

Zheng, Y., Liu, W., Gu, C., and Chang, C.-H. (2023). Puf-
based mutual authentication and key exchange pro-
tocol for peer-to-peer iot applications. IEEE TDSC,
20(4):3299–3316.

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

732

