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Abstract: Oversampling algorithms are commonly used in machine learning to address class imbalance by generating
new synthetic samples of the minority class. While oversampling can improve classification models’ perfor-
mance on minority classes, our research reveals that models often learn to detect noise generated by oversam-
pling algorithms rather than the underlying patterns. To overcome this issue, this article proposes a method
that involves identifying and filtering unrealistic synthetic data, using advanced technique such a neural net-
work for detecting unrealistic synthetic data samples. This aims to enhance the quality of the oversampled
datasets and improve machine learning models’ ability to uncover genuine patterns. The effectiveness of the
proposed approach is thoroughly examined and evaluated, demonstrating enhanced model performance.

1 INTRODUCTION

Class imbalance is a common challenge in machine
learning, occurring when one class has significantly
fewer samples than others. To tackle this issue, over-
sampling techniques, such as the Synthetic Minority
Over-sampling Technique (SMOTE) (Chawla et al.,
2002), have been widely employed.

Oversampling, while enhancing model perfor-
mance on minority classes, presents challenges, espe-
cially in highly imbalanced datasets. In such cases,
the resulting oversampled dataset for the minority
class is predominantly synthetic, overshadowing the
original data. This dominance may lead the model
to prioritize predicting the synthetic nature by cap-
turing noise introduced during oversampling, rather
than discerning the genuine underlying patterns. Con-
sequently, it can result in poor generalization and
suboptimal real-world performance (Tarawneh et al.,
2022; Drummond and Holte, 2003; Chen et al., 2004;
Rodrı́guez-Torres et al., 2022).
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This article proposes a methodological approach
to improve synthetic data quality by training a ma-
chine learning model to predict the synthetic status of
each sample. The goal is to identify and filter unreal-
istic synthetic data, thereby improving overall dataset
quality and enhancing the model’s ability to uncover
genuine underlying patterns. Our study comprehen-
sively investigates the proposed approach’s perfor-
mance on diverse datasets, focusing on its effective-
ness in improving synthetic data quality and enhanc-
ing machine learning model performance on oversam-
pled data. The research aims to contribute effective
strategies for handling class imbalance and overcom-
ing detectability issues associated with synthetic data.

2 BACKGROUND

Various oversampling techniques address class im-
balance, with SMOTE being a prominent method
(Chawla et al., 2002). It interpolates between minor-
ity samples to generate new ones along the connecting
line. Over the years, SMOTE has undergone numer-
ous modifications and extensions to enhance its ef-
fectiveness, addressing issues such as overfitting, data
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density, and mixed feature types.
Enhancements to SMOTE include Borderline

SMOTE (Han et al., 2005), focusing on addressing
overfitting by generating synthetic samples near the
decision boundary. ADASYN (He et al., 2008) adjusts
the density distribution to generate more samples for
harder-to-learn instances, while Safe-Level SMOTE
(Bunkhumpornpat et al., 2009) reduces misclassifi-
cation risks by focusing on samples near a safe ma-
jority class. SMOTEN (Chawla et al., 2002) extends
SMOTE for datasets with mixed nominal and continu-
ous features, employing a tailored distance metric for
generating synthetic samples specifically for nominal
features. Additionally, Minority Oversampling Tech-
nique (MOTE) (Huang et al., 2006) generates syn-
thetic samples exclusively for those misclassified by
the current model.

Choosing an oversampling method requires
thoughtful consideration due to differing strengths
and weaknesses. The chosen technique significantly
influences the model’s performance, emphasizing the
need for a methodological approach to address de-
tectability issues and enhance synthetic data quality.

In addition to oversampling techniques, the emer-
gence of generative adversarial networks (GANs)
(Goodfellow et al., 2014) offer alternative methods
for synthetic data generation. GANs employ a com-
petitive training approach, where two neural networks
are trained jointly: one network generates realistic
synthetic data, while the other network discriminates
between real and synthetic data. They have demon-
strated success in generating complex synthetic data,
such as images and text (Mirza and Osindero, 2014;
Reed et al., 2016; Zhang et al., 2017).

Despite their success in generating realistic data,
GANs struggle with categorical synthetic datasets due
to gradient computation limitations on latent categor-
ical variables. Methods like medGAN (Choi et al.,
2017), which transforms categorical data using au-
toencoders, have been developed to address this lim-
itation. However, medGAN is limited to binary
and count data, leading to the development of MC-
MedGAN (Camino et al., 2018) for multi-categorical
variables.

Our generic method, applicable alongside any
oversampling technique, aims to enhance synthetic
data quality without relying on an internal genera-
tive component. Incorporating our approach into the
oversampling process provides a flexible and effective
solution for improving model performance on imbal-
anced datasets.

3 CHALLENGES OF
OVERSAMPLING

Intuitively, an effective oversampling technique in-
creases the representation of the minority class with-
out merely replicating existing instances. For in-
stance, SMOTE generates synthetic instances by in-
terpolating between existing minority class instances
and their k nearest neighbors. However, oversam-
pling, while enhancing model performance on minor-
ity classes, introduces significant challenges.

Firstly, oversampling can induce bias towards the
minority class, causing the model to prioritize it at the
expense of the majority class. This bias can lead to
poor performance on real-world data, where the mi-
nority class is less frequent (Tarawneh et al., 2022;
Drummond and Holte, 2003). Another issue may
arise from potential inconsistencies in data types, as
synthetic data points may deviate from the typical
range or adopt different formats.

Moreover, oversampling is prone to generating
mislabeled samples belonging to the majority class or
creating unrealistic ”noise” samples. It can alter the
data distribution, impacting the representation of dif-
ferent class proportions. Additionally, oversampling
may reduce dataset diversity, potentially leading to
overfitting and hindering generalization to new data
by creating synthetic samples closely resembling ex-
isting ones.

A careful assessment of oversampling’s impact on
dataset distribution and diversity is essential to en-
sure the resulting model accurately reflects the true
nature of the problem. Additionally, consideration
of the computational costs associated with generating
synthetic data is crucial, especially for large datasets,
given the time-consuming and resource-intensive na-
ture of the process (Chen et al., 2004; Rodrı́guez-
Torres et al., 2022).

To gain a more profound understanding of why
machine learning models often lean towards learn-
ing the synthetic nature of data over genuine under-
lying patterns, we examine the data distribution in
oversampled data. In slightly imbalanced data, de-
picted in Figure 1a, where only a few synthetic sam-
ples are required for class balance, the overall class
distribution remains largely unchanged. In highly im-
balanced datasets, oversampling becomes particularly
challenging, given that the minority class constitutes
a very small fraction of the data. The substantial num-
ber of synthetic instances required to balance the data
results in the majority of the oversampled data be-
ing synthetic, while the original data makes up only
a small fraction. As illustrated in Figure 1b, the ma-
jority class tends to be equivalent to the original data
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(a) Imbalanced Data.

(b) Highly Imbalanced Data.

Figure 1: Class Distribution in Oversampled Dataset.

class, while the minority class classification tends to
be equivalent to the synthetic data class, as the origi-
nal minority class samples contribute negligibly to the
data for that class.

Hence, the quality of synthetic data significantly
impacts machine learning model performance, espe-
cially for the minority class. It is crucial for synthetic
data to accurately mirror real-world data. Inclusion of
unrealistic synthetic data may lead the model to mis-
classify the minority class as synthetic, causing it to
predict these instances rather than capturing genuine
underlying patterns. This situation results in a redef-
inition of the learning problem, shifting the focus to
predicting the synthetic nature of the data.

Addressing the challenge of unrealistic synthetic
data is paramount for enhancing the model’s ability
to discern and leverage essential patterns, ultimately
improving performance on real-world datasets. This
is particularly crucial in highly imbalanced scenarios
where there is an increased likelihood of the model
may detecting the synthetic nature. Therefore, gen-
erating realistic synthetic data is vital to mitigate this
issue and ensure overall dataset quality.

4 METHOD

Our solution to improve the quality of synthetic data
is iterative and consists of three main steps, as il-
lustrated in Figure 2. First, we generate synthetic
data using the chosen oversampling technique. The
second step, which occurs only during the initial it-
eration, involves building a machine learning model
trained to predict the synthetic status of each sample
in the dataset. In the third step, this model is then em-
ployed to identify and filter out **detectable** syn-
thetic data. The predictive model is used to flag and
remove samples classified as synthetic and unrealis-
tic.

By eliminating these **unrealistic** synthetic
samples, our aim is to enhance the overall quality of
the dataset and mitigate the negative impact of the
noise introduced by these samples, enabling the ma-
chine learning model to focus on the genuine under-
lying patterns in the original data. The following sub-
sections provide a detailed explanation of each step.

4.1 Generation of Synthetic Data

The first step of the proposed method consists of gen-
erating synthetic data from the minority class to bal-
ance the overall distribution of classes in the data. For
this step, we can use any existing oversampling tech-
nique. As our method can be adapted to various over-
sampling techniques, it is very flexible which is use-
ful as the choice of the most appropriate technique
depends on the dataset.

4.2 Learning the Detectability of
Synthetic Data

In the second step, we aim to assess the detectabil-
ity of synthetic data and identify unrealistic instances
for subsequent filtering. To achieve this, we formulate
a binary classification problem to distinguish between
synthetic and original data samples based on their dis-
tinct characteristics. We first prepare the dataset for
the learning phase:

1. Build the Dataset: Remove samples from the
majority class in the oversampled dataset gener-
ated in STEP 1, as the focus is on detecting the
synthetic nature of data generated from the minor-
ity class.

2. Label the Samples: Assign labels to each in-
stance in the refined dataset, indicating whether
it is synthetic (1) or original (0).

This binary classification problem, summarized
bellow, aims to train a machine learning model to
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Figure 2: Illustration of the proposed oversampling filtering technique.

distinguish between synthetic and original instances
based on their distinctive characteristics. By captur-
ing the underlying patterns and features that differ-
entiate synthetic data from original data, the model
could learn to predict the synthetic status of each sam-
ple.

Synthetic Sample Detector
Input: Oversampled data: original and synthetic
data
Output: Is the instance synthetic or original?

This problem formulation served as the founda-
tion for exploring the detectability of synthetic data
and identifying lower-quality instances. The insights
gained from this analysis played a crucial role in guid-
ing the subsequent step of filtering out detectable syn-
thetic data, which aimed to enhance the overall qual-
ity of the synthetic dataset and improve the perfor-
mance of machine learning models on imbalanced
datasets.

The second step is only performed at the first iter-
ation. In further iterations, we reuse the same model
generated at the first iteration without learning a new
model.

4.3 Filtering out Unrealistic Synthetic
Data

In the final step, we employ the synthetic data detector
created in Step 2 to predict the synthetic nature of each
data instance generated in Step 1. Instances identified
as synthetic data are filtered out, retaining only those
closely resembling the characteristics of the original
data. If the remaining data remains imbalanced, we

iteratively generate additional synthetic data samples,
detecting and filtering out unrealistic synthetic data in
each iteration. This process continues until achieving
a desired balance between the minority and majority
classes. It facilitates the progressive enhancement of
synthetic data quality, diminishing the detectability of
synthetic instances, and consequently, improving the
model’s accuracy in predicting the minority class.

5 EXPERIMENTS

5.1 Experimental Databases

In this experimental study, we assessed our data fil-
tering technique on oversampled data from various
techniques, including SMOTE, Borderline SMOTE,
SMOTEN , ADASYN, across diverse databases. These
databases, carefully selected for their diversity, repre-
sent different real-world problems with varying class
imbalances and domains:

• Credit Card Fraud: Highly imbalanced (0.17%
minority class ratio); excellent representation of
real-world financial transactions with infrequent
fraudulent activities.

• Car Insurance Claim: Moderately imbalanced
(6.39% minority class ratio); reflecting imbal-
ances in insurance claims between common and
rare cases.

• Anomalies in Wafer Manufacturing: Inter-
mediate imbalance (8.11% minority class ratio);
mimics manufacturing scenarios where detecting
anomalies is essential.
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Table 1: Database descriptions.

Database Domain Input types Feature number Minority Class Ratio
Haemorrhage (MIMIC) Medical Boolean 5317 3.00 %
Credit Card Fraud Finance Real 29 0.17 %
Student Dropout Education Boolean, Real 36 32.12 %
Anomalies in Wafer M. Manufacturing Boolean, Real 1558 8.11 %
Car Insurance Claim Insurance Boolean, Real 42 6.39 %

• Haemorrhage (MIMIC): Significantly imbal-
anced (3% minority class ratio); representing
haemorrhage risk and non-risk instances using
MIMIC database, mirroring real-world medical
scenarios where certain conditions are infrequent.

• Student Dropout: Relatively balanced yet still
imbalanced (32.12% minority class ratio); per-
taining to the education sector where dropout
events are infrequent compared to student persis-
tence.

These databases cover diverse domains: finance,
insurance, manufacturing, medical, and education.
They reflect real-world situations where rare events
or anomalies occur less frequently than normal in-
stances. By evaluating the filtering technique across
databases with varying minority class ratios, we
gained insights into its ability to effectively identify
and filter out unrealistic synthetic data. This eval-
uation allowed us to assess the technique’s general-
izability and applicability across different real-world
scenarios.

Table 1 provides a summary of the databases used
in our experiments, including their respective do-
mains, input types, feature numbers, and minority
class ratios.

5.2 Implementation and Performance
Metrics

To assess the performance of our approach, we em-
ployed a neural network with a tailored architecture
for each dataset. The network used LeakyReLU acti-
vation functions to address ”dead” neurons and em-
ployed a sigmoid activation function for the output
layer, well-suited for binary classification tasks. We
optimized training using the ReduceLROnPlateau
technique, dynamically adjusting the learning rate to
enhance efficiency and prevent convergence plateaus.

During evaluation, we considered precision, re-
call, and F1 score to assess the model’s ability to
correctly identify the minority class (He and Gar-
cia, 2009; Powers, 2011). These metrics collectively
offer a comprehensive understanding of the model’s
strengths and limitations, ensuring a holistic assess-

ment. Relying on a single metric cannot provide a
complete evaluation. These metrics provided valuable
insights into the model’s ability to address imbalanced
class distributions and improve the overall quality of
oversampled data.

Our design choices and selected metrics aimed to
enhance the neural network’s learning capability and
overall effectiveness. The next section presents ex-
perimental results, highlighting our technique’s per-
formance across diverse datasets and varying minor-
ity class ratios.The metrics, together with information
about the imbalance levels in the datasets, will offer
insights into how effectively the technique addresses
imbalanced class distributions.

6 RESULTS

In our experimental study, we rigorously evaluated
the proposed Filtering Oversampling method across
diverse learning problems. We followed a system-
atic approach, assessing machine learning models on
original datasets as a baseline, then evaluating over-
sampled data using various techniques. The final
step involved testing models on filtered oversampled
data, enabling a direct comparison with popular over-
sampling techniques (SMOTE, Borderline SMOTE,
SMOTEN, ADASYN). Summary performance metrics
for each experiment are presented in Table 2.

The Filtering Oversampling method with SMOTE
demonstrated significant improvements in predicting
haemorrhage risk. The f1 score increased from 0.62
to 0.69, recall improved from 0.60 to 0.82, and ac-
curacy rose from 0.63 to 0.88. In contrast, the stan-
dalone use of SMOTE without filtering resulted in a
much lower F1 score of 0.12, recall of 0.21, precision
of 0.09, and accuracy of 0.88, indicating poor real-
world generalization. Other oversampling techniques,
such as Borderline SMOTE, SMOTEN, and ADASYN,
showed varying degrees of effectiveness but fell short
of the enhancements achieved by the Filtering Over-
sampling method, as a substantial portion of all the
possible synthetic data that can be generated were
detectable, resulting in an incomplete balance of the
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Table 2: Performance Metrics Comparison of the Filtering Oversampling Method.

Learning Problem Oversampled Filtered F1 score Recall Precision Accuracy
Haemorrhage Risk No - 0.62 0.60 0.65 0.63
Prediction SMOTE no 0.12 0.21 0.09 0.88

SMOTE yes 0.69 0.82 0.60 0.88
Borderline SMOTE no 0.05 0.04 0.09 0.94
Borderline SMOTE yes 0.15 0.23 0.11 0.91
SMOTEN no 0.05 0.21 0.09 0.92
SMOTEN yes 0.11 0.35 0.06 0.80
ADASYN no 0.09 0.11 0.07 0.90
ADASYN yes 0.17 0.19 0.15 0.92

Credit Card Fraud No - 0.23 0.77 0.13 0.99
Detection SMOTE no 0.0042 0.22 0.0021 0.83

SMOTE yes 0.91 0.84 1.0 0.84
Borderline SMOTE no 0.23 0.90 0.13 0.99
Borderline SMOTE yes 0.62 0.81 0.5 0.98
SMOTEN no 0.04 0.86 0.02 0.94
SMOTEN yes 0.19 0.86 0.10 0.98
ADASYN no 0.08 0.94 0.04 0.96
ADASYN yes 0.57 0.82 0.44 0.99

Student Dropout No - 0.61 0.51 0.74 0.73
Prediction SMOTE no 0.72 0.73 0.71 0.77

SMOTE yes 0.78 0.70 0.88 0.84
Borderline SMOTE no 0.80 0.74 0.86 0.85
Borderline SMOTE yes 0.85 0.86 0.85 0.88
SMOTEN no 0.77 0.74 0.81 0.84
SMOTEN yes 0.80 0.81 0.74 0.83
ADASYN no 0.79 0.70 0.91 0.86
ADASYN yes 0.83 0.85 0.80 0.86

Detecting Anomalies in no - 0.47 0.75 0.34 0.86
Wafer Manufacturing SMOTE no 0.50 0.74 0.37 0.89

SMOTE yes 0.57 0.51 0.64 0.93
Borderline SMOTE no 0.60 0.72 0.51 0.92
Borderline SMOTE yes 0.55 0.60 0.51 0.91
SMOTEN no 0.52 0.64 0.44 0.88
SMOTEN yes 0.73 0.90 0.61 0.94
ADASYN no 0.48 0.75 0.35 0.85
ADASYN yes 0.68 0.64 0.72 0.93

Car Insurance Claim No - 0.08 0.11 0.06 0.83
SMOTE no 0.10 0.44 0.06 0.54
SMOTE yes 0.12 0.67 0.07 0.38
Borderline SMOTE no 0.12 0.66 0.06 0.41
Borderline SMOTE yes 0.11 0.60 0.06 0.36
SMOTEN no 0.12 0.65 0.07 0.38
SMOTEN yes 0.11 0.47 0.07 0.53
ADASYN no 0.12 0.61 0.06 0.43
ADASYN yes 0.12 0.61 0.07 0.43
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dataset.
For credit card fraud detection, the original dataset

had limited fraud detection capability (F1 score of
0.23). While SMOTE without filtering led to a
marginal deterioration (F1 score 0.0042), indicating
a redefinition of the learning problem due to the in-
troduced noise. In stark contrast, when combined
with Filtering Oversampling, a substantial perfor-
mance boost was observed, with an F1 score of 0.91,
a recall rate of 0.84, and a precision of 1.0, showcas-
ing its potency, especially in critical applications like
fraud detection. Other methods (Borderline SMOTE,
SMOTEN, ADASYN) exhibited varying degrees of ef-
fectiveness.

In the context of predicting student dropout, the
utilization of Borderline SMOTE initially demon-
strated an impressive improvement F1 score from
0.61 to 0.80, reaching its peak effectiveness at 0.85
when combined with our filtering technique. This
underscores the effectiveness of integrating oversam-
pling with our filtering method, effectively addressing
class imbalance and enhancing predictive accuracy.

In wafer manufacturing anomaly detection, the
baseline F1 score is a modest 0.47. Integrating
ADASYN with our filtering approach leads to a signif-
icant improvement, boosting the F1 score from 0.48
to 0.68. SMOTEN introduces an initial F1 score of
0.52, and our filtering approach further contributes
to a marginal increase, reaching 0.73. These results
highlight the effectiveness of our method in enhanc-
ing anomaly detection for wafer manufacturing.

However, in car insurance claims, the initial F1
score is 0.08, indicating potential for improvement.
Applying SMOTE without filtering leads to a slight
increase in the F1 score to 0.10, while the integration
of our filtering approach with SMOTE further boosts
the F1 score to 0.12. Additionally, both SMOTEN and
Borderline SMOTE exhibit F1 score of 0.12 and 0.11
with and without filtering, respectively. These find-
ings highlight the variable effectiveness of filtering in
enhancing the F1 score, dependent on the oversam-
pling method and dataset.

Overall, our experimental results provide strong
evidence that the proposed filtering oversampling
method consistently outperforms both the original
dataset and the widely used methods (SMOTE, Bor-
derline SMOTE, SMOTEN, ADASYN) across a range
of learning problems. These findings highlight the
effectiveness of our approach in enhancing the per-
formance of imbalanced classification tasks. It’s im-
portant to acknowledge that high accuracy observed
when learning on the original data is primarily influ-
enced by the large number of true negatives. There-
fore, it’s crucial to consider multiple performance

metrics, such as F1 score, precision, and recall, to as-
sess the model’s effectiveness in handling imbalanced
datasets.

7 DISCUSSION

In this study, we proposed a novel approach to
enhance oversampling methods through a filtering
mechanism to eliminate unrealistic synthetic data,
resulting in substantial performance improvements.
Rigorous testing highlights the method’s impact on
capturing genuine patterns in the minority class,
thereby improving generalization and real-world per-
formance. As the model relies less on predicting syn-
thetic instances, it gains robustness to handle chal-
lenges in real-world data.

While our method has been applied to well-known
oversampling techniques such as SMOTE, Borderline
SMOTE, SMOTEN, and ADASYN, it is, in essence,
a generic approach adaptable to other oversampling
techniques. The results showcased that this method
excels with highly imbalanced data, which are most
impacted by the noise oversampling, given that the
majority of the oversampled dataset comprises syn-
thetic instances. The extent of improvement achieved
through our filtering method is not quantified by a
fixed value; it depends on the dataset, the number, and
type of features involved. On small datasets with lim-
ited instances and features, the challenge lies in run-
ning out of synthetic samples to effectively balance
the classes.

It’s crucial to note that the model created in Step
2, trained on data where the synthetic class may dom-
inate, faces challenges in detecting synthetic data due
to class imbalance. Consequently, applying our filter-
ing technique may not significantly improve results
in such scenarios. For certain datasets, like the ”Car
Insurance Claim database” in our experiment, lim-
ited improvement was observed due to exhausted syn-
thetic samples and the inability to generate enough
realistic synthetic samples (i,e undetected synthetic
data) to balance the dataset. This limitation may be at-
tributed to a possible bias toward the unrealistic class,
given its majority representation.

In summary, our proposed method provides a
valuable contribution to mitigate oversampling tech-
nique limitations and enhancing machine learning
model performance on imbalanced datasets. By im-
proving synthetic data quality, it enables more accu-
rate learning and better handling of class imbalance in
real-world applications.
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8 CONCLUSION AND
PERSPECTIVES

In conclusion, oversampling techniques provide a
valuable approach to address class imbalance in ma-
chine learning. Nevertheless, their effectiveness can
be hindered by the quality of synthetic data gen-
erated during the oversampling process. To over-
come this limitation, the proposed filtering oversam-
pling method selectively filters out unrealistic syn-
thetic data, thereby enhancing the performance of ma-
chine learning models on imbalanced datasets. This
leads to improved performance on real-world datasets
as the model becomes less reliant on predicting syn-
thetic instances and gains better generalization capa-
bilities beyond the synthetic data distribution.

For future research, promising directions include
incorporating explainability and interpretability as-
pects into the filtering oversampling method. Devel-
oping techniques to understand the impact of filtered
synthetic data on the model’s decision-making pro-
cess can enhance insights and prediction trustworthi-
ness. Additionally, extending the research to multi-
class classification problems, beyond initial binary
classification tasks, will assess the method’s effective-
ness across a broader range of scenarios.

We aim to advance the understanding and capa-
bilities of handling imbalanced datasets by pursuing
these future research directions, ultimately enhancing
the performance of machine learning models in real-
world applications.
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