
Efficiency Optimization Strategies for Point Transformer Networks

Jannis Unkrig a and Markus Friedrich b

Department of Computer Science and Mathematics, Munich University of Applied Sciences, Munich, Germany

Keywords: 3D Point Cloud Processing, 3D Computer Vision, Deep Learning, Transformer Architecture.

Abstract: The Point Transformer, and especially its successor Point Transformer V2, are among the state-of-the-art ar-
chitectures for point cloud processing in terms of accuracy. However, like many other point cloud processing
architectures, they suffer from the inherently irregular structure of point clouds, which makes efficient process-
ing computationally expensive. Common workarounds include reducing the point cloud density, or cropping
out partitions, processing them sequentially, and then stitching them back together. However, those approaches
inherently limit the architecture by either providing less detail or less context. This work provides strategies
that directly address efficiency bottlenecks in the Point Transformer architecture, and therefore allows process-
ing larger point clouds in a single feed-forward operation. Specifically, we propose using uniform point cloud
sizes in all stages of the architecture, a k-D tree-based k-nearest neighbor search algorithm that is not only ef-
ficient on large point clouds, but also generates intermediate results that can be reused for downsampling, and
a technique for normalizing local densities which improves overall accuracy. Furthermore, our architecture is
simpler to implement and does not require custom CUDA kernels to run efficiently.

1 INTRODUCTION

As shown by Convolutional Neural Networks (CNNs)
(Lecun et al., 1998) or modern Vision Transform-
ers (Liu et al., 2021), respecting locality is instru-
mental for efficient and accurate processing of vi-
sual data. This locality is not implicitly given in 3D
point clouds. As a consequence, locality needs to
be restored explicitly by computationally expensive k
Nearest Neighbor (knn) searches (Zhao et al., 2020b;
Wu et al., 2022), or by determining if a given point is
within a given window (Lai et al., 2022; Yang et al.,
2023). The lack of implicit locality also poses a chal-
lenge for efficient downsampling methods.

The Point Transformer (Zhao et al., 2020b) and
its version 2 (Wu et al., 2022) are among the state-
of-the-art point cloud processing neural network ar-
chitectures. In most cases the authors handled the
expensive, but necessary operations described above
with high efficiency custom CUDA kernels. While
these provide a significant speed up, they do not di-
rectly address the underlying complexity and thus do
not allow for scaling the models efficiency beyond a
given point. Also, they are cumbersome to use and
adapt. For point clouds larger than the default size,

a https://orcid.org/0009-0004-9930-4481
b https://orcid.org/0000-0001-5719-3198

the authors split each cloud into smaller partitions and
process these sequentially, reduce the density in a pre-
processing step, or use a combination of both. All of
these approaches limit the architecture by either pro-
viding less context or less detail.

In this work, we aim to improve the efficiency
of the Point Transformer architecture by directly ad-
dressing bottlenecks, while simultaneously preserv-
ing accuracy — accomplished without the need for
custom CUDA kernels. We thereby not only work to-
wards a faster model, but also towards training and
inference on larger point clouds. Furthermore, we an-
alyze some of the changes proposed in the follow-up
paper and examine their impact on both speed and ac-
curacy.

This paper is organized as follows: Chapter 2 ex-
plores related architectures for point cloud process-
ing. In Chapter 3, we discuss the Point Transformer
architecture our work is based on. The proposed im-
provements are detailed in Chapter 4 and evaluated in
Chapter 5. Chapter 6 presents an ablation study. Fi-
nally, in Chapter 7, we discuss the results and outline
future work.

Unkrig, J. and Friedrich, M.
Efficiency Optimization Strategies for Point Transformer Networks.
DOI: 10.5220/0012325000003660
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2024) - Volume 3: VISAPP, pages
65-76
ISBN: 978-989-758-679-8; ISSN: 2184-4321
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

65

2 RELATED WORK

2.1 Point Cloud Processing

There are various learning-based approaches for pro-
cessing 3D point clouds. These methods can be
roughly classified into three types: projection-based,
voxel-based, and point-based networks. When deal-
ing with irregular inputs contains an ablation study.
like point clouds, a common strategy is to convert the
irregular representations into regular ones.

2.1.1 Projection-Based Networks

Projection-based methods involve projecting 3D point
clouds onto different image planes, and utilizing 2D
CNNs as backbones to extract feature representations
(Su et al., 2015; Chen et al., 2016). These approaches
generally do not utilize the sparsity of point clouds
when forming dense pixel grids on projection planes.
Also the choice of projection planes can heavily in-
fluence performance and occlusion in 3D scenes or
objects is a major problem.

2.1.2 Voxel-Based Networks

Another approach involves performing convolutions
in 3D by transforming irregular point clouds into
regular voxel representations (Maturana and Scherer,
2015). However, voxel-based methods also suffer
from inefficiency due to the sparse nature of point
clouds, although this challenge has been addressed
to some extent with the introduction of sparse con-
volution techniques (Graham et al., 2017; Choy et al.,
2019).

2.1.3 Point-Based Networks

Lastly, point-based methods extract features directly
from the point cloud itself, without the need for pro-
jection or quantization onto regular 2D or 3D grids.
PointNet(Qi et al., 2016), was one of the first deep
neural network architectures designed for directly
processing point clouds. It employs permutation in-
variant operators such as pointwise MLPs and pool-
ing layers to aggregate features across a point cloud.
Its Successor PointNet++ (Qi et al., 2017) added a hi-
erarchical structure with increasing levels of abstrac-
tion. This significantly improved the segmentation
accuracy and robustness and is used in most architec-
tures to this day. Later, a subcategory of point-based
architectures that leverages the connectivity informa-
tion among points by constructing a graph representa-
tion of the point cloud, was proposed in (Wang et al.,

2018). It employs graph convolutional layers to en-
able effective point cloud segmentation. More recent
graph-based approaches are competitive to this day
(Robert et al., 2023).

2.2 Transformers

After the rise of Transformer architectures for natu-
ral language processing (Vaswani et al., 2017; Brown
et al., 2020), and almost at the same time image pro-
cessing Transformers like ViT (Dosovitskiy et al.,
2020) or Swin (Liu et al., 2021) were proposed,
Transformers were also adapted to point cloud pro-
cessing. As Transformers are inherently permutation
invariant, they are a good fit for point clouds. The
”Point Cloud Transformer” proposed in (Guo et al.,
2020) performs global attention, similar to ViT, which
limits their scalability due to the quadratic cost of
global attention. The ”Point Transformer” and its suc-
cessor ”Point Transformer V2” instead use local at-
tention, similar to Swin, which increases their scala-
bility. Other point cloud architectures that use local
attention include (Yang et al., 2023; Lai et al., 2022).

3 BACKGROUND

3.1 Point Transformer V1

The Point Transformer (Zhao et al., 2020b) architec-
ture was state-of-the-art on the popular S3DIS dataset
(Armeni et al., 2017) for semantic segmentation when
it was published in 2020.

In general, the architecture for semantic segmen-
tation has a U-Net like structure: At first a learned
feature is assigned to each point. Then the density of
the point cloud is gradually reduced while the length
of the features is gradually increased. The second half
of the architecture gradually reverses this process and
assigns each point to a semantic class. Stages with
the same feature length are connected with a skip-
connection (He et al., 2015). Further, after every up-
and downsampling step the architecture uses so called
Point Transformer blocks, in which the features are
processed with pointwise MLPs and can interact via
vector attention (Zhao et al., 2020a). Figure 1 shows
an overview of the architecture.

3.1.1 Vector Attention

The main innovation of the Point Transformer is the
use of so called ”vector attention” (VA) (Zhao et al.,
2020a) instead of the more popular scalar dot-product
attention (Vaswani et al., 2017). Scalar dot-product

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

66

Figure 1: Overview of the Point Transformer architecture for semantic segmentation. Grey boxes are MLPs, blue boxes are
downsample blocks, yellow boxes are 1 to n Point Transformer blocks, and green boxes are upsample blocks. N is the number
of points followed by the feature length, Dout is the number of classes. (adapted from(Zhao et al., 2020b)).

attention for a given feature xi and set of features Xi,
xi can attend to, can be defined as

sa(xi,Xi) = ∑
x j∈Xi

so f tmax(
q(xi)

T k(x j)√
d

)v(x j).

Usually q, k, and v are linear projections or MLPs and
d is the output dimensionality of q and k. For VA this
computation is slightly different:

va(xi,Xi) = ∑
x j∈Xi

so f tmax(w(q(xi)− k(x j)))⊙ v(x j).

In the Point Transformer, Xi is specifically defined as
the k nearest neighbors of xi, w is an MLP and ⊙ is the
hadamard product (element-wise multiplication). So
in VA, the attention weights are vectors rather than
scalars, hence the name. This allows the operation
to modulate individual channels of the value vectors.
The authors of the original paper have shown this
form of attention to perform significantly better than
scalar dot-product attention in the context of 3D point
clouds.

The authors further adapted VA by adding a
learned position encoding δ to the attention vector and
the values:

va(xi,Xi) =

∑
x j∈Xi

so f tmax(w(q(xi)− k(x j)+δ))⊙ (v(x j)+δ),

(1)
where δ is defined as

δ = MLP(pi − p j), (2)

with pi and p j being the absolute coordinates of the
points with features xi and x j. In words: The posi-
tion encoding is a learned representation of the rela-
tive position between two points. The authors have
shown that adding the position encoding to the atten-
tion vectors, as well as to the values, improves perfor-
mance. Note that this position encoding is not related
to the positional encoding used in NLP-Transformers,
in which the positional encoding is used to establish
an order between the tokens.

3.1.2 Down- and Upsampling

As mentioned above, the architecture first reduces and
then restores a point clouds density. The downsam-
pling is done with farthest point sampling (FPS). FPS
starts with a random point and then adds the farthest
away point to the subset. This is repeated n times,
now with the distance being calculated to every point
in the subset, and the point with the biggest minimum
distance is added. Then all point features are pooled
onto the subset: First for each point in the subset the k
nearest neighbors from the initial point cloud are de-
termined. Then the features of those points are com-
bined via max pooling.

The upsampling blocks restore the point cloud
density by mapping the features of the coarser rep-
resentation to the finer representation via trilinear in-
terpolation.

3.2 Point Transformer V2

In 2022, the authors proposed an optimization of their
architecture (Wu et al., 2022) that made the architec-
ture both faster and more accurate.

3.2.1 Grouped Vector Attention

One major change was the introduction of grouped
vector attention (GVA). While in the original VA
(Equation 1) the weight encoding MLP w produced a
weight for each channel of the respective value vector,
in GVA w produces a weight for a group of channels
in the value vector. Figures 2a & 2b in the original
paper (Wu et al., 2022) illustrate the difference.

Weighting groups of channels in each value vec-
tor, instead of individual channels, forces the model to
learn more generalizable representations, while also
reducing the parameter count of the weight encoding
MLP, which makes it computationally cheaper.

Note that GVA is not only a generalized form of
VA, but also of the commonly used multi-head self-

Efficiency Optimization Strategies for Point Transformer Networks

67

attention (Vaswani et al., 2017), as shown in the orig-
inal paper.

3.2.2 Grid Pooling & Map Unpooling

The second major change was the introduction of grid
pooling and map unpooling.

Grid pooling replaces FPS in the Point Trans-
former V1. It works by partitioning the point cloud
with a regular grid. Then the points in the same grid
cells are fused: The coordinates of the points by cal-
culating their mean, their features by max pooling.
Grid pooling allows for replacing the unpooling by
interpolation with unpooling by mapping. By caching
which points were fused during grid pooling, the fea-
ture of each combined point can simply be mapped to
the points it originated from.

Further changes include the omission of the
bottleneck-MLP (Figure 1) and changes to hyperpa-
rameters, layer order and scaling. We will cover these
in the ablation study (Section 6).

4 CONCEPT

While the Point Transformer architecture is powerful,
it is also computationally expensive to run and espe-
cially to train. Also some components rely on custom
CUDA kernels. While these significantly speed up the
given component, they do so by a flat factor and not
by improving the runtime complexity. Also out-of-
framework code, like a custom CUDA kernel, is in-
herently more cumbersome to use and might discour-
age from further research. The following sections de-
scribe strategies that improve the efficiency and ease
of implementation of the Point Transformer architec-
ture while preserving its accuracy.

4.1 Uniform Point Cloud Sizes

A major architecture difference in our version of the
point transformer is that we enforce a uniform num-
ber of points for our training point clouds as well as
for their internal downsampled versions. The original
implementation allowed for point clouds of different
sizes within the same batch by concatenating them
and later separating them with stored offsets where
required. So a batch of point clouds had the shape
(sum(point cloud sizes),3), and a second vector with
offsets was required, while our batches have the shape
(batch size, point cloud size,3), and no offset vector.
Our version eliminates the overhead for separating
and merging point clouds and calculating offsets, and
is thus faster. Also it is more intuitive and easier to

implement. Our evaluation shows that uniform point
cloud sizes during training do not restrict the model
to point clouds of the same size during inference, as
long as the difference between training and inference
size is not extreme (Section 5.6).

If the model is trained on synthetic data, like in
our case, generating point clouds with a uniform size
is not an issue. If the model is trained on a given
dataset with non-uniform point cloud sizes, we pro-
pose sampling the point clouds to a uniform size via
FPS. While FPS is expensive (as will be explained
in Section 4.2.1), it is acceptable as a pre-processing
step (rather than part of the architecture), as those
only need to be performed once per point cloud in the
dataset rather than once per point cloud, per epoch,
and per downsampling block.

4.2 Pooling

4.2.1 Problems of FPS & Grid Pooling

Version 1 uses FPS to downsample point clouds. Even
with an efficient implementation, FPS has quadratic
runtime relative to the number of points. However, an
even bigger problem is that it is not parallelizable, as
we always need the points 0 to n to determine point
n+1. This synergizes very poorly with modern GPUs
that rely heavily on parallel computing. Thus, FPS is
very slow, especially for large point clouds.

While grid pooling is parallelizable and thus con-
siderably faster, it is not compatible with our idea of
keeping uniform point cloud sizes across all stages
of the architecture. As the uniform grid used in grid
pooling does not adapt to the point cloud, the pooled
version of a large object will consist of more points
than the pooled version of a small object. Therefore
we cannot assure uniform point cloud sizes if we were
to use grid pooling.

4.2.2 K-D Tree Pooling

As an alternative that can assure uniform point cloud
sizes while still being parallelizable, we propose pool-
ing the point clouds with a balanced k-D Tree (the
k being the three spatial dimensions). First, we de-
termine the dimension with the largest absolute delta
and split the point cloud along this dimension into two
equally sized partitions. Then, this process is repeated
for all individual partitions until the partitions contain
a desired number of points. Lastly, we fuse the points
in each partition by taking their mean. Figure 2 visu-
alizes the process in 2D.

Similar to grid pooling we combine the point’s
features by max pooling across all points in a given
partition. As our pooling method also fuses sets of

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

68

Figure 2: Illustration of k-D tree pooling in 2D. The first
three images show the partitioning process (red, green, blue
lines). The last image shows the merging of points in the
same partition.

points to reduce the point cloud size (like grid pool-
ing, but unlike FPS), we can also use map unpooling
as described in Section 3.2.2 to restore the point cloud
sizes in the later half of our architecture.

4.3 K-D Tree K Nearest Neighbors
Search

The original Point Transformer uses an algorithm
based on heap sort which is implemented as a custom
CUDA kernel to find the k nearest neighbors (KNN)
of each point. We propose to instead use a k-D tree
based algorithm, as it allows us to reuse the partitions
from the KNN search during pooling.

First we partition the point cloud until each par-
tition reaches a defined size, as described in the pre-
vious section, and calculate the mean of the points in
each partition. Then, if we want to find the KNNs of
point i, we first find the n nearest partition means and
then search for the KNNs only in these n partitions.
The lower n is chosen, the faster the search is, but the
higher the chance becomes, that one of the KNNs is
outside the considered partitions and will thus not be
found. Figure 3 visualizes the process in 2D.

If the point clouds we want to process become
very large, we can end up with a large number of par-
titions and/or very big partitions. In this case, we can
perform the algorithm in multiple steps. By interpret-
ing the means of the points in each partition as a point
cloud itself, we can use the same algorithm to effi-
ciently find the KNNs in the new point cloud. This
approach can be stacked indefinitely. Also it can be
implemented very efficiently as we can reuse the par-
titions from the initial point cloud for the partition-
mean-point cloud.

Figure 3: Illustration of k-D tree KNN search in 2D. In this
example, we search the k=4 nearest neighbors of the light
blue point. The first two images show the k-D tree parti-
tioning process (red & green lines). As those are identi-
cal to the the partitions for the KNN search (the first two
images in Figure 2), we can reuse them. The third image
shows the distance calculations (blue arrows) between the
light blue point and the partition means (yellow points). The
fourth image shows the distance calculations (blue arrows)
between the light blue point and the points in the n=2 near-
est partitions. The k=4 nearest neighbors include the light
blue point itself and the points highlighted in light green.

4.4 Normalizing the KNN Relative
Positions

During our comparison of different downsample al-
gorithms we found that, in general, algorithms that
produce a very consistent density in the downsam-
pled point cloud, regardless of the input point cloud,
perform best. This is in line with the findings of the
Point Transformer V2 paper that found grid pooling
to be superior to FPS. While FPS produces a very
well spread subset, it downsamples point clouds by
a fixed factor. Therefore, point clouds of small ob-
jects remain denser than point clouds of large objects.
Grid pooling produces the same density, regardless of
object size. It increases or decreases the number of
points instead.

As our k-D tree pooling approach does not pro-
duce quite as well spread subsets as FPS, nor does it
change the number of output points to always produce
the same density like grid pooling, we propose to ex-
plicitly normalize the density. Globally normalizing
the density of a point cloud after each downsampling
stage is not possible without changing the number of
points in the downsampled point cloud, or without ex-
cessive computation. However, apart from the down-
sample algorithm itself, the point coordinates are only
ever used to compute the position encoding between a
point and its KNNs (Equation 2). We can therefore re-

Efficiency Optimization Strategies for Point Transformer Networks

69

formulate Equation 2 to normalize the local density.
We do so by adjusting the relative position between
point pi and each of its KNNs p j (the vectors from
pi to each p j), so that their Euclidean lengths have a
standard deviation of 1:

δ = MLP(normalize(∆pi, j)),

∆pi, j = pi − p j,

normalize(∆pi, j) =
∆pi, j

σ+ ε
,

σ =

√
∑

k
j=1 |∆pi, j|2

k−1

=

√√√√∑
k
j=1

√
∆xi, j

2 +∆yi, j
2 +∆zi, j

2
2

k−1

=

√
∑

k
j=1 ∆xi, j

2 +∆yi, j
2 +∆zi, j

2

k−1
,

where σ is the standard deviation, ε is a small con-
stant for numeric stability, k is the number of neigh-
bors we attend to, and ∆xi, j, ∆yi, j and ∆zi, j are differ-
ences of the points pi and p j on the x, y and z axes.
This is the standard normalization approach of sub-
tracting the mean and dividing by the standard devia-
tion, except that in our case we explicitly do not want
to normalize the relative positions ∆pi, j around their
mean, but around the point pi that searched for the
KNNs. The relative position between pi and itself is
always (0,0,0) so we can just omit subtracting the
mean in our normalization procedure.

5 EVALUATION

5.1 Implementation

We used Tensorflow 2.10.0 and Keras 2.10.0 with
CUDA 11.3.1 and cuDNN 8.2.1 to implement the
model. For all our experiments we used mixed pre-
cision, meaning calculations are performed in half
precision, which makes them faster and requires less
RAM, while weights are stored in single precision for
numeric stability. In addition, we compiled all func-
tions for point cloud partitioning, un-partitioning, and
the KNN search to Tensorflow graphs to improve their
efficiency. We trained all models on a single NVIDIA
RTX 3080 Ti GPU with 12GB of RAM.

5.2 Datasets

We trained and evaluated our models on synthetic
data. Each point cloud in our datasets is sampled
from a scene with a random number of random prim-
itives (box, sphere, cylinder, cone, torus), with ran-
dom sizes, at random positions, and with random ori-
entations. The primitives can be partially outside the
space we consider (-1 to 1 for all three axes), in which
case they are cut off. We collect only the point co-
ordinates and no other features like color or normals.
Each point is labeled according to the shape of the sur-
face it belongs to (not the primitive type) to avoid am-
biguity. We distinguish between flat surfaces, spheri-
cal surfaces, cylindrical surfaces, conical surfaces and
toroidal surfaces. For example a cylinder consists of
two flat surfaces and one cylindrical surface. We use
this dataset over more popular benchmarks as we plan
to apply our findings to primitive instance segmenta-
tion in future work.

We generated two of these datasets, which will
further be referred to as ”dataset S” and ”dataset L”.
Dataset S consists of ∼32k (215) point clouds and
each point cloud of 4096 (212) points. The set of
primitives is exclusively combined by union. Dataset
L also consists of ∼32k (215) point clouds, however
each point cloud consists of ∼32k (215) points. Fur-
ther the set of primitives has a wider range of possi-
ble primitive numbers and sizes and is combined by
union and difference, which allows for more complex
shapes that are therefore harder to semantically seg-
ment. The differences between datasets S and L are
summarized in Table 1 and visualized in Figure 4.

Table 1: Comparison of the datasets we used.

n n n Prim. Comb.
Clouds Points Prims Sizes Ops

S 215 212 4 to 10 0.3 to union
1.5

L 215 215 6 to 15 0.1 to union
2.5 & diff.

5.3 Description of the Baseline Point
Transformer

As a baseline we recreated the Point Transformer V1
because the grid pooling in V2 is inherently not com-
patible with our plan to use uniform point cloud size
in all stages of the model. The official implementation
of the Point Transformer V1 already includes GVA,
even though it was first published in the follow-up pa-
per. As the official implementation includes GVA and
we want to ensure that our efficiency gains did not

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

70

Figure 4: Visualization of a point cloud from dataset S (top)
and one from dataset L (bottom). Flat surfaces are red,
spherical surfaces are green, cylindrical surfaces are blue,
conical surfaces are yellow, and toroidal surfaces are pink.

solely come from GVA, we also included GVA in our
baseline model.

Further, during our experiments with different
downsampling algorithms, we found that starting FPS
with a random point (instead of always the ”first”
point) during training improves generalization. This
intuitively makes sense as the inner stages now re-
ceive different point cloud subsets in each epoch,
which acts as regularization. This form of regular-
ization has the advantage over other regularization
techniques, like dropout or weight decay, that it does
not restrict the model in any way. Therefore it only
very mildly increases the number of epochs needed
to reach convergence (compared to e.g. dropout or
weight decay). The additional computation needed
for generating random starting points is negligible.
We included this improved FPS in our baseline model
to not skew the comparison in our favor by withhold-
ing simple optimizations.

Regarding the hyperparameters we use a single
Point Transformer block after the embedding-MLP,
each downsample block, the bottleneck-MLP, and
each upsample block. The five stages in our model
use the feature lengths from Point Transformer V1
(32, 64, 128, 256, 512). Each stage reduces the num-
ber of points in a cloud by factor 4. In the following
sections we refer to this configuration as ”small”. Fur-

ther we use group size 8 and attend to the 16 nearest
neighbors in all GVA layers.

If not explicitly stated otherwise, we use our k-D
tree based KNN search algorithm (Section 4.3) in all
our models. To keep the code simple, we never use
the multi-stage variant of the algorithm, even though
it would probably speed up the computation measur-
ably (especially on the larger point clouds in dataset
L). We search in 8 partitions with 16 (dataset S) or
32 (dataset L) points each. These values are not arbi-
trary: As we always split our point clouds along the
axis with the largest delta, we usually start to cycle
through the three axes after the first few splits. This
results in the later partitions creating a roughly uni-
form grid. The worst case for finding the KNNs of
a point is if that point is in a corner of its partition.
However, under the assumption of a uniform grid and
each partition containing at least k points, we are en-
sured to discover all KNNs by searching within the
partition containing the point and the seven partitions
surrounding the corner where the point is located.

5.4 Description of the Adapted Point
Transformer

Our version of the Point Transformer builds on the
baseline model described above. Further we adopt the
map unpooling and the omission of the bottleneck-
MLP from V2, and introduce our k-D tree pooling and
KNN normalization strategy. We also included 0.1
dropout directly after the softmax calculation in GVA
during training on dataset S.

In addition to the ”small” configuration we also
trained a model with a ”medium” and a ”large”
configuration. The small configuration remains un-
changed, the medium configuration uses two instead
of one Point Transformer block after each downsam-
ple block, and the large configuration uses (2, 2, 6,
2) Point Transformer blocks after the downsample
blocks and feature lengths (48, 96, 192, 384, 512) in
the five stages of the model. The large configuration
was also used in the Point Transformer V2 paper.

Note that when excluding the bottleneck-MLP we
also excluded the Point Transformer block immedi-
ately succeeding it. Therefore the small configuration
of our model has one Point Transformer block less
than the small baseline model.

5.5 Comparisons

5.5.1 Dataset S

For dataset S we trained all our models in three stages
with learning rates 0.005, 0.001, and 0.0002. For all

Efficiency Optimization Strategies for Point Transformer Networks

71

stages we used an Adam optimizer (Kingma and Ba,
2017), early stopping with patience 6, and a hard cap
of 50 epochs per stage. If early stopping triggered
or the hard cap was reached, we rolled the weights
back to the epoch with the best validation loss and
proceeded with the next stage. Table 2 shows the re-
sults.

Table 2: Comparison of the baseline model and our archi-
tecture on a dataset S.

Arch. Param. BS RAM Acc. Epoch
(M) (GB) (%) Time

Baseline 4.9 48 7.0 97.0 883s
(small)
Ours 2.7 48 6.7 96.6 404s
(small)
Ours 4.5 48 7.7 97.4 462s
(med.)
Ours 9.5 8 6.7 97.5 1682s
(large)

Our small model performed slightly worse than
the small baseline model. However, this is in part
due to the huge parameter disparity. Comparing the
baseline model to our medium model, which still has
less parameters, our model performs slightly better,
while still being almost twice as fast. Using the large
configuration only resulted in minor improvements in
accuracy, while memory requirements increased dras-
tically, forcing us to use a smaller batch size (BS),
which slowed down training significantly. Further,
comparing the training histories, our models are much
more stable and overfit less. The improved stability is
a direct result of introducing our normalization of the
KNN’s relative positions.

5.5.2 Dataset L

For training on dataset L we used the same setup as
on dataset S, with the exception that we lowered the
early stopping patience to 2 to save time. Judging
by our training history, a larger patience could prob-
ably improve our accuracy. Table 3 shows our re-
sults. We trained our medium-sized model until con-
vergence because, even with a more aggressive pa-
tience, training on this larger dataset takes approxi-
mately 30 hours with our medium model.

Comparing the training speed of the baseline
model with ours on dataset S and L, one can see the
importance of an efficient downsampling algorithm
increasing with the size of the point clouds. Further,
we hypothesize that with larger point clouds the cho-
sen sampling method becomes less relevant in terms
of accuracy, since preserving a point cloud’s recogniz-
able shape becomes easier the more points one uses.

Table 3: Comparison of the baseline model and our archi-
tecture on dataset L. The ”Epoch Time” for the baseline
model is an estimation based on 10% of the dataset.

Arch. Param. BS RAM Acc. Epoch
(M) (GB) (%) Time

Baseline 4.9 8 6.3 - ∼16h
(small)
Ours 2.7 8 5.8 - 44m
(small)
Ours 4.5 8 8.9 97.4 50m
(med)

However, given the time training our baseline model
on dataset L would take, we could not test our hypoth-
esis.

5.5.3 Analysis of Efficiency Bottlenecks

In an effort to identify efficiency bottlenecks in our ar-
chitecture we measured the timing of individual com-
ponents of our model. We specifically focused on
the algorithmic parts of the model (those without any
learnable parameters), as those make up a significant
part of the computational cost and provide the most
direct opportunities for optimization. Table 4 shows
how much of a data batch’s processing time goes into
the KNN search, the downsampling algorithm, and
the upsampling algorithm, given different point cloud
sizes and model configurations. We also included a
version of our baseline model that uses a brute force
search to find the KNNs. Lastly we calculated the
”remaining time” that was actually spent on calcula-
tions with learnable weights, normalizations and non-
linearities.

Table 4 highlights the importance of an effi-
cient KNN search algorithm, especially for process-
ing large point clouds. This is also evident in the up-
sampling time of the baseline models, as they need
to find the k = 3 nearest neighbors to calculate the
trilinear interpolations. Moreover, the synergy be-
tween our k-d tree based KNN search and our k-d
tree based pooling is evident in the very fast down-
sampling times. As we already partitioned our point
clouds into sets of 16 (or 32 in case of the size 32768
point clouds) during the KNN search, our downsam-
pling merely consists of splitting those partitions an-
other 2 (3) times and calculating the partition centers.
On the contrary, FPS, the downsampling algorithm
used in the baseline model, accounts for over 90% of
the processing time for larger point clouds (given that
the efficient KNN search algorithm is used), which
makes it non-viable in this context. Our normaliza-
tion of the KNN relative positions took less than 5ms.

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

72

Table 4: Speed comparison of a version of the baseline model that uses a brute force approach to search the KNNs, the usual
baseline model and our architecture. The experiments were performed in eager mode, which is required to accurately time
individual components of a model, but is overall slower.

n Architecture BS RAM Time per KNN Downsample Upsample Remaining
Points (GB) Batch Time Time (ms) Time (ms) Time (ms)

(ms) (ms)
4096 Baseline with 64 8.2 1890 555 566 427 342

brute force KNN
search (small)

4096 Baseline (small) 64 8.2 1695 361 587 400 347
4096 Ours (small) 64 8.0 927 365 46 183 333
4096 Ours (medium) 64 8.8 976 363 45 182 386
4096 Ours (large) 8 6.6 774 186 29 113 446

32768 Baseline with 8 6.6 20071 6237 12567 941 326
brute force KNN
search (small)

32768 Baseline (small) 8 6.5 13677 394 12531 415 337
32768 Ours (small) 8 6.3 847 384 48 104 311
32768 Ours (medium) 8 7.4 955 389 51 112 403

5.6 Analysis of Different Training and
Inference Point Cloud Sizes

As mentioned in Section 4.1 we experimented with
using point clouds of different sizes during inference
to confirm that using uniform point cloud sizes during
training does not limit the model to that specific size
during inference.

Table 5: Comparison of different point cloud sizes dur-
ing inference with our medium model trained on dataset L
(which contains point clouds of size ∼32k (215)). The re-
ported accuracies are the averages of 4096 point clouds.

n Points 217 216 215 214 213

Acc. (%) 91.6 97.7 97.4 95.9 92.0

Table 5 shows that using slightly bigger point
clouds during inference even improves accuracy. This
is analogous to image processing, where training on
smaller images than the ones used during inference is
a known method to increase training speed while pre-
serving or even slightly improving accuracy (Howard
and Gugger, 2020). This makes intuitively sense: For
any given point our model attends to a fixed num-
ber of neighbors (16 in our case). If we double the
total number of points in the point cloud, the effec-
tive ”field of view” of any point becomes half as big,
which we can reinterpret as all objects in the point
cloud becoming twice as big. This enlargement helps
with correctly labeling very small objects, which is
usually very difficult (Figure 5). This reinterpretation
is strengthened even further in our model as we effec-
tively eliminate the absolute scale in any local region
with our normalization of the KNN relative positions.

Figure 5: Zero-shot results of our medium model trained
with dataset L on point clouds from the ABC-dataset (Koch
et al., 2019). The upper cloud consists of ∼64k (216) points,
the lower cloud consists of ∼32k (215) points. Red points
were classified as flat surfaces, green ones as spherical sur-
faces, blue ones as cylindrical surfaces, yellow ones as coni-
cal surfaces, and pink ones as toroidal surfaces. In the lower
cloud with ∼32k points the model incorrectly classified the
surfaces of the small bubbles as cylindrical and a small part
as flat, while it correctly labeled them as spherical in the
upper cloud with ∼64k points.

However, ”zooming further and further in” makes any
surface eventually appear flat, which then leads to a

Efficiency Optimization Strategies for Point Transformer Networks

73

decline in accuracy. In contrast, reducing the size and
thereby the detail of a point cloud gradually reduces
the accuracy, which is also intuitive. Nevertheless, up
to a certain point, the accuracy decline remains ac-
ceptable (-1.49% accuracy during inference with half
the training size).

6 ABLATION STUDY

During our ablation study we used more aggressive
learning rates of 0.01, 0.001, and 0.0001, and reduced
the early stopping patience to 2. This leads to an over-
all worse accuracy, but also to faster convergence. All
other training configurations are identical to the ones
used in the evaluation.

6.1 Ablation of Novel Optimizations &
Changes Adopted from Point
Transformer Version 2

Table 6 shows the incremental changes we made to
the Point Transformer. As a starting point, we uti-
lized the small configuration of version 1 because grid
pooling in version 2 is inherently incompatible with
maintaining consistent point cloud sizes. All changes
will be discussed in the following sections:

1. While introducing GVA sped up training and re-
duced RAM usage, even with a larger batch size,
it also reduced our accuracy. However this is to be
expected, as we train a rather small model (4.87M
parameters) on a comparably big dataset (∼134M
(227) points in total). So adding more parameters
in any form usually helps. Another way to look
at it is that GVA is a way to regularize regular
VA. Regularization usually only improves perfor-
mance if overfitting is an issue (which it is not in
this case, given we train a small model on a large
dataset) and degrades the performance otherwise.
However, the original paper shows GVA signifi-
cantly outperforming regular VA in larger models,
which we will eventually move to, so we adopted
the change.

2. Next, we replaced FPS with our k-D tree based
approach. While this further reduced accuracy,
it significantly sped up training, which becomes
imperative when training on bigger point clouds
as shown in Section 5.5.2. As mentioned in that
section, we expect the accuracy difference to de-
crease with bigger point clouds.

3. Unpooling via mapping instead of interpolation
is faster and more accurate, at the minor cost of

slightly more RAM usage for storing the point in-
dices during pooling so they can later be mapped
back. Overall, this change is very positive.

4. Using a combination of dropout and GVA for reg-
ularization achieves higher accuracies than just in-
creasing the group size of the GVA. Especially
in smaller model configurations, increasing the
group size, and thereby reducing the parameter
count, is counterproductive as mentioned in point
1, and dropout becomes a more viable alternative.

5. Removing the bottleneck-MLP and the succeed-
ing Point Transformer block reduced the accuracy,
although considering the big parameter count dis-
parity to the prior version, not by much. Follow-
ing the original Point Transformer V2 we omit the
bottleneck.

6. Next, we added an additional Point Transformer
block after every downsampling block to make up
the parameter difference, leading to our medium
configuration. Increasing the model depth made
it significantly more accurate, but also slightly
slower. Also, as we kept the rather high learn-
ing rate and the low patience, training the deeper
model became unstable, leading to accuracies de-
viating as much as 0.52% from the reported mean.

7. Lastly, we added our normalization of the KNN
relative positions. While not measurably slowing
down training, it significantly improved the accu-
racy and training stability, even when compared
to the slower baseline model. However, similar to
GVA, it appears to become effective only with a
certain model size. During our tests, normalizing
the KNN relative positions in small models actu-
ally degraded their performance.

6.2 Analysis of Point Transformer V2’s
Changes to Layer Order & Scaling

Point Transformer V2 changed two implementation
details: Firstly, while version 1 calculated queries and
keys with a simple dense layer and the weight encod-
ing MLP had the structure: batch norm, ReLU, dense,
batch norm, ReLU, dense, version 2 calculates the
queries and keys via dense, batch norm, ReLU, and
the weight encoding MLP consists of: dense, batch
norm, ReLU, dense. Secondly, the position encoding
MLP’s hidden size is increased from a constant 3 to
always match the current feature dimension. How-
ever, in our experiments, both modifications led to a
decrease in the model’s accuracy and speed. As a re-
sult, we opted not to adopt these changes (Table 7).

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

74

Table 6: Incremental changes from the Point Transformer V1 (small) to our architecture. All numbers refer to training on
dataset S. While repeating our experiments the accuracies in the second to last step varied greatly, so we report an average.

ID Changes Param. (M) BS RAM (GB) Acc. (%) Epoch Time (s)
0 PTv1 6.18 48 9.0 97.09 928
1 +GVA (= baseline) 4.87 64 8.5 96.43 802
2 +k-D Tree Pooling 4.87 64 8.0 94.30 526
3 +Map Unpooling 4.87 64 8.1 95.28 489
4 +Dropout 4.87 64 8.2 95.90 494
5 -Bottleneck 2.72 64 8.0 95.52 488
6 +More PT Blocks 4.54 64 9.3 96.51 (±0.52) 531
7 +knn norm 4.54 64 9.3 97.32 529

Table 7: Analysis of the changes to Layer Order & Scaling in the attention calculation Point Transformer V2 introduced. All
experiments used a medium configuration and dataset S.

ID BN and ReLU directly Bigger Position- BS RAM Acc. Epoch
on Query & Key Encoding MLP (GB) (%) Time (s)

1 64 9.3 96.8 533
2 ✓ 64 7.9 95.9 542
3 ✓ 48 9.4 96.6 569
4 ✓ ✓ 48 8.5 95.0 591

6.3 Analysis of ”More Standard”
Transformer Block Structures

Given that the Transformer block structure used in the
Point Transformer (Figure 6) is unusual, we compared
it with a more standard Transformer block struc-
ture (attention, normalization and a skip connection
around them followed by an MLP, normalization and
another skip connection around them) which is used
in most transformer models. We also compared the
original Point Transformer with a version that uses
layer normalization (Ba et al., 2016) instead of batch
normalization (Ioffe and Szegedy, 2015), as this is
also the more common choice in transformer archi-
tectures (Vaswani et al., 2017; Brown et al., 2020;
Liu et al., 2021; Yang et al., 2023; Lai et al., 2022).
However, both changes significantly degraded perfor-
mance, so we did not investigate them further (Table
8).

Table 8: Comparison of the baseline model, a version with
the standard Transformer block structure, and a version with
layer norm instead of batch norm. All experiments were
performed on a very small, earlier version of our dataset.

Arch. RAM Acc. Epoch
(GB) (%) Time (s)

Baseline 6.4 95.2 39
(small)
Std. Block 6.4 92.9 39
Structure
Layer Norm 7.5 91.9 43

Figure 6: Structure of the Point Transformer block.

7 CONCLUSION

We proposed a variant of the Point Transformer ar-
chitecture that is considerably more efficient for pro-
cessing large point clouds. At similar model sizes,
we reached more than 19 times faster training times.
While we were unable to directly compare the result-
ing accuracies on those larger point clouds due to the
extreme computational cost of the original architec-
ture, the observed disparity does not seem significant.
Further, we posit that the accuracy loss resulting from
our simpler downsampling approach should dimin-
ish with the size of the point cloud, while the better
runtime complexity of our architecture becomes more
important.

Further research might include testing our ar-
chitecture on more datasets, like the S3DIS- (Ar-
meni et al., 2017) or the SemanticKITTI (Behley
et al., 2019) dataset. Particularly, datasets with non-
uniform densities owing to perspective, such as Se-
manticKITTI, could be of interest. Our downsam-
pling approach does not homogenize these densities,
potentially enabling our model to be more precise in

Efficiency Optimization Strategies for Point Transformer Networks

75

regions near the LiDAR sensor where the point cloud
is denser and, consequently, more detailed.

REFERENCES

Armeni, I., Sax, A., Zamir, A. R., and Savarese, S. (2017).
Joint 2D-3D-Semantic Data for Indoor Scene Under-
standing. ArXiv e-prints.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer
normalization.

Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke,
S., Stachniss, C., and Gall, J. (2019). SemanticKITTI:
A Dataset for Semantic Scene Understanding of Li-
DAR Sequences. In Proc. of the IEEE/CVF Interna-
tional Conf. on Computer Vision (ICCV).

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler,
D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner,
C., McCandlish, S., Radford, A., Sutskever, I., and
Amodei, D. (2020). Language models are few-shot
learners. CoRR, abs/2005.14165.

Chen, X., Ma, H., Wan, J., Li, B., and Xia, T. (2016). Multi-
view 3d object detection network for autonomous
driving. CoRR, abs/1611.07759.

Choy, C. B., Gwak, J., and Savarese, S. (2019). 4d spatio-
temporal convnets: Minkowski convolutional neural
networks. CoRR, abs/1904.08755.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Min-
derer, M., Heigold, G., Gelly, S., Uszkoreit, J., and
Houlsby, N. (2020). An image is worth 16x16 words:
Transformers for image recognition at scale. CoRR,
abs/2010.11929.

Graham, B., Engelcke, M., and van der Maaten, L. (2017).
3d semantic segmentation with submanifold sparse
convolutional networks. CoRR, abs/1711.10275.

Guo, M., Cai, J., Liu, Z., Mu, T., Martin, R. R., and Hu,
S. (2020). PCT: point cloud transformer. CoRR,
abs/2012.09688.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep
residual learning for image recognition. CoRR,
abs/1512.03385.

Howard, J. and Gugger, S. (2020). Deep Learning for
Coders with Fastai and Pytorch: AI Applications
Without a PhD. O’Reilly Media, Incorporated.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. CoRR, abs/1502.03167.

Kingma, D. P. and Ba, J. (2017). Adam: A method for
stochastic optimization.

Koch, S., Matveev, A., Jiang, Z., Williams, F., Artemov, A.,
Burnaev, E., Alexa, M., Zorin, D., and Panozzo, D.
(2019). Abc: A big cad model dataset for geometric
deep learning. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Lai, X., Liu, J., Jiang, L., Wang, L., Zhao, H., Liu, S., Qi,
X., and Jia, J. (2022). Stratified transformer for 3d
point cloud segmentation.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. (2021). Swin transformer: Hierarchi-
cal vision transformer using shifted windows. CoRR,
abs/2103.14030.

Maturana, D. and Scherer, S. (2015). Voxnet: A 3d convolu-
tional neural network for real-time object recognition.
In 2015 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 922–928.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2016). Pointnet:
Deep learning on point sets for 3d classification and
segmentation. CoRR, abs/1612.00593.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017). Point-
net++: Deep hierarchical feature learning on point sets
in a metric space. CoRR, abs/1706.02413.

Robert, D., Raguet, H., and Landrieu, L. (2023). Effi-
cient 3d semantic segmentation with superpoint trans-
former.

Su, H., Maji, S., Kalogerakis, E., and Learned-Miller, E. G.
(2015). Multi-view convolutional neural networks for
3d shape recognition. CoRR, abs/1505.00880.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polo-
sukhin, I. (2017). Attention is all you need. CoRR,
abs/1706.03762.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M.,
and Solomon, J. M. (2018). Dynamic graph CNN for
learning on point clouds. CoRR, abs/1801.07829.

Wu, X., Lao, Y., Jiang, L., Liu, X., and Zhao, H. (2022).
Point transformer v2: Grouped vector attention and
partition-based pooling.

Yang, Y.-Q., Guo, Y.-X., Xiong, J.-Y., Liu, Y., Pan, H.,
Wang, P.-S., Tong, X., and Guo, B. (2023). Swin3d: A
pretrained transformer backbone for 3d indoor scene
understanding.

Zhao, H., Jia, J., and Koltun, V. (2020a). Explor-
ing self-attention for image recognition. CoRR,
abs/2004.13621.

Zhao, H., Jiang, L., Jia, J., Torr, P. H. S., and Koltun, V.
(2020b). Point transformer. CoRR, abs/2012.09164.

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

76

