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Abstract: In current transportation systems, a common road is shared by multiple types of vehicles with different capac-
ities. To consider this phenomenon, we propose a model in which customers can strategically select a single
or batch service, and then receive a common service in a single-server queue with exponential service times.
Customers potentially arrive at the system according to a Poisson process and choose whether to join the queue
directly or wait for a batch service. The batch service commences periodically according to a Poisson process
and the capacity of the batch is determined by a geometric distribution. The optimization of such a model has
not been studied despite being an important social issue. We derive the unique equilibrium strategy of cus-
tomers, socially optimal strategy, and socially optimal relationship of fees for both services. Furthermore, we
demonstrate that these optimal fees exhibit linear relationships. In terms of practical application, this system
will allow us to consider the effects of road congestion on transportation platforms.

1 INTRODUCTION

In modern society, batch service systems, such as
buses or trains, are frequently employed in transporta-
tion, where customers are transported in groups. Re-
cently, batch service queueing models with strategic
customers have been studied to obtain insights from
an economic perspective.

There are generally two types of batch service
queues. The first is a system in which the service is
conducted using a constant batch (see, e.g., (Boun-
tali and Economou, 2017; Bountali and Economou,
2019a; Bountali and Economou, 2019b)). The other
is a system in which customers are served in a batch
periodically according to a given interval distribu-
tion, called a clearing system (see, for example,
(Economou and Manou, 2013; Manou et al., 2014;
Manou et al., 2017)).

Furthermore, an interesting topic in batch service
queues is modeling the routing behavior of strate-
gic customers. Several studies have been conducted
on the strategic choice among infinite server systems
with batches and single-server systems of a single
service (Calvert, 1997; Afimeimounga et al., 2005;
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Afimeimounga et al., 2010; Chen et al., 2012; Wang
and Ziedins, 2018). These studies have presented
interesting Downs–Thomson and Braess-type para-
doxes through equilibrium analyses of the model.

In this study, we propose a model in which cus-
tomers select a single service or time-based (clear-
ing system-type) batch service strategically, and both
types of customers receive services in a common
single-server queue (see the detailed explanation in
Section 2). Note that customers who choose the batch
service receive a common service as one batch. From
an application perspective, different types of vehicles,
for example, cars and buses, often coexist on the same
road. Some studies have attempted to model traffic
flow using queueing theory (see, e.g., (Van Woensel
and Vandaele, 2007)). In these studies, part of a road
is modeled as a service station, which is a single-
server queuing model.

The model proposed in this study can be used to
study the trade-off problem between the total time in
a common queue and the waiting time for batch ser-
vice customers. As more customers choose a single
service, traffic congestion is induced in the common
queue. However, as more customers choose the batch
service, the total waiting time for batch service of all
customers accumulates.
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Based on the above, this study aimed to deter-
mine the pricing policy for the two types of services
to achieve a socially optimal state. As relevant re-
search on the pricing of multiple types of services,
several studies have been conducted on queues with
priorities that can be purchased by additional fees
for taking over ordinary customers (see, for example,
Chapter 4 in (Hassin and Haviv, 2003), and (Afeche
and Mendelson, 2004; Li et al., 2020)). Both social
optimization and revenue maximization in priority
queues have been considered in (Afeche and Mendel-
son, 2004). However, to the best of our knowledge,
the optimization of a model in which customers can
select a single or batch service under pricing control
has not been studied, although it is a socially impor-
tant issue.

The remainder of this paper is organized as fol-
lows. First, we describe the model setting in Sec-
tion 2. Subsequently, the equilibrium strategy of cus-
tomers is derived in Section 3, and the socially opti-
mal strategy and pricing policy are discussed in Sec-
tion 4. Furthermore, we present the findings of some
numerical results in Section 5. Finally, some conclud-
ing remarks are given in Section 6.

2 SETTING OF THE MODEL

This section presents the detailed setting of the se-
lectable model for single and batch services. Cus-
tomers arrive at the system according to a Poisson
process at a rate λ. If a customer chooses the single
service, then the customer immediately joins a single
server queue whose service time is exponentially dis-
tributed with parameter µ. The batch corresponds to a
bus system having a finite capacity. If the batch ser-
vice is selected, then the customer must wait in the
waiting room until the batch service commences. We
assume that the interval of occurrences of the batch
service follows an exponential distribution with rate γ

and that the capacity for the batch is X , which follows
with probability 0 < α < 1:

qc := P(X = c) = (1−α)c−1
α, c = 1,2, · · · ,

for the tractability of the probability generating func-
tion (PGF). When the batch service commences, at
most X customers from the head in the waiting room
visit the same server with a single service and receive
the common service (the service time also follows an
exponential distribution with rate µ). We assume that
unserved customers (owing to capacity) immediately
abandon the system.

From an application perspective of the transporta-
tion system, a single server is considered to be a ser-
vice station on the road, as proposed in (Van Woensel

and Vandaele, 2007). In (Van Woensel and Vandaele,
2007), part of the road is regarded as a service station,
which is a single-server queueing model, and traffic
congestion is expressed by the performance measures
of the service station.

For stability of the system in any case, we assume
µ > λ+ γ. We define the fees for single and batch
services as τS and τB, respectively. The reward for
receiving service in the common server is R, and the
time cost per unit time is C. We also make the follow-
ing assumptions regarding τS and τB:

Assumption 1.

0 ≤ τS ≤ R− C
µ− γ

and R− C
µ− γ

≥ 0.

Assumption 2.

0 ≤ τB ≤ R− C
µ−λ− γ

− C
γ
,

and
R− C

µ−λ− γ
− C

γ
≥ 0.

These assumptions yield positiveness of fees and
avoid situations in which no one obtains positive util-
ity by receiving each type of service. Naturally, we
assume the following:

Assumption 3. τS ≥ τB.

If τB ≤ τS, then choosing a batch service does not
yield the best response (see the detailed proof of The-
orem 1). Assumption 3 excludes this case, except
for τS = τB (note that we include τS = τB to con-
sider the case in which fees are not imposed; that is,
τS = τB = 0). This model is a two-stage game between
the monopolist and customers; that is, in the first stage
of the game, the monopolist selects admission fees for
a single service τS and batch service τB. In the second
stage, the customers determine the strategy (pS, pB),
where pS and pB denote the joining probabilities for a
single service and batch service, respectively. We as-
sume that the system is unobservable and that balking
is not allowed; that is, pS + pB = 1 always holds true.

Under the condition that customers follow strat-
egy (pS, pB), the mean waiting time for batch ser-
vice E[WB] and the mean sojourn time in the common
queue E[S] can be calculated as follows:

E[WB] =
1
γ
, and E[S] =

1
µ− (pSλ+ γ)

.

Therefore, the expected total time for batch service
customers who can receive the service, E[TB], is given
by

E[TB] =
1

µ− (pSλ+ γ)
+

1
γ
.
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The expected total time for all customers (including
customers who abandon the batch service) is calcu-
lated as

E[T ] =
pS

µ− (pSλ+ γ)
+ pB

(
Pbatch(pB)

µ− (pSλ+ γ)
+

1
γ

)
,

where Pbatch(pB) denotes the ratio of the expected
number of customers served in a service cycle to the
expected number of customers joining the batch ser-
vice waiting room. According to (Manou et al., 2014),
Pbatch(pB) is given by:

Pbatch(pB) = 1−Π

(
λpB

λpB + γ

)
,

where Π(z) denotes the PGF of the batch size distri-
bution.

Π(z) =
∞

∑
c=1

qczc =
αz

1− z(1−α)
.

Therefore, Pbatch(pB) in the present model is calcu-
lated as

Pbatch(pB) =
γ

αλpB + γ
.

3 EQUILIBRIUM STRATEGY

Theorem 1 presents the Nash equilibrium strategy for
customers.
Theorem 1. Under Assumptions 1 and 2, the unique
equilibrium strategy for customers (pe

S, pe
B) is

• Case 1: τS ≤ τB +
C
γ

. Then, a unique equilibrium

strategy (pe
S, pe

B) exists:

(pe
S, pe

B) = (1,0).

• Case 2: τB +
C
γ

≤ τS ≤ τB
γ

αλ+ γ
−

αλ

αλ+ γ

C
µ− γ

+
αλ

αλ+ γ
R +

C
γ

. Then, a unique

equilibrium strategy (pe
S,1− pe

S) exists where

pe
S =

−A1 −
√

(A1)2 −4A0A2

2A2
, (1)

A2 =

(
R− τS +

C
γ

)
αλ

2,

A1 =−(R− τS)(αλ+ γ)λ− (R− τS)(µ− γ)αλ

+Cαλ+(R− τB)γλ− C
γ

λ(αλ+ γ)

− C
γ
(µ− γ)αλ,

A0 = Rαλ(µ− γ)− τS(µ− γ)(αλ+ γ)+ τBγ(µ− γ)

−Cαλ+
C
γ
(µ− γ)(αλ+ γ).

• Case 3: τS ≥ τB
γ

αλ+ γ
− αλ

αλ+ γ

C
µ− γ

+

αλ

αλ+ γ
R +

C
γ

. Then, a unique equilibrium

strategy (pe
S, pe

B) exists:

(pe
S, pe

B) = (0,1).

Proof. Given that the dominant customer adopts
strategy (pS, pB), the expected utility for a tagged cus-
tomer who adopts strategy (p′S, p′B) is given by

U((p′S, p′B);(pS, pB)) = p′S

(
R− τS −

C
µ− (pSλ+ γ)

)
+ p′B

(
(R− τB)Pbatch(pB)−

CPbatch(pB)

µ− (pSλ+ γ)
− C

γ

)
.

(2)

We then find that the tagged customer must solve the
problem

max(p′S,p
′
B)∈([0,1],[0,1])U((p′S, p′B);(pS, pB))

under pS + pB = 1 and p′S + p′B = 1. Here, it is obvi-
ous that U((p′S, p′B);(pS, pB)) is linear with respect to
p′S and p′B. Therefore, the tagged customer bases his
decision on the following two quantities:

Sind
S (pS) = (R− τS)−

C
µ− (pSλ+ γ)

,

Sind
B (pS, pB) = (R− τB)Pbatch(pB)−

CPbatch(pB)

µ− (pSλ+ γ)

− C
γ
.

(3)
The set of best responses against (pS, pB), that is,
BR(pS, pB), is given by

BR(pS, pB) = (1,0), if Sind
S (pS)≥ Sind

B (pS, pB),
(0,1), if Sind

B (pS, pB)≤ Sind
S (pS),

(a,1−a), if Sind
S (pS) = Sind

B (pS, pB),

(4)

where a∈ [0,1]. We can confirm the equilibrium strat-
egy using the following procedure:

Strategy (1,0) is an equilibrium strategy if and
only if (1,0) ∈ BR(1,0); that is, Sind

S (1) ≥ Sind
B (1,0),

which reduces to

R− τS ≥
C

µ−λ− γ
+

(
(R− τB)−

C
µ−λ− γ

)
− C

γ
.

(5)
Strategy (0,1) is an equilibrium strategy if and

only if (0,1) ∈ BR(0,1); that is, Sind
S (0) ≤ Sind

B (0,1),
which reduces to

R− τS ≤
C

µ− γ
+

(
(R− τB)−

C
µ− γ

)
γ

αλ+ γ
− C

γ
.

(6)
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Here, using Assumption 1, we can easily find that
C

µ− γ
+

(
R− τS −

C
µ− γ

+
C
γ

)
αλ+ γ

γ

− C
µ−λ− γ

−
(

R− τS −
C

µ−λ− γ
+

C
γ

)
>

C
µ− γ

+

(
R− τS −

C
µ− γ

+
C
γ

)
− C

µ−λ− γ
−
(

R− τS −
C

µ−λ− γ
+

C
γ

)
= 0,

(7)

which implies that τB satisfying both (5) and (6) si-
multaneously does not exist. Therefore, the equilib-
rium strategies (1,0) and (0,1) cannot simultaneously
be in equilibrium.

Finally, the strategy (pe
S,1− pe

S) is an equilibrium
strategy if and only if (pe

S,1− pe
S) ∈ BR(pe

S,1− pe
S),

i.e., Sind
S (pe

S) = Sind
B (pe

S,1− pe
S). This necessary and

sufficient condition is equivalent to pe
S satisfying the

following condition:

(R− τS)−
C

µ− pSλ− γ

=

(
(R− τB)−

C
µ− pSλ− γ

)
γ

αλ(1− pS)+ γ
− C

γ
,

=⇒ A2 p2
S +A1 pS +A0 = 0,

(8)
where A0, A1, and A2 are defined in Theorem 1. Sub-
sequently, let F(pe

S) denote

F(pe
S) = (R− τS)−

C
µ− pe

Sλ− γ

−
(
(R− τB)−

C
µ− pe

Sλ− γ

)
γ

αλ(1− pe
S)+ γ

+
C
γ
.

(9)
Then, we obtain

F ′(pe
S) =− λC

(µ− pe
Sλ− γ)2

αλ(1− pe
S)

αλ(1− pe
S)+ γ

−
(
(R− τB)−

C
µ− pe

Sλ− γ

)
γαλ

(αλ(1− pe
S)+ γ)2 .

(10)
Assumption 2 indicates that F ′(pe

S)< 0 is true for 0 ≤
pe

S ≤ 1. Therefore, F(pe
S) = 0 has a unique root as (1)

within 0 ≤ pe
S ≤ 1 if F(0) ≥ 0 and F(1) ≤ 0; that is,

the following is satisfied:

τB −
αC

µ−λ− γ
+αR+

C
γ
≤ τS

≤ τB
γ

αλ+ γ
− α(γ+λ)

αλ+ γ

C
µ− γ

+
α(γ+λ)

αλ+ γ
R+

C
γ
.

(11)

Remark 1. When τS = τB holds, the unique equilib-
rium strategy (pe

S, pe
B) is (pe

S, pe
B) = (1,0). This is be-

cause (5) holds true if τS = τB. This result is natural
because batch-service customers must wait, and there
is a possibility that they are not served while they do
not occur on single-service customers. Therefore, if
fees are not imposed (i.e., τS = τB = 0), the unique
equilibrium is to choose the single service. However,
as the fee for the batch service becomes less than that
for the single service, the equilibrium shifts in favor
of the batch service being used more.

Moreover, we obtain the following theorem:

Theorem 2. The model is an avoid-the-crowd (ATC)
type.

Proof. The increase in utility when a customer
chooses the single service (compared to the batch
service) is given by F(pe

S). As has already shown,
F(pe

S) decreases monotonically within 0 ≤ pe
S ≤ 1,

from which the ATC property follows.

Remark 2. A comparison of Theorems 2 and The-
orem 4.5 in (Hassin and Haviv, 2003) is of inter-
est. The latter theorem shows that an unobservable
single-server queue with a priority (an additional fee)
is of the follow-the-crowd (FTC) type. Note that mul-
tiple equilibria often exist in an FTC setting, and this
trend also applies to basic unobservable queues with
priority. In comparison, our model has a unique equi-
librium; therefore, this is more tractable for consider-
ing the social optimization problem in Section 4.

The reasons for these differences are as follows.
In the priority queue, an ordinary (not buying prior-
ity) customer may be overtaken by successive prior-
ity customers after their decision is completed. Thus,
customers tend to buy more priorities to avoid this
situation as the arrival rate increases. On the other
hand, batch service customers (lower fee and longer
waiting time) are never overtaken after their batch
enters the queue. In addition, recall that batch ser-
vices occur periodically; therefore, it is guaranteed
that batch service customers can line the queue within
a certain amount of time, as long as the capacity is not
exceeded.

4 SOCIAL OPTIMIZATION

Next, we consider the social planner’s point of view.
First, we present Theorem 3:

Theorem 3. For the social planner’s admission prob-
lem, a unique socially optimal strategy (ps

S, ps
B) is

given by
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• Case 1:

R ≤ C
µ− γ

+
C

1− γ2

(αλ+ γ)2

(
γ

αλ+ γ

λ

(µ− γ)2 − 1
γ

)
.

Then, a unique socially optimal strategy (ps
S, ps

B)
exists:

(ps
S, ps

B) = (0,1).
• Case 2:

R ≥ C
µ− γ

+
C

1− γ2

(αλ+ γ)2

(
γ

αλ+ γ

λ

(µ− γ)2 − 1
γ

)
,

and
λ

(µ−λ− γ)2 − 1
γ
≥ 0.

Then, a unique socially optimal strategy (ps
S,1−

ps
S) exists where ps

S is a unique solution of

λ(αλ(1− ps
S)+ γ)2 −λγ2

(αλ(1− ps
S)+ γ)2

(
R− C

µ− ps
Sλ− γ

)
−

λps
S
{

αλ(1− ps
S)+ γ

}
+λ(1− ps

S)γ

αλ(1− ps
S)+ γ

λC
(µ− ps

Sλ− γ)2

+
λC
γ

= 0.

(12)

• Case 3:
λ

(µ−λ− γ)2 − 1
γ
≤ 0. Then, a unique

socially optimal strategy (ps
S, ps

B) exists:

(ps
S, ps

B) = (1,0).

Proof. Assuming that all customers follow strategy
(pS, pB), The mean number of single-service cus-
tomers and batch-service customers, E[CS] and E[CB],
in the common queue is given by

E[CS] =
pSλ

µ− pSλ− γ
, E[CB] =

γ

µ− pSλ− γ
E[B],

respectively, where E[B] is the mean number of cus-
tomers (who choose the batch service) in a batch,

E[B] =
pBλ

γ
Pbatch(pB).

According to Little’s law, the mean number of waiting
customers for the batch service is given by

E[NB] =
pBλ

γ
.

Therefore, social welfare per unit time is given by

Ssoc(pS, pB)

= λ

(
pS + pB

γ

αλpB + γ

)(
R− C

µ− pSλ− γ

)
− pBλC

γ
.

(13)

Using the normalization condition pS + pB = 1,
Ssoc(pS, pB) can be rewritten as

Ssoc(pS) = λpS

(
R− C

µ− pSλ− γ

)
+

λ(1− pS)γ

αλ(1− pS)+ γ

(
R− C

µ− pSλ− γ

)
− (1− pS)λC

γ
.

(14)

Here, the social planner must solve for
maxpS∈[0,1]S

soc(pS). We obtain the following
differentiation form for pS.

∂Ssoc(pS)

∂pS

=
λ(αλ(1− pS)+ γ)2 −λγ2

(αλ(1− pS)+ γ)2

(
R− C

µ− pSλ− γ

)
− λpS {αλ(1− pS)+ γ}+λ(1− pS)γ

αλ(1− pS)+ γ

λC
(µ− pSλ− γ)2

+
λC
γ
,

(15)

∂2Ssoc(pS)

∂2 pS

=−
(

1− γ2

(αλ(1− pS)+ γ)2

)
2λ2C

(µ− pSλ− γ)2

− 2λ3 pSC
(µ− pSλ− γ)3

− 2αλ2γ2

(αλ(1− pS)+ γ)3

(
R− C

µ− pSλ− γ

)
− λ(1− pS)γ

αλ(1− pS)+ γ

2λ2C
(µ− pSλ− γ)3 .

From Assumption 1, it is clear that ∂2Ssoc(pS)
∂2 pS

< 0 holds
for 0 ≤ pS ≤ 1, indicating the concavity of Ssoc(pS).
Hence, the socially optimal strategy (ps

S, ps
B) becomes

(0,1) if ∂Ssoc(pS)
∂pS

∣∣∣
pS=0

≤ 0, i.e.,

R ≤ C
µ− γ

+
C

1− γ2

(αλ+ γ)2

(
γ

αλ+ γ

λ

(µ− γ)2 − 1
γ

)
,

(16)

the socially optimal strategy (ps
S, ps

B) becomes (1,0)

if ∂Ssoc(pS)
∂pS

∣∣∣
pS=1

≥ 0, i.e.,
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λ

(µ−λ− γ)2 − 1
γ
≤ 0, (17)

and the socially optimal (ps
S, ps

B) becomes (ps
S,1− ps

S)
where ps

S is a unique solution of (15) in the other case.
Here, due to Assumption 1, we have

0 ≤ γ

αλ+ γ

λ

(µ− γ)2 − 1
γ
,

if (16) holds. As the following:

γ

αλ+ γ

λ

(µ− γ)2 ≤ λ

(µ−λ− γ)2

is clear, the inequalities (16) and (17) cannot be sat-
isfied simultaneously. Thus, the strategy becomes the
unique strategy.

Remark 3. From Theorem 3, we consider that the
socially optimal probability for a single service in-
creases as R increases as long as λ/(µ−λ− γ)2 −
1/γ ≥ 0 is satisfied. When R is small, the cost of the
waiting time, i.e., C, is considered to be significant.
Thus, in this case, it is socially optimal for customers
to wait for batch services and to prevent traffic con-
gestion in the common queue. On the other hand,
when R is high, the risk of batch service in which
customers may not be served because of the capacity
is considered to be significant because unserved cus-
tomers obtain zero reward. Therefore, choosing the
single service becomes socially optimal. In the case
of λ/(µ−λ− γ)2−1/γ ≤ 0, the arrival of buses is too
infrequent which results in choosing the single service
with probability 1 becomes social optimal.

Based on Theorems 1 and 3, we consider the so-
cially optimal relationship between τS and τB. To this
end, we put forth the following assumption:

Assumption 4. If multiple patterns exist in the rela-
tionship between τS and τB, the social planner adopts
the relationship such that the difference between τS
and τB is the smallest.

From Assumption 4, we obtain Theorem 4.

Theorem 4. The socially optimal relationship be-
tween the admission fees (τs

S and τs
B) for single and

batch services satisfies the following linear equation:
• Case 1:

R ≤ C
µ− γ

+
C

1− γ2

(αλ+ γ)2

(
γ

αλ+ γ

λ

(µ− γ)2 − 1
γ

)
.

Then, τs
S and τs

B satisfy

τ
s
S =

γ

αλ+ γ
τ

s
B −

αλ

αλ+ γ

C
µ− γ

+
αλ

αλ+ γ
R+

C
γ
.

• Case 2:

R ≥ C
µ− γ

+
C

1− γ2

(αλ+ γ)2

(
γ

αλ+ γ

λ

(µ− γ)2 − 1
γ

)
,

and
λ

(µ−λ− γ)2 − 1
γ
≥ 0.

Then, τs
S and τs

B satisfy

τ
s
S = T1τ

s
B +T2,

where
T1 =

γ

αλ(1− ps
S)+ γ

,

T2 = R− C
µ− ps

Sλ− γ
+

C
γ

−
(

R− C
µ− ps

Sλ− γ

)
γ

αλ(1− ps
S)+ γ

.

• Case 3:
λ

(µ−λ− γ)2 − 1
γ
≤ 0. Then, τs

S and τs
B

satisfy

τ
s
S = τ

s
B +

C
γ
.

Proof. In Case 1, the socially optimal strategy is
(0,1). Thus, the social planner sets a fee such that the
equilibrium strategy becomes (0,1) under Assump-
tion 4. The same argument holds true for Case 3. In
Case 2, the socially optimal strategy is (ps

S,1− ps
S),

where ps
S is a unique solution to (12). Therefore, we

obtain the result by substituting ps
S into the equation

for the equilibrium strategy, that is, (1).

Remark 4. From Theorem 4, we find that that τs
S/τs

B
(the amount of τs

S relative to τs
B) decreases as R in-

creases as long as λ/(µ−λ− γ)2 − 1/γ ≥ 0 is satis-
fied. This can be explained as follows. When R is
large, the single service is socially preferable, as dis-
cussed in Remark 3. Therefore, it is optimal for the
social planner to set τs

S relatively low and induce cus-
tomers to use the single service more often, and vice
versa.

5 NUMERICAL EXAMPLES

This section provides some numerical results for the
social welfare and socially optimal relationship be-
tween the fees for single and batch services. Note that
all experiments were conducted under the condition
that Assumptions 1, 2, and 3 are satisfied. We show
some examples under that λ/(µ−λ− γ)2 − 1/γ ≥ 0
is satisfied. The detailed parameter settings are de-
scribed in each figure caption.
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Figure 1: Social welfare for γ and α. The other parameters
are λ = 10,µ = 40,R = 40,C = 40,τS = 20,τB = 10.
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Figure 2: τs
S vs. τs

B for λ. The other parameters are µ =
160,α = 0.1,γ = 10,R = 40,C = 20.

5.1 Social Welfare

In this subsection, the results for Social Welfare, i.e.,
(13), are presented.

Figure 1 depicts Social Welfare with regard to the
batch service, that is, the rate of the exponential distri-
bution for the interval of the batch service occurrences
γ, and the geometric distribution of the capacity α.
Here, the expected batch size becomes 1/α because
of the mean of the geometric distribution. Thus, the
expected batch size increases as α decreases.

Figure 1 illustrates an intriguing tendency. The
graphs behave as decreasing, increasing, and decreas-
ing again, against γ. This trend can be interpreted
as follows. When γ is low, choosing the batch ser-
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Figure 3: τs
S vs. τs

B for γ. The other parameters are λ =
25,µ = 100,α = 0.2,R = 40,C = 40.
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Figure 4: τs
S vs. τs

B for α. The other parameters are λ =
25,µ = 60,γ = 30,R = 40,C = 20.

vice rarely becomes the equilibrium strategy. There-
fore, although γ is increased slightly, this only just in-
duces the congestion level of the common queue (al-
though few customers choose the batch service), and
Social Welfare is decreased. When γ reaches a cer-
tain level, customers often start to use the batch ser-
vice, and Social Welfare increases. However, when γ

increases further, its effect on the congestion of the
common queue becomes stronger than the total re-
ward for batch service customers.
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5.2 Relationship Between Fees of Single
and Batch Services

In the following section, we discuss the socially op-
timal relationship between fees for single and batch
services; that is, Theorem 4. Figures 2–4 show τs

S
when the horizontal axis represents τs

B.
We observe that both fees become closer as τs

B in-
creases. This is natural from the form of Theorem 4.
Fees become dominant in the linear equations as they
increase. Recall that balking is not allowed in this
model. This assumption may allow even large fees
to become socially optimal. Therefore, the develop-
ment of a model in which balking is allowed would
be meaningful in future work.

It is confirmed in Figure 2 that τs
S becomes larger

as λ increases for the same τs
B. This result implic-

itly suggests that the batch service becomes socially
preferable when the arrival rate is high, and it is bet-
ter for the social planner to set τs

B low to induce cus-
tomers to use the batch service. It follows that con-
gestion in the common queue becomes significant if
too many customers use the single service.

Figures 3 and 4 show the results for the batch ser-
vice parameters. As the maximum throughput of the
batch service increases, that is, γ increases or α de-
creases, a lower cost of τs

B becomes socially prefer-
able. This naturally implies that it is socially optimal
for customers to use more batch services when the
performance of the batch service is superior; thus, the
social planner must set τs

B lower.

6 CONCLUSION

In this study, we proposed a model in which cus-
tomers can probabilistically select a single or batch
service. A novel feature of this model is that both
customer types join a common queue. From an appli-
cation perspective, this setting enables us to consider
the effects of road congestion on transportation plat-
forms.

We proved the existence of a unique equilibrium
strategy in this model. Moreover, we derived a so-
cially optimal strategy and demonstrated that using
batch services to alleviate the congestion of the com-
mon queue is socially desirable compared to the equi-
librium strategy. Based on these results, we derived
a socially optimal relationship between the fees for
both services. Interestingly, these optimal fees exhibit
a linear relationship.

In addition, we presented several numerical exam-
ples. In particular, the social welfare for the batch ser-
vice parameters (γ and α) in Figure 1 shows a unique

tendency. It can be interpreted from Figure 1 that in-
creasing the frequency and capacity of the batch ser-
vice does not necessarily lead to better results. Over-
all, the main managerial findings are summarized in
Remarks 1–4 and Section 5.

As potential extensions of this study, a model with
balking or an (partially) observable scheme can be
considered. In addition, the model should be fur-
ther studied under more general assumptions regard-
ing batch service occurrences and capacity.
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