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Abstract: Data confidentiality is becoming increasingly important to computer users, both in corporate and personal
environments. In this sense, there are several solutions proposed to maintain the confidentiality and integrity
of such data, among them the Intel Software Guard Extensions (SGX) architecture. The use of such mecha-
nisms to provide confidentiality and integrity for sensitive data imposes a performance cost on the application
execution, due to the restrictions and checks imposed by the Intel SGX architecture. Thus, the efficient use
of SGX enclaves requires some management. The present work presents two management models for using
SGX enclaves: (i) enclave sharing; and (ii) enclave pool. In order to apply such models, an enclave provider
architecture is proposed, offering a decoupling between the enclave and the application, allowing to apply the
proposed management models and offering the resources provided by the enclaves to the applications through
an “as a service” approach. A prototype was built to evaluate the proposed architecture and management mod-
els; the experiments demonstrated a considerable reduction in the performance impact for enclave allocation,
while guaranteeing good response times to satisfy simultaneous requests.

1 INTRODUCTION

Technology is present in the lives of most people, who
trust their data to devices such as computers, smart-
phones, and online storage services. Data present on
such devices are quite diverse, from personal photos,
passwords, calendars, medical and banking data, and
work-related information, which can be very impor-
tant to users. It is thus necessary to specify mecha-
nisms and practices to ensure their confidentiality and
integrity.

Several mechanisms have been developed in or-
der to support operating systems, libraries, and appli-
cations that aim to ensure trusted execution and han-
dling of sensitive user data. One of the most recent
technologies in this area is the Intel Software Guard
Extensions (SGX), which allows an application to be
split into two components: a trusted (called enclave)
and an untrusted one. Intel SGX brings a series of
new mechanisms and instructions that aim to ensure
the confidentiality and integrity of the data being ma-
nipulated inside each enclave, which holds the trusted
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component of the application (McKeen et al., 2013).
SGX security guarantees add considerable perfor-

mance overhead to both creating enclaves and running
code within them. Furthermore, the memory region
used by SGX is limited, restricting the size and num-
ber of active enclaves (Shaon et al., 2017; Mofrad
et al., 2017; Fuhry et al., 2017). An issue raised is the
possibility of reducing the performance impact inher-
ent to the use of enclaves for handling sensitive data,
especially at their creation time (Fisch et al., 2017).
Another issue to be tackled is the possibility of re-
ducing the use of the SGX trusted memory, allowing
more enclaves to be allocated simultaneously. Such
questions are very important for secure applications
that should satisfy several requests in a short period of
time, considering that the initialization of an enclave
to satisfy each request would be costly, from the point
of view of performance and memory usage.

Some works in the literature aim to improve the
performance of applications that use the Intel SGX
architecture, allowing the enclave to perform dynamic
memory allocation and, consequently, to be initialized
faster (Silva et al., 2017). Other works seek to reduce
the performance impact caused by context switching
between the enclave and the application (Arnautov

474
Will, N. and Maziero, C.
Enclave Management Models for Safe Execution of Software Components.
DOI: 10.5220/0012322600003648
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 10th International Conference on Information Systems Security and Privacy (ICISSP 2024), pages 474-485
ISBN: 978-989-758-683-5; ISSN: 2184-4356
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



et al., 2016; Orenbach et al., 2017), and to extend
the size of the SGX memory, so that it can cover all
available main memory (Taassori et al., 2018). The
common background in such approaches is the low-
level code refinement and changes in the SGX soft-
ware tools.

It is thus necessary to look for alternatives to re-
duce such performance overhead in the application
and to ensure an efficient use of the SGX memory re-
gion, without compromising the security guarantees
provided by SGX, and without changing its operating
structures. Furthermore, the use of enclaves is recent
and there is no clear position in the community on
the correct way to incorporate them into applications,
that is, on the most suitable programming models for
building programs using enclaves.

In this paper, we propose two models of enclave
management, enabling an efficient allocation of re-
sources, aiming to reduce the use of SGX memory
and the time spent by an application to require an en-
clave. Thus, the main contributions of this work are:

• Definition of enclave management models aiming
to reduce the enclave creation overhead and the
usage of enclave memory;

• A new approach to provide multiple enclaves to
applications in a coordinated manner;

• A prototype that implements our approach vali-
dates it in real scenarios;

• Performance evaluation of our prototype, compar-
ing it with previous works;

• Security assessment of the proposed enclave man-
agement models.

The remainder of this paper is organized as fol-
lows: Section 2 provides background information
about the Intel Software Guard Extensions technol-
ogy. Section 3 presents previous research closely re-
lated to our proposal, in the field of enclave manage-
ment. Section 4 presents the enclave management
models proposed in this work. Section 5 discuss the
Enclave as a Service approach implemented in our
prototype, which is described in Section 6. Perfor-
mance evaluation of our solution is presented in Sec-
tion 7 and the security assessment is discussed in Sec-
tion 8. Finally, Section 9 concludes the paper and
presents the future work.

2 INTEL SGX

The Intel Software Guard Extensions (SGX) architec-
ture allows an application to be split into trusted and

untrusted components. The trusted part of the appli-
cation runs in a secure environment called enclave,
in which all instructions and data are kept in an en-
crypted region of the memory called Processor Re-
served Memory (PRM) (McKeen et al., 2013). The
main goal of the SGX architecture is to reduce the ap-
plication’s Trusted Computing Base (TCB) to a small
piece of hardware and software.

To ensure data confidentiality and integrity, the
SGX architecture provides new instructions, a new
processor architecture, and a new execution model,
which includes loading the enclave into the protected
memory area, accessing resources via page table map-
ping and application scheduling inside the enclaves.
After the application is loaded into an enclave, it is
protected from any external access to the enclave, in-
cluding access by applications that are in other en-
claves. Attempts to make unauthorized changes to
content within an enclave from outside are prevented
by the hardware. While enclave data passes between
the registers and other blocks of the processor, unau-
thorized access is prevented using the processor’s own
access control mechanisms. When data is written to
memory, it is transparently encrypted and its integrity
is maintained by avoiding memory probes or other
techniques to view, modify, or replace data contained
in the enclave (Costan and Devadas, 2016).

Memory encryption is performed using standard
encryption algorithms, containing safeguards against
replay attacks. Connecting the DRAM memory mod-
ules to another system will only give access to the data
in its encrypted form. In addition, encryption keys are
stored in registers inside the CPU, not accessible to
external components, and they are changed randomly
at every hibernation or system restart event.

2.1 Enclave Memory

Memory data protection is implemented by the En-
clave Page Cache (EPC), in which the memory pages
and the SGX control structures are stored; this re-
gion is protected from external access by hardware.
Data from different enclaves reside within the EPC;
each enclave has its own control structure, called SGX
Enclave Control Structure (SECS), and each memory
page in the EPC belongs to a single enclave. When an
enclave requests access to the EPC, the processor de-
cides whether to allow its access, managing security
and access control within the EPC through a hardware
structure called Enclave Page Cache Map (EPCM)
(McKeen et al., 2013; Costan and Devadas, 2016).

The EPC storage in main memory is protected by
encrypting the data to provide a defense against mem-
ory attacks. For that, a hardware unit called Memory
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Encryption Engine (MEE) takes care of the encryp-
tion and data integrity while it is transferred between
memory and the processor. A CPU with SGX support
allows the BIOS to reserve a memory range called
Processor Reserved Memory (PRM) to hold the EPC.

The CPU blocks any access to the PRM coming
from external agents, treating these accesses as in-
valid address references. Likewise, attempts to access
memory pages within an enclave by a process that is
not running in that enclave are also treated as invalid
references (Costan and Devadas, 2016).

2.2 Enclave Life Cycle

The enclave creation procedure consists of several
steps: initialization of the enclave control structure,
allocation of the memory pages in the EPC, loading
the contents of the enclave for these pages, measure-
ment of the contents of the enclave, and creation of an
identifier for the enclave. Before starting the enclave
creation, the process will already be residing in the
main memory, being free for any inspection and anal-
ysis and, after it is loaded into the enclave, its data
and code will be protected from any external access.
The enclave life cycle is shown in Figure 1, which
also shows the machine instructions responsible for
managing the enclave.

Non-existing Uninitialized

Initialized
Not in use

Initialized
In use

ECREATE

EREMOVE EINIT

EADD
EEXTEND

EEXIT
AEX

EENTER
ERESUME

Figure 1: Enclave life cycle management instructions and
state transition diagram (Costan and Devadas, 2016).

The ECREATE instruction starts the creation of
the enclave and initializes the SGX Enclave Con-
trol Structure (SECS) which contains global infor-
mation about the enclave. Memory pages are then
added to the enclave using the EADD instruction. The
EEXTEND instruction measures the contents of the en-
clave, which requires that all enclave code and data
are already loaded into memory. Finally, the EINIT
instruction completes the enclave creation process
and creates its identity, allowing it to be used.

Execution can enter and leave an enclave using
the SGX instructions EENTER and EEXIT, respectively.
If the execution leaves an enclave due to some event
or fault, the CPU will execute a routine called Asyn-
chronous Exit (AEX), which will save the enclave
state, clear the registers and store the address of the in-
struction that generated the fault, allowing to resume

the enclave later by invoking the ERESUME instruction.
Finally, the enclave is destroyed using the

EREMOVE instruction, which releases all EPC pages
used by the enclave, ensuring that no logical proces-
sor is executing instructions within the EPC pages
to be removed. The enclave is completely destroyed
when the EPC page containing its SECS structure is
released (McKeen et al., 2013; Costan and Devadas,
2016).

2.3 Attestation and Sealing

SGX provides attestation mechanisms, enabling an-
other party to be confident that a software is securely
running inside an enclave, in certified hardware, and
was not tampered with. The attestation process can be
performed locally or remotely. Local attestation en-
ables that two enclaves in the same platform securely
exchange data, attesting each other, by using symmet-
ric encryption and authenticating the data. Remote at-
testation enables third parties to check the identity of
an enclave running in a distinct SGX platform (Anati
et al., 2013).

A data sealing procedure is also provided by
SGX, allowing to securely store sensitive data in per-
sistent storage. Each enclave can request to the CPU
a unique key, called sealing key, derived from the en-
clave identity and the CPU itself. The sealing feature
ensures that only the same enclave that sealed the data
will be able to unseal them, and only when using the
same CPU (Anati et al., 2013).

2.4 Performance and Memory Usage

Fisch et al. (Fisch et al., 2017) point out that the ini-
tialization of several enclaves by an application may
impose a high computational cost, since, in principle,
the enclave must have allocated all the memory it will
need.

The size of the PRM should also be considered,
since it is limited to 128 MB and, according to previ-
ous works (Shaon et al., 2017; Mofrad et al., 2017;
Fuhry et al., 2017), only about 90 MB are effec-
tively available for enclave data and code. This PRM
limitation makes it necessary to think of alternatives
for situations in which enclaves need to work with
large amounts of data simultaneously. This may raise
problems when there are multiple instances of the
same enclave, or multiple enclaves in memory, forc-
ing some of them to be brought to secondary mem-
ory in order to free space in the PRM. The memory
swap/paging operation is supported by the Intel SGX
architecture, but it obviously impacts performance.

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

476



3 RELATED WORK

Some strategies to improve the overall performance
of applications that use SGX enclaves are presented
in the literature. To reduce the performance impact
caused by context switches, some solutions propose
to provide a communication interface between the en-
clave and the application without the need for such
switches, such as using threads running outside the
enclave to receive the requests and then perform the
system calls. Communication can be done through
Remote Procedure Call (RPC) (Orenbach et al., 2017)
or using a shared memory (Arnautov et al., 2016;
Weisse et al., 2017). The performance improvement
of system calls invocation by enclaves without con-
text switching is investigated by (Tian et al., 2018),
seeking to integrate this feature in the Intel SGX Soft-
ware Development Kit (SDK). Other works propose
to improve I/O performance by reducing the number
of enclave transitions (Svenningsson et al., 2021). An
approach to reduce the encryption/decryption over-
head when accessing data in memory is also proposed
(Shimizu et al., 2019).

The cost of enclave creation is also covered in
the literature, with approaches aimed at updating the
binary code during runtime, by paging the enclave
stack and allowing to load only parts of the enclave
into memory (Krieter et al., 2019). Strategies to
dynamically link libraries to enclaves and to allow
dynamic loading of enclave code are also presented
(Silva et al., 2017; Weichbrodt et al., 2021).

Approaches aimed at extending the PRM size are
also presented. Taassori et al. (Taassori et al., 2018)
propose a solution for the PRM to cover all available
physical memory, by changing the EPCM structure
and allowing to store non-sensitive memory pages
in the EPC. Solutions that seek to store sensitive
key-value data in primary memory also present ap-
proaches to use memory regions outside of PRM to
store such data securely (Kim et al., 2019; Tang et al.,
2019; Bailleu et al., 2019).

Programming paradigms are also used in order to
reduce the impacts caused in the communication and
synchronization of enclaves, which are needed in ap-
plications that use different enclaves to carry out their
operations. A paradigm used in such context is the
actor model, where each actor is self-contained and
communicates with other actors through the exchange
of messages, allowing the execution of parallel and
non-blocking operations. This paradigm is used by
(Sartakov et al., 2018), treating each enclave as an
actor and reducing the need for context changes and
synchronization between enclaves in parallel execu-
tions. Enclave replication in the cloud is addressed

by (Soriente et al., 2019), allowing seamless commis-
sioning and decommissioning of SGX-based applica-
tions to achieve more efficiency in enclave manage-
ment.

Despite there are solutions proposed in the liter-
ature that use programming models to overcome the
performance issues of SGX, they are limited to spe-
cific enclaves and applications. We present in this
work an architecture that deploys such models us-
ing an enclave management service, allowing multi-
ple enclaves to be offered to multiple applications as
logical resources, with their life cycle being managed
by the proposed service.

4 ENCLAVE MANAGEMENT
MODELS

The way the application manages the enclaves it uses
may impact its performance, thus it is important to use
efficient management techniques to minimize such
impact. In addition, as previously mentioned, the lim-
itations imposed by the SGX architecture in the use of
PRM may increase this impact, due to the paging ac-
tivity incurred in the execution of a large number of
enclaves. Thus, management models that aim to re-
duce the number of enclave creations and simultane-
ously active enclaves in the system can bring a signifi-
cant reduction in the performance overhead caused by
the use of enclaves. This Section discusses two mod-
els of enclave management aiming at reducing such
overhead.

4.1 Enclave Sharing

Some situations may present multiple instances of the
same enclave, performing the same function and us-
ing mostly the same data. This is the case, for in-
stance, of enclaves launched to perform user authen-
tication, which use the same credential database; this
may also happen in servers that receive a large num-
ber of requests to be processed in enclaves.

An alternative to reduce the number of instantiated
enclaves is to share them by multiple applications or
multiple instances of the same application, allowing
the same instance of an enclave to treat requests from
different sources and avoiding launching a new en-
clave for each request. The benefit of having shared
long-life enclaves instead of exclusive short-life ones
is twofold: it reduces the use of the PRM area, allow-
ing more applications to have enclaves, and it avoids
the costs of frequent enclave creation and sensitive
data/code loading, which may be high, as discussed
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in Section 2.4, improving the applications’ response
time.

Enclave sharing was adopted by (Will and
Maziero, 2020) to centralize the handling of creden-
tials data in an authentication system. The model pro-
posed by the authors, using a client/server architec-
ture, made it possible to apply SGX security guaran-
tees without major performance impacts. A similar
approach is used by (Karande et al., 2017) to central-
ize the manipulation of log files in operating systems.

4.2 Enclave Pool

The pooling pattern, defined by (Kircher and Jain,
2002), is a pattern that describes how the acquisition
and release of expensive resources can be minimized
by recycling the resources that are no longer needed.
This pattern can be used in a context where systems
continuously acquire and release the same or similar
resources and need to meet high demands for scalabil-
ity and efficiency, while seeking to ensure that system
performance and stability are not compromised.

The object pool idea fits the limitation imposed by
the SGX architecture in the PRM size, which ends up
limiting the number of instances of enclaves that can
reside in memory simultaneously, as well as with the
cost of starting the enclaves, which increases in pro-
portion to their size. Maintaining a pool of enclaves
can decrease the response time of requests with fre-
quent demands to enclaves, a situation that can occur
in some implementations, as in the solution presented
by (Brenner et al., 2017).

The use of an enclave pool is addressed by (Li
et al., 2019), being applied in a multi-threaded web
server context. In their proposal, each enclave on the
server is linked to a thread responsible for direct com-
munication with that enclave, avoiding problems re-
sulting from race conditions within enclaves, in addi-
tion to a queue of requests to distribute each request
to an enclave in the pool. Tasks to be performed in
enclaves are queued and bound to available enclaves
as soon as possible, maintaining control over the ex-
ecution flow. In addition to the reduction in the im-
pact resulting from an enclave creation for each new
request, using an enclave pool allows a reduction in
CPU usage, compared to the standard model of en-
clave use.

5 ENCLAVE AS A SERVICE
APPROACH

An enclave can be seen as a component for the trusted
execution of some sensitive routine, which is directly

linked to the application that uses it. On the other
hand, the enclave can also be considered as a ser-
vice provider for that application, for the execution
of trusted routines, and for the provision of an encap-
sulated and protected environment for handling sensi-
tive data.

The concept of offering resources or routines as
a service is widespread in cloud computing environ-
ments, where it is denoted by the term Everything as
a Service (XaaS). This concept allows integration be-
tween heterogeneous applications, with resources be-
ing packaged in services that are accessed by client
applications. Services are fundamental items, totally
independent from applications, allowing their use on-
demand (Robison, 2008; Li and Wei, 2014).

In cloud environments, there are several resources
delivered to applications in the form of services, such
as software resources, with the concept of Software
as a Service (SaaS), and hardware resources, with the
concept of Infrastructure as a Service (IaaS). In the
context of computer security, the Security as a Service
(SECaaS) model is also presented, which provides, in
the form of services, authentication and authorization
mechanisms, intrusion detection, and verification of
malicious software, among others. A wide classifi-
cation of such services is presented by (Duan et al.,
2015a) and (Duan et al., 2016). Despite being quite
widespread and used in cloud environments, the XaaS
paradigm is not restricted to these environments and
can also be used locally, through the use of daemon
processes to treat requests from system users or other
processes (Duan et al., 2015b).

The XaaS paradigm key concept of unbinding re-
sources from applications can be applied to the use of
enclaves, offering them as a service to applications.
Thus, an Enclave as a Service (EaaS) paradigm can
be defined, which is characterized by a set of inde-
pendent enclaves that are made available to different
applications for the execution of trusted routines. This
concept is already partially explored with the execu-
tion of secure microservices, which offer a trusted en-
vironment for the execution of small services in the
cloud.

This paper proposes an approach to provide on-
demand enclaves to applications, through an enclave
provider, which creates and manages multiple en-
claves in behalf of them. In this Enclave as a Service
(EaaS) framework, applications only need to indicate
the enclave they need, among a set of previously reg-
istered ones, and submit requests to it through the
provider. All the enclave launching and management
functions is performed by the provider.
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6 ENCLAVE PROVIDER

The use of an enclave is restricted to the process that
instantiated it; other processes are denied access when
trying to make requests to a third-party enclave. Thus,
to allow enclaves to be shared by several applications,
it is necessary to include a mediator entity between
the requesting applications and the shared enclaves.
This mediator, called here as enclave provider, pro-
vides means for applications to communicate with the
available enclaves safely and manages the life cycle of
enclaves, relieving the applications of such task.

The enclave provider manages, in a coordinated
manner, the request of N applications for M enclaves,
according to the parameters contained in each request,
whose details are described in Section 6.2. For that,
the enclave provider centralizes all requests from ap-
plications in a broker, which is in charge of validat-
ing the request parameters, forwarding it to the cor-
responding enclave, and returning the corresponding
response back to the requesting application. The pro-
posed architecture, at a high level, is shown in Figure
2.

App 
1

App 
2

App 
N

Enclave Provider

Broker

Enclave A

Enclave B

Enclave C

Enclave NEnclave 
Manager

Figure 2: General architecture of the enclave provider, in
which several applications communicate with different en-
claves through a broker, which handles requests, forwards
them to the corresponding enclave, and returns the result to
the requesting application.

The sensitive information for the configuration
and management of the enclave provider is kept
sealed and manipulated within an enclave manager,
ensuring its confidentiality and integrity. Such infor-
mation includes the list of enclaves registered with the
provider, with their respective configurations, and the
list of active applications, enclaves, and the communi-
cation channels established between them. The archi-
tectural design details are described in the following
sections.

6.1 Enclave Registration

The first step for an enclave to be made available for
use by applications through the enclave provider is
its registration on the platform. Enclave registration
is necessary for the provider to become aware of the
enclave and its additional settings so that it can be
properly instantiated when requested.

The registered enclave will be identified by a
unique name, which will be used by applications to
make requests to the enclave. In this stage the cri-
teria for the management of the enclave is defined,
identifying whether the enclave will be managed as a
pool or a shared instance among the applications, the
number of client applications that the same enclave
instance can serve, and whether one or more instances
of that enclave should be created at the startup of the
enclave provider. Also, the ECALLs available in that
enclave are informed with their indexes, according to
the order in which they appear in the Enclave Def-
inition Language (EDL) file; finally, are defined the
specific ECALLs to be executed when the enclave is
instantiated or released.

Finally, the enclave provider performs the enclave
validation procedure for the registration. This proce-
dure first checks if there already is an enclave regis-
tered with the same requested name: if it exists, the
registration is denied. After that, the enclave cryp-
tographic hash is calculated and compared with the
hash provided in the registration request: if they are
not equal, the registration is denied. If both checks
succeed, the enclave is registered in the provider and
is made available for use by applications.

6.2 Communication

For an application to be able to use an enclave pro-
vided by the enclave provider, it should request an in-
stance of that enclave to the enclave provider. This
procedure is described in Figure 3 and consists of the
following steps:
1. The application initiates a key agreement with the

enclave provider, aiming to establish a secret key
between both parties to encrypt the exchanged
data. At the end of this step, the application and
provider share a secret key SK1, which will be
used to protect the subsequent communication be-
tween them;

2. A second key agreement is then performed be-
tween the application and the target enclave, to
establish another secret key (SK2) to protect the
communication between them;

(a) The first step of this communication, between
the application and the provider, is already en-
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crypted using key SK1, with the provider de-
crypting the content of the request and collect-
ing the necessary information to identify the
target enclave;

(b) The request is sent to the target enclave to pro-
ceed with the key agreement;

(c) The response from the enclave is returned to the
provider, encrypted using SK1 and sent back to
the application;

3. The subsequent communications between the ap-
plication and the enclave are protected with end-
to-end encryption, with the necessary data for the
provider being encrypted with the SK1 key, and
the data that will be sent to the enclave (payload)
encrypted with the SK2 key;

(a) The provider uses the SK1 key to decrypt the
request header, in order to identify the target
enclave;

(b) The request payload is sent to the enclave’s
ECALL function requested by the client appli-
cation;

(c) The enclave’s response is sent back to the ap-
plication.

Application Provider Enclave

Client Server

Key Agreement

Key Agreement

SK1

SK2

SK2

SK1

1

2 2(a) 2(b)

3 3(a)
3(b)

2(c)

3(c)

Figure 3: Communication between the application and the
enclave, mediated by the enclave provider, with end-to-end
encryption.

The request payload should not be seen by the
provider, but it must be informed of which enclave
is being requested and which method/action should
be invoked on that enclave. To satisfy such require-
ments, the request data is protected by two encryption
layers: the request payload, to be sent to the target
enclave, is encrypted using the SK2 key, maintaining
the confidentiality of such data even for the provider;
a header containing information for the provider is
added to the request, and the whole data is then en-
crypted with the SK1 key. This protects the request

confidentiality while allowing the provider to decrypt
its header and manage the request.

A service request received by the provider should
contain the requester identity, the target enclave, the
ECALL to be invoked, and its parameters (payload).
The application process identifier (PID) can be used
as requester identity; the target enclave is defined by
the enclave identifier (EID) received by the applica-
tion at the end of the first key agreement; the ECALL
to be invoked is defined by its name in the EDL file; fi-
nally, the payload is opaque data encrypted using SK2
and passed as-is to the enclave. This data will allow
the provider to make the function call to the target
enclave and return the response to the requesting ap-
plication. The response is protected using the same
double-key schema and contains an opaque payload
with the data returned by the enclave, when applica-
ble, and a status indicating the success or failure in the
execution of the requested operation by the provider.

6.3 Enclave Life Cycle

The enclave provider mediates the communication
between the application and the enclave, but is also re-
sponsible for managing the life cycle of registered en-
claves, seeking to maintain efficiency in the use of the
resources required by each enclave. From the point
of view of the requesting application, the use of en-
claves mediated by the provider is similar to the use of
an enclave directly by the application itself, maintain-
ing the same steps of requesting the enclave, calling
ECALLs, and releasing the enclave.

When the provider receives the request for an en-
clave, it verifies if there is already an active instance
of the requested enclave. If there is no such active
instance, the provider creates a new instance of that
enclave. Otherwise, the provider verifies whether the
maximum number of applications able to share the
same enclave instance has been reached. If this num-
ber has not yet been reached, the provider returns the
existing instance to the application, otherwise, a new
instance of the enclave is created to attend the request.

The execution of ECALLs occurs as described in
Section 6.2, with the request data being encapsulated,
encrypted, and sent to the provider. It then decrypts its
header to get the necessary information to identify the
requested enclave and function, makes the requested
call, and returns the response data back to the appli-
cation.

The enclave provider also has a structure that
maintains a list of all instantiated enclaves and which
applications are using them, with each application re-
ceiving a unique identifier for each enclave it is using
(EID). In this way, it is possible to validate the number
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of client applications that are using a certain enclave
instance and also to validate subsequent requests for
applications to execute ECALLs.

6.4 Enclave Release

When an enclave is no longer needed, the applica-
tion that requested it must indicate this to the provider.
This operation is analogous to the call to the function
sgx_destroy_enclave available at SGX API and,
for this, the application makes a request to the enclave
provider informing the identifier it holds.

When the provider receives the request to release
an enclave by an application that was using it, the
provider removes the entry corresponding to that ap-
plication in its list of instantiated enclaves; that en-
clave instance will remain available for use by other
applications. Even if there is no other application us-
ing the same instance of the enclave, that instance is
still maintained for some time, being able to meet new
requests.

In addition, the enclave provider must ensure re-
sponsible use of the enclaves: if an application re-
quested an enclave instance and, after a long period
of time, is no longer using it, the provider will re-
move its entry from the list of instances and, if there
is no other application using that enclave instance, it
is then removed.

7 PERFORMANCE EVALUATION

A performance analysis was carried out, to measure
the impact caused by the use of the enclave provider,
with either enclave sharing or pool, compared to en-
claves instantiated and accessed directly an applica-
tion. We run the performance tests in a Dell Inspiron
7460 laptop with the following settings: dual core
2.7 GHz Intel Core i7-7500U Central Processing Unit
(CPU), 16 GB RAM, 128 GB SSD and SGX enabled
with 128 MB PRM size. Intel TurboBoost, SpeedStep,
and HyperThread CPU extensions were disabled, to
provide stable results. We used Ubuntu 18.04 LTS,
kernel 4.15.0-112-generic, libdbus 1.12.20, Intel SGX
SDK 2.9.101.2, and set the enclave heap size at 64 KB
and the enclave stack size varying from 8 KB to 128
KB. The confidence interval width at 95% is 0.67%
of the average. All times were measured using the
RDTSCP instruction (Paoloni, 2010).

Figure 4 shows the average response time for re-
questing a given enclave, for 10,000 sequential re-
quests with different enclave sizes (no ECALL is in-
voked). Note that the average response time for re-
quests made directly by the application, without an

enclave provider, increases as enclave stack size in-
creases, due to the need to statically allocate the nec-
essary memory at the time of enclave initialization.
Also, there is no significant difference in response
times when using enclave sharing or pool approaches,
they remain constant regardless of the enclave stack
size.
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Figure 4: Average response time for enclave requests.

We also evaluated our solution with a real applica-
tion, an authentication module of the Pluggable Au-
thentication Modules (PAM) framework. We com-
pared five distinct solutions:

• Solution 1. The PAM module itself, without any
changes;

• Solution 2. The PAM module using SGX en-
claves (UniSGX), as proposed by (Condé et al.,
2018);

• Solution 3. The PAM module with an authenti-
cation server and enclave sharing, as proposed by
(Will and Maziero, 2020);

• Solution 4. The PAM module with the enclave
provider, which handles a shared enclave to vali-
date the authentication requests;

• Solution 5. Same as Solution 4, adding the
payload encryption and ensuring application-to-
enclave confidentiality;

The results presented in Figure 5 show that the di-
rect initialization of an enclave to validate the user’s
credentials (UniSGX solution, proposed by (Condé
et al., 2018)) imposes a high performance cost. On the
other hand, the use of an enclave sharing approach,
such as the one proposed by (Will and Maziero,
2020), guarantees the security properties of SGX
when manipulating the credentials file within an en-
clave, while having a virtually zero performance im-
pact compared to using standard PAM.

The use of the enclave provider also does not have
a significant performance impact, and maintains the
same confidentiality assumptions of the data trans-
ported on the communication bus, since these are
fully encrypted. Finally, since user credentials are
strictly sensitive data, payload encryption ensures that
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Figure 5: Response times for user authentication using
PAM directly and the SGX-based solutions.

not even the enclave provider is aware of what is be-
ing passed between the client application and the re-
quested enclave. Such operation adds a performance
cost of approximately 30%, as a result of the data en-
cryption and decryption operations and the additional
key agreement operation.

In addition to the response times for sequential
requests, we also seek to assess the behavior of the
enclave provider to respond to multiple simultaneous
requests. In this case, the response time for each re-
quest was evaluated, considering the enclave request
and the execution of the ECALL, and the number of
requests replied per second. For the tests, the en-
clave stack was set at 8 KB, to evaluate the shortest
response time, and three different scenarios were con-
sidered:

• Scenario 1. 20 simultaneous instances of the
client application are launched, each making 500
sequential requests to the enclave. The enclaves
pool is configured with 20 instances;

• Scenario 2. 50 simultaneous instances of the
client application are launched, each making 200
sequential requests to the enclave. The enclaves
pool is configured with 20 instances;

• Scenario 3. 50 simultaneous instances of the
client application are launched, each making 200
sequential requests to the enclave. The enclaves
pool is configured with 50 instances;

Figure 6 shows the response times for each re-
quest. Note that in Scenario 1 the use of both en-
clave sharing and pool provide lower response time
when compared to the direct initialization of the en-
clave by the application. Scenario 2 presents addi-
tional overhead to enclave sharing, due to the seri-
alization imposed by the enclave provider to the in-
coming requests. This can be seen also in the enclave
pool, mainly due to the pool under sizing. Finally, in
Scenario 3, with the size of the enclave pool properly
sized, the response time for each request is very simi-
lar to that presented when the application instantiates
the enclave directly.

In addition to the response time for each request,
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Figure 6: Average response time for each request (including
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the average number of requests replied to per sec-
ond in each scenario was also evaluated, with the re-
sults being presented in Figure 7. It is noted that, in
Scenario 1, both enclave sharing and pool performed
better than direct enclaves initialization. In Scenario
2, the enclave sharing approach maintained a good
performance, whereas the enclave pool had a perfor-
mance far below since the pool was undersized. With
the correct sizing of the pool (Scenario 3), the enclave
provider has a high response rate, again higher than
direct initialization.
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The behavior of the enclave provider in the pres-
ence of multiple requests was also evaluated in a real
application. Again, the PAM and the solutions pro-
posed by (Condé et al., 2018) and (Will and Maziero,
2020) were used for this analysis. Two scenarios were
considered:

• Scenario 1. 20 simultaneous application in-
stances are launched, each instance makes 500 re-
quests for user authentication;

• Scenario 2. 50 simultaneous application in-
stances are launched, each instance makes 200 re-
quests for user authentication;

The average response time for each request is
shown in Figure 8. The solutions based on the enclave
provider showed a response time higher than PAM
and the enclave sharing solution proposed by (Will
and Maziero, 2020), but still lower than the use of an
enclave instantiated directly by the PAM authentica-
tion module, as proposed by (Condé et al., 2018). It
is also noted that the payload encryption adds a small
overhead on the performance of the enclave provider.
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When analyzing the average number of requests
handled per second, the enclave provider shows good
performance, presenting rates higher than other solu-
tions based on enclaves in Scenario 1, as presented in
Figure 9. In Scenario 2, the enclave provider achieved
a response rate equivalent to the enclave sharing so-
lution described in (Will and Maziero, 2020) and,
when added the payload encryption, demonstrated
a response rate equivalent to direct initialization of
the enclave, as proposed by (Condé et al., 2018).
Such results demonstrate the robustness of the enclave
provider in the demand for several simultaneous re-
quests.
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8 SECURITY ASSESSMENT

Our threat model takes into account that the attacker
can monitor the communication mechanism between
applications and can collect the data exchanged be-
tween them. Thus, sensitive data exchanged between
applications and the enclave provider must be guaran-
teed confidentiality. Full control of the communica-
tion mechanism by the attacker, allowing it to change
or replace the data that are transmitted, is considered
out of scope.

The enclaves managed by the provider are previ-
ously registered, and the attacker can access the file

that contains this information and tamper with or re-
place its contents. In this case, protection mechanisms
must be applied to guarantee the confidentiality and
integrity of this content. Additionally, the attacker can
substitute the code files for the registered enclaves,
making it necessary to use mechanisms to validate
these files before loading them.

Internal data structures of the enclave provider can
be manipulated by an attacker, aiming to seize re-
quests from legitimate applications and forward them
to malicious enclaves. Such structures must be kept in
a protected area, preventing them from being deliber-
ately tampered with in memory. Finally, client appli-
cation vulnerabilities are considered out of scope in
our threat model.

All sensitive data structures for the execution of
the enclave provider are maintained and handled by
an enclave manager, thus using the confidentiality
and integrity mechanisms provided by SGX. The en-
clave manager is also responsible for receiving and
distributing requests from client applications, keeping
records of which enclaves are instantiated, which ap-
plications are making requests, and which instances
of enclaves are associated with these applications.

The enclaves handled by the provider are previ-
ously registered, and such records are maintained and
updated by the enclave manager, being stored in sec-
ondary memory in encrypted form, using the SGX
sealing feature. Thus, the records can only be read
by the manager enclave itself, and only on the plat-
form used to seal the data. In addition, any change in
the encrypted data is identified by the authentication
mechanisms contained in the sealing procedure itself.

Each enclave registered in the provider is accom-
panied by an SHA-256 cryptographic hash, which
aims to validate the content of the enclave before it
is loaded. Thus, the enclave provider validates the
cryptographic hash obtained from the content of the
enclave (including code and data) with that informed
in the registration data, ensuring that the code and
data of the enclave have not been altered or replaced.
This verification is carried out both when the enclave
is registered and when creating each of its instances,
which allows one to identify the changes made to the
enclave after its registration. The entire verification
procedure is carried out within the limits of the man-
aging enclave, avoiding the manipulation of such data
by unauthorized entities. After creating the instances,
the mechanisms provided by SGX guarantee the in-
tegrity of the data and code of the enclave.

The communication between the client applica-
tion and the enclave provider is fully encrypted, and
the enclave manager is responsible for handling ses-
sion keys and decrypting incoming requests. The ses-
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sion keys are agreed between the client application
and the managing enclave through an elliptic curve
Diffie-Hellman (ECDH) key agreement protocol, us-
ing the curve X25519 proposed by (Bernstein, 2006).
The use of the Diffie-Hellman protocol allows the def-
inition of an encryption key between the two parties
through an insecure channel, preventing an attacker
from obtaining this key.

The requests sent to the enclave provider are en-
crypted using a symmetric AES-CTR encryption al-
gorithm, using the 128-bit key agreed between the
parties. This key is used to encrypt all communication
between the application and the enclave provider, in-
cluding the responses sent by the provider. The appli-
cation can reset the encryption key at any time by ini-
tiating a new key agreement with the enclave provider.
The encryption of messages exchanged between the
parties ensures that if an attacker is connected to the
message bus and collects the information exchanged,
she will not have direct access to it, requiring the
application of techniques to obtain the key used for
encrypting the data. Even using high computational
power, the process of obtaining the key is extremely
expensive, making it unfeasible.

The procedures for decrypting the request and en-
crypting the response to be sent to the application oc-
cur within the manager enclave, which manipulates
the session keys. In this way, the encryption keys
are always protected by the enclave provider, ensuring
that they are not accessed by unauthorized entities.

Client applications can add an extra layer of secu-
rity by making a key agreement directly with the re-
quested enclave, thus enabling end-to-end encryption
of the data sent to the enclave. This possibility makes
the data exchanged between the application and the
enclave totally opaque to the enclave provider, in ad-
dition to adding an extra obstacle to an attacker who
may be collecting data in transit.

The client-server architecture also implies a single
point of failure: the server application. Thus, the en-
clave provider must be resilient and capable of recov-
ering from failures, to avoid denial of service attacks,
which prevent legitimate client applications from ac-
cessing the requested enclaves.

Finally, in addition to the security issues that
should be considered for the enclave provider in gen-
eral, we must consider the implications of each pro-
posed enclave management model. It should be noted,
however, that the management mode is a choice made
by the developer of the enclave, and he must take into
account the balance between performance and the ex-
pected security guarantees.

9 CONCLUSION

This paper proposes some programming models for
building applications using Intel SGX enclaves, to re-
duce the performance impact of this technology and
optimize resource utilization. Two different models
of enclave management were described: sharing and
pool. Each model has its own characteristics and
can be used in different contexts. Considering these
models, an architecture was proposed for an enclave
provider, which offers each enclave as a software re-
source to the applications and makes it available to
client applications in the form of a service, decou-
pling the enclave from the application that uses it and
allowing centralized management and efficient use of
enclave instances. After the specification of the en-
clave provider, a prototype was developed to validate
the proposal.

As future work, we intend to mitigate the problem
of under sizing the enclave pool by using more effi-
cient policies in releasing enclaves, causing the en-
clave provider to monitor pool usage and create new
instances in the background when necessary. Other
enclave management models may be added to the
provider, ensuring a greater diversity of models and
meeting other types of demand.

Extensions to the presented solution, in order to
work with requests from IoT devices and to run the
provider in a cloud environment, are also being stud-
ied, including operations that depend on the state of
the enclave, by using enclave migration techniques.
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